
Likely Kernel Library- An image recognition

runtime for heterogenous architectures

Jordan Cheney Jake Weiner

Abstract

The software development of a complex system is often facilitated by a Domain
Specific Language (DSL) whose syntax is designed to concisely and efficiently
solve problems encountered in that domain. Many communities rely on DSLs;
including TeX for typesetting, ggplot2 for plotting, SQL for database queries,
GraphViz for graph layout, and Mathematica for symbolic math. The goal of
likely is to provide a domain specific language for efficient image processing.
Likely holds to several guiding principles which inform design decisions:

1. Immediate visual feedback while developing algorithms

2. Heterogenous hardware architecture support

3. Typeless and efficient kernel syntax for statistical learning

4. Embeddable into other projects and languages

In particular, our specific goals will be to provide basic image processing func-
tions as a proof of concept for likely. These functions will hold to the aforemen-
tioned principles of likely, and result in a demonstrable product at the end of
the class.

1 Motivation

While there are other image processing DSL’s currently available [1][4][5] we
feel that a DSL for image processing has yet to be created that allows for
immediate visual feedback for algorithm design. This is a feature that we believe
is uniquely suited to this field of computer science and will for allow much
easier algorithm design in the future. We believe that many people (including
the authors themselves) would benefit from seeing feedback of complex image
manipulations in real time, and that this would facilitate exciting leaps in the
field of computer vision.

1



2 Background

There currently exist several domain specific languages for image processing,
Many of these languages are widely used and come from large and reputable
companies like Adobe and Apple [1], and these languages generally offer high
level algorithm creation and generate low level code with an emphasis on ef-
ficiency. They allow for GPU access for increases in performances and offer
multithreading capability.

In addition, DSLs have also been created for specific tasks, like medical
image manipulation. For example, the DSL Diderot uses a multithreaded low
level code design to create a high level and easy to learn language for medical
professionals to perform image manipulations on MRI and CT scans [5].

3 Our Idea

Likely will utilize two well documented libraries, LLVM and OpenGL to imple-
ment the heterogeneous architecture design and efficient computation seen in
previous image processing DSLs. Likely will move beyond previous work with
its implementation of a live coding environment [3]. Using LLVM’s intermediate
representation language and just-in-time compiler [2], the results of algorithms
written in likely’s high level language will be immediately visible to the user.

4 Goals

1. Implement very basic math functions; add, subtract, multiply, divide.
Achieve good understanding of existing code base

2. Implement more advanced math functions; log, exp, sqrt, etc. Implement
casting of matrices to different types.

3. Implement thresholding and saturated arithmetic. Prepare a live demo of
the coding environment.

References

[1] Adobe. Pixel Bender Developer’s Guide.

[2] Edward Barrett. 3c - a JIT compiler with LLVM. Technical report,
Bournemouth University, 2009.

[3] Joshua C. Klontz. Likely kernel library.

[4] Brian Guenter Diego Nehab. Neon: A domain-specific programming lan-
guage for image processing. Technical report, Microsoft Research, 2010.

2



[5] Charisee Chiw Gordon Kindlmann John Reppy Lamont Samuels Nick
Seltzer. Diderot: A parallel dsl for image analysis and visualization. Tech-
nical report, University of Chicago, 2012.

3


