Identifying the potential for race conditions by
analyzing thread behavior

Elliot Weiser (eweiserl) and Stella Cho (schol)

1 Abstract

Multithreaded software is everywhere; the advantages of parallelism are applied
to almost all modern day applications. However, the common parallel primitive
known as threads can introduce bugs known as race conditions. This research is
a part of an attempt to reduce the likelihood of these bugs, which is particularly
important today because modern software is often written by several develop-
ers, at different times, without full knowledge of what the other code-writers
are doing. Our objective is to examine existing multithreaded software to ob-
serve the behavior of threads within the software. In particular, we expect to
identify and quantify potentially problematic threads that could be made more
resistant to concurrency bugs with a superior implementation. This research is
an important step aimed toward aiding those who are working on projects to
reduce parallel-code bugs.

2 DMotivation

Threads are an effective approach to parallel computation and increased re-
sponsiveness of interactive programs. However, they are notoriously prone to
bugs because they share certain regions of memory, among other things. Race
conditions can cause undefined behavior in a program, which may cause it to
terminate, or continue execution with an incorrect or unintended state (which
may be worse). Our project examines thread behavior with the overall goal of
identifying and limiting these bugs.

3 Background

Threads have various uses: Computation threads satisfy the conventional need
for parallelism. These are often used to divide up equal amounts of disjoint work
across several processors (usually the number of cores in the machine). Such
multithreaded software is typically written with data races in mind, and so mu-
texes and semaphores are used appropriately and the race condition is removed.
Event-handlers are different. Fvent-handlers are routines that execute upon the



realization that some ”event” has occurred (i.e. they are told to execute when
some condition has been met). These routines can be written after the bulk
of the application has already been written. Consequently, the writer of this
routine may have no idea that he/she is introducing a race condition, and thus,
the program has potentially bug-infested behavior.

Charcoal is a project created by Ben Ylvisaker that is geared toward solving
problems related to multithreaded code. Specifically, Charcoal is a dialect of
C that introduces activities, a variation on cooperative threads that limits the
possibilities of concurrency bugs. Unlike traditional threads, only one activity
can run at a time, although it is possible to "yield” control to a different activity.
Ylvisaker claims that activities are better suited than threads for event-handling
by reducing potential race conditions. [2]

Related Work: Blake et al. (2010) study how effectively modern desktop
applications use threads on multi-core architectures. The paper explicitly looks
at context switches and GPU utilization and determines 2-3 cores to be sufficient
for most desktop applications. [1]

4 Our Idea

We will determine the kinds of threads that a given piece of software uses. In
particular, we will measure the number of threads used, how long they run,
and what they do. We expect the threads to fall into two functional categories:
computation threads, and event-handler threads. As activities are expected to
have the most impact on event-handler threads, which have short and unpre-
dictable behavior, the thread-type composition will inform the usefulness of an
activity-centric implementation.

We will follow closely the experimental set-up described in Blake et al. and
look into DTrace, a dynamic tracing framework that reports when a thread is
created, destroyed, started, or stopped. We will analyze the threads created by
different pieces of widely used, multithreaded software.

5 Milestone Goals
5.1 Milestone 1 (10/30, 11/6)

Have working knowledge of DTrace and preliminary DTrace results. Write a
program that scans DTrace output to parse for information that we want.

5.2 Milestone 2 (11/13, 11/20)

Write a program that performs analytics on results.



5.3 Milestone 3 (11/27, 12/4)

Run DTrace on other pieces of software. Compile statistics.

References

[1] Geoffrey Blake, Ronald Dreslinski, and Trevor Mudge. Evolution of thread-
level parallelism in desktop applications. ISCA’10, 2010.

[2] Ben Ylvisaker. Charcoal: Easier concurrency for application developers,
2013.



