
BatTrace: Android battery performance testing via system call tracing

Yeayeun Park
ypark2@swarthmore.edu

Mark Serrano
mserran2@swarthmore.edu

Craig Pentrack
cpentra1@swarthmore.edu

Abstract

The increasing number of tasks we can
perform on our mobile devices feeds pos-
itively into the demand for devices with
longer battery power. Since mobile de-
vices have become integral parts of our
daily lives with the number of tasks we
can accomplish far outpacing battery per-
formance improvements, consumers have
increasingly encountered the issue of ef-
ficient device usage and battery life man-
agement. In this paper, we examine An-
droid devices in particular and present
BatTrace, an Android analysis tool that
evaluates battery performance on the an-
droid platform by tracing system calls.
BatTrace will execute different types of
popular system calls, and extract the cor-
relation between a particular system call
and its influence on the battery. Subse-
quently, it will trace system calls made by
individual Android applications and use
system call performance data to profile
each application. Finally, the analysis on
the correlation between system calls and
their battery usage, as well as the correla-
tion between each application and system
calls they initiate, will be combined to es-
timate battery usage of individual Android
applications.

1 Motivation

Our project is motivated by an issue that we face
daily: limited battery power on our mobile devices.
The vast power available at our fingertips in mobile
devices is tamed by the amount of battery physi-
cally available. Given that dynamic analysis exe-
cutes data in real-time to evaluate and test programs,
we searched for tools that would allow us to perform
dynamic analysis on our mobile devices while un-
covering low-level explanations as to what is really
draining the battery. By profiling particular system
calls in terms of their battery usage, we’re hoping to
derive a correlation between the two. Subsequently,
with the appropriate tools (such as ’strace’) we plan
to trace system calls made by third party applica-
tions and, in turn, provide a good set of guidelines
for mobile users to follow, when the low battery cri-
sis hits.

2 Background

Historically much power consumption research has
focused on using utilization-based methods. How-
ever, modern smartphones employ complex power
strategies in device drivers and OS-level power man-
agement, sometimes rendering utilization as a poor
model for representing power states and deducing
battery usage (Pathak et al., 2011). While some-
times strong correlation exists between utilization
and power consumption, often applications have
constant power consumption while in certain states
(while utilization fluctuates) or have high power
consumption while low utilization (Pathak et al.,
2011; Google, 2013). Additionally, measuring uti-



lization via performance counters results in accu-
racy loss (Pathak et al., 2011). Instead of modeling
power with utilization, system calls, the only way of
interacting with hardware and performing I/O, serve
as a much more precise indicator of power consump-
tion (Pathak et al., 2011). Past work and tools, such
as eProf, have shown system calls to be an effec-
tive way of modeling power (Pathak et al., 2011;
Yoon et al., 2012; Pathtak et al., 2012; Ding et al.,
2013). Using the findings of eProf and other studies
as justification, we plan to measure and classify sys-
tem calls on Android smartphones in terms of their
effect on battery life.

While eProf foregrounded system calls as an ef-
fective indicator of changes in power state, eProf
used system calls as a means toward profiling appli-
cations’ power consumption on a sub-routine level
(Pathak et al., 2011; Pathtak et al., 2012). Devel-
oping models based off of system calls supplied a
powerful tool, however the eProf research did not
study battery drain as a result of particular system
calls themselves and the frequency with which ap-
plications rely on certain system calls. Other work
in smartphone battery research, including detect-
ing energy-related bugs, correlating wireless signal
strength with battery consumption, and generating
battery usage information on the process or applica-
tion level, has relied on system calls (Yoon et al.,
2012; Pathak et al., 2012; Ding et al., 2013). We
plan to supplement the research area by focusing our
study on the system calls themselves, rather than us-
ing them as a means in tracking changes in power
state, detecting bugs, measuring signal strength ef-
fects, or producing higher-level profilings as ex-
plored previously.

3 Our Idea

While dynamic analysis on traditional devices in-
volves the most efficient use of finite computing re-
sources, mobile devices introduce a new problem;
finite power. The issue we immediately encounter
when trying to analyze mobile software applications
is that we almost never have access to the source
code of the applications. This is especially true
given the fact that most mobile software is propri-
etary in nature, leaving open source software to the
relics that are desktop computers.

Figure 1: The Android environment stack. Trace
location marks where we will be intercepting system
calls

With this in mind we set out find a way of measur-
ing mobile battery usage at very low level (software
wise). We decided a good approach would involve
monitoring activity at the system call level using a
tool like strace. Ideally, we want to profile a vari-
ety of system calls based on how much battery is
used while they are running. We intend to estab-
lish a baseline battery consumption level so we know
how much battery is used by just the OS. Then, us-
ing simple programs that repeatedly make the same
system call X times, we can determine how much
battery was used as a result of initiating a particular
system call X times.

Once system calls have been profiled, we can pro-
ceed to the last phase of the analysis. Our goal is to
identify the system calls initiated by the Dalvik VM
as a result of running an individual app. By identify-
ing the types of system calls, as well as the number
of calls made to an individual system call, we will be
able to predict the app’s impact on the battery based
on what we learned about battery usage for individ-
ual system calls. While this approach may not be the
most accurate, we believe it is the broadest approach
that will allow us to profile any application regard-
less of the author or the nature of the software’s li-
cense.

4 Milestones

Milestone 1
To begin the project we want to:

• Compile a small list of most used system calls
by profiling a handful of popular android appli-



cations

• Compile simple C programs (on linux/android)
that run the list most used system calls

• Collect data on battery usage as a result of run-
ning the C programs on the device

Milestone 2
After we have collected data on system calls, we
will:

• Search for the most suitable tracing platform
and trace system calls on various applications

• Identify and analyze the types of system calls
and the number of each call initiated by indi-
vidual applications

Milestone 3
With all this data in hand, the last step is to:

• Organize the data collected

• Attempt identification of patterns and relation-
ships between system calls and battery usage
by statistically analyzing the data

• Use established relationships to predict battery
usage of a novel application

References
Ning Ding, Daniel Wagner, Xiaomeng Chen, Ab-

hinav Pathak, Y. Charlie Hu, and Andrew Rice.
2013. Characterizing and modeling the impact
of wireless signal strength on smartphone bat-
tery drain. In SIGMETRICS ’13 Proceedings of
the ACM SIGMETRICS/international conference on
Measurement and modeling of computer systems.

Inc. Google. 2013. Power profiles for android.
Developer Guides.

Abhinav Pathak, Paramvir Bahl, Y. Charlie Hu, Ming
Zhang, and Yi-Min Wang. 2011. Fine-grained power
modeling for smartphones using system call tracing.
In EuroSys ’11 Proceedings of the sixth conference on
Computer systems.

Abinav Pathak, Abhilash Jindal, Y. Charlie Hu, and
Samuel P. Midkiff. 2012. What is keeping my
phone awake? characterizing and detecting no-sleep
energy bugs in smartphone apps. In MobiSys ’12
Proceedings of the 10th international conference on
Mobile systems, applications, and services.

Abhinav Pathtak, Y. Charlie Hu, and Ming Zhang. 2012.
Where is the energy spent inside my app?: fine grained
energy accounting on smartphones with eprof. In
EuroSys ’12 Proceedings of the 7th ACM european
conference on Computer Systems.

Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo
Kang, and Hojung Cha. 2012. Appscope: Appli-
cation energy metering framework for android smart-
phones using kernel activity monitoring. In USENIX
ATC’12 Proceedings of the 2012 USENIX conference
on Annual Technical Conference.


