
Senior Conference Project Proposal
SketchyCode: An Accessible Interactive Thinking Space for Programmers.

Team 08: Z. Lockett-Streiff and N. Verosky

October 2, 2013

Abstract

We have identified two areas of hindrance in
software development: the abstract represen-
tation of thoughts on easily disorganized phys-
ical media and information overload in IDE
displays. We plan to design SketchyCode, an
Android app that can interact with an IDE
to streamline both aspects of the development
process by linking high-level idea sketching and
project visualization with actual implementa-
tion.

The ability to abstractly sketch out thoughts
on physical media, such as paper and white-
boards is a boon for developers wanting to
visualize their ideas. However, these disjoint
thoughts can quickly become disorganized, and
the connections between them may be lost to
other developers. SketchyCode grants users
the ability to not only organize their ideas in
a single location, but also to draw connections
between them to indicate related ideas.

SketchyCode can also interact with the
Eclipse IDE to navigate and refactor blocks of
code, enabling users to modularize their de-
velopment process and avoid getting bogged
down with implementing high-level conceptual
shifts in project organization through tedious
sequences of low-level changes (eg. cutting and
pasting code between modules).

Motivation

Writing code is often a messy process. A typi-
cal workflow in an IDE like Eclipse contains a
number of modules, including the following:

1. The text editor window

2. A package explorer

3. A project outline

4. Other auxilary functionality which may
vary with the type of project being de-
veloped.

Eclipse has done well with organizing these
modules to optimize space for the editor win-
dow. However, this high concentration of in-
formation may overwhelm the developer’s abil-
ity to focus their thoughts. Parnin et al have
responded to this problem with CodePad, a
specialized tablet computer. CodePads are in-
tended to serve as interactive spaces for main-
taining concentration in programming environ-
ments by integrating high-level sketching into
the development environment. The devices ex-
ist in multiple form factors, and can be linked
with an IDE. The developer can use CodePads
to navigate, refactor and annotate code in an
external space.

While effective in reducing the extent of clut-
ter in programming spaces, CodePad’s user in-
terface may still present the user with very
dense amounts of information. The abstraction
and fluidity inherent in the pencil-and-paper-
guided sketching is lost. We intend to restore
design abstraction in SketchyCode by provid-
ing an interactive space for users to brain-
storm and visually organize their ideas. Ad-
ditionally, SketchyCode will offer code naviga-
tion and reforactoring functionality. Contain-
ing the brainstorming process in a single loca-
tion which still allows for abstract thinking and
organization of disparate thoughts will stream-
line the design process for developers by grant-
ing them multiple levels of program design.

1



Furthermore, CodePad is designed to work
on a single line of specialized hardware, which
limits user accessibility to this interactive
space. Such devices are likely to be very expen-
sive. SketchyCode will begin as a free Android
tablet application than can be generalized to
other mobile devices.

Background

The primary impetus for SketchyCode is the
work of Parnin et al, the developers of Code-
Pad. CodePad provides peripheral working
spaces which link to an IDE and enable de-
velopers to share notes and code with each
other. The form factor on which we are mod-
eling SketchyCode is the portable CodePad, a
mid-sized tablet. However, the hardware of
the portable CodePad is limited by the bulk
of tablet computers leading up to and dur-
ing 2010. The authors admit “a more apt de-
vice comes in the form of an iPad.”[PGR10].
In the years following the SOFTVIS sympo-
sium, tablet form factors have been drastically
streamlined. The authors are collectively more
experienced with Android development, and so
we will be creating our project on the Android
platform.

The niche of our project is unique since mo-
bile applications have only recently become
popular. For reference, the first iteration of the
iPhone was released in 2007, and the iPad not
until 2012, two years after the CodePad paper
was published. A cursory scan of Google Play
revealed very little: an application titled “An-
droid CodePad” which acts as a stand-alone
code viewer. Android CodePad has no IDE
integration or brainstorming space. This app
is rated at a paltry 3.2 stars out of 5 likely
bears no relation to the CodePad developed by
Parnin et al.

Our Idea

To facilitate high-level code sketching on mo-
bile devices, SketchyCode will represent coding
projects as collections of free-floating modules
on background canvases, enabling developers
to quickly zoom into different modules for an-
notation, change spatial relationships between
modules to conceptualize the project from dif-
ferent angles and allow for flexible birds-eye-
view sketching, and refactor code by moving
functions and classes between modules. We
plan to implement SketchyCode as an Android
application in communication with a back-
end Eclipse plugin over the network so devel-
opers can conveniently move back and forth
between SketchyCode for high-level sketching
and reconceptualization, and Eclipse for more
detailed writing and debugging of actual code.

Milestone Goals

We are breaking down our project as follows:

• Milestone 1: Mobile front-end
coded up. Implementation of back-
ground canvas with free-floating modules
and sketching capabilities complete, but
SketchyCode can not yet communicate
with Eclipse. Eclipse plug-in started.

• Milestone 2: User testing with dummy
data completed. Progress on Eclipse
plug-in.

• Milestone 3: Eclipse plug-in commu-
nicating with the Android app.

References

[PGR10] Chris Parnin, Carsten Gorg, and
Spencer Rugaber. Codepade: In-
teractive spaces for maintaining con-
centration in programming environ-
ments. In SOFTVIS, 2010.

2


