
CPSC097 Project Proposal: Network Intrusion Detection Using
Random Forests And Expectation Maximization Preprocessing

Chris Magnano

cmagnan1 and Chris Lekas
clekas1

1 Abstract

Despite recent advanced in network intrusion
detection algorithms, most network intru-
sion detection systems still struggle to detect
novel attack types. We propose improving
upon an already high-performing machine
learning algorithm, random forests, with pre-
processing step that uses expectation maxi-
mization. We will test our hybrid algorithm
on a field standard dataset in cases with both
known and unknown attacks.

2 Motivation

Network attacks are increasingly common.
Although current network intrusion detec-
tion algorithms are quite successful in de-
fending against known attacks, current meth-
ods struggle to identify new forms of at-
tacks. We hope to use preprocessing com-
bined with current high-performing machine
learning methods to improve detectiion of
both known and unknown attacks.

2.1 Problem Statment

Input: Training packet data labeled normal
or with some type of network attack and un-
labeled test packet data.

Output: Labels for unlabeled test packets
as an attack or normal traffic.

3 Background

Network intrusion detection is based on
the assumption that there is enough data
availalbe in packet metadata and network
traffic patterns to determine whether a
given packet it part of an attack. There
are three main types of algorithms used
to implement network intrusion detection:
statistical-based, knowledge-based, and ma-
chine learning-based. (Garćıa-Teodoro et al.,
2009)
Machine learning is a natural method for

detecting new patterns of attacks. Random
forests are among the most successful ma-
chine learning algorithms and have proven
effective in a variety of situations in which
this type of pattern detection is important.
Several characteristics of network packets in-
volve continuous variables, which are best
classified based on ranges instead of exact
values. Expectation maximization(EM) is
a good method for determining important
ranges to use as features in a machine learn-
ing algorithm.

4 Project

4.1 Overview

We hope to contruct a pipeline which will be
able to, given incoming network traffic, alert
the user if that incoming traffic is some kind
of attempted malicious action. We are plan-



ning on performing this prediction of mali-
cous intent using random forests with an ex-
pectaion maximizatiom(EM) preprocessing
step. We plan for our pipeline to be able
to dectect known malicous attacks as well as
novel attacks.

4.2 Algorithm

Our pipline will begin with love, as all good
piplines should. Following love, the pipline
will be trained using labeled packet data
from the sources outlined in the data sec-
tion of this paper. The raw data will be pre-
processed using EM. EM will, for each fea-
ture, be used to determine relevant ranges
for different types of traffic. These ranges
will be used as bin features for a typical ran-
dom forests implementation. After training,
we will test our data on unlabeled data, in-
cluding types of attacks not in the training
data set.

4.2.1 Random Forests

We will begin by using a machine learn-
ing library, likely either a Java or Python
library, for our initial tests. If we find off
the shelf library implementations to be too
slow or otherwise inadaquate, we will imple-
ment random forests outselves.We may have
to also using a tuning set to determine a max-
imum tree depth in order to avoid overfitting.

4.2.2 Expectation Maximization

We are planning to implement EM from
stratch. We believe that preprocessing with
EM will allow the pipline to establish ”nor-
mal” ranges for features of normal traffic.
For continuous features, attacks of similar
nature will likely have similar, but slightly
different, values. Establishing these ranges
will aid in detecting novel attack types.

4.3 Data

We will use the KDD-99 dataset. These data
are old and may have some problems as a

result of their age, but they are still com-
monly used (KDD-99 is probably still the
most used dataset for network intrusion de-
tection). We will limit ourselves to ten per-
cent of the KDD-99 dataset (approximately
75MB) or less for most of our training and
testing, but we might train and/or test on a
larger portion near the end of our project if
we can find the necessary time.

There are several reasons for using KDD-
99 instead of another dataset, which are dis-
cussed in the following subsubsections.

4.3.1 Feasibility Of Data Obtainment

Obtaining network intrusion data on our
own would require isolating a computer and
carefully controlling its connections, while
feeding in a large quantity of dangerous pack-
ets. This would require preparing the attacks
on our own, which would have the dual disad-
vantages of (1) being extremely time consum-
ing without being extremely beneficial and
(2) being likely to not include crucial attacks.

4.3.2 Minimal Parsing Required

Parsing packets of many different protocols
in order to obtain the necessary data in order
to perform network intrusion detection would
be a very time consuming process. KDD-99
provides data in a very easy format to parse,
allowing us to spend more time on the core
of our project.

4.3.3 Comparability With Previous

Results

Since many papers on network intrusion
detection have used KDD-99, using KDD-
99 allows our results to be compared with
those of the other papers. Although we may
not be using exactly the same pieces of the
dataset, at least we can count on the data
being similar. This is important because oth-
erwise we will not be able to tell whether our
random forest with EM support algorithm
is more effective than, less effective than, or



just as effective as previously implemented
algorithms.

5 Milestone Goals

5.1 Milestone 1

By milestone 1, we will have chosen the ran-
dom forest library implementation that we
intend to use. Additionally, the EM algo-
rithm will have been implemented. This
means that we will be able to give it a list
of observations for a given KDD-99 feature
and it will return a list of relevant ranges for
the observations given.
Also, code will be in place to parse the

KDD-99 input data and call the EM func-
tion on relevant sections of the data. Finally,
we will have set up version control for our
project.

5.2 Milestone 2

By milestone 2, our implementation will be
able to take in raw KDD-99 data, parse it
into features usin EM, train using the chosen
random forests implementation, and test on
unlabeled data. We will also have code writ-
ten to evaluate our results based on metrics
used in other papers.

5.3 Milestone 3

The goals for milestone 3 depend on the re-
sults obtained from the implementation com-
pleted by milestone 2.
If it is determined that the library random

forest algorithm is inadequate in some way
(e.g. is not fast enough to run in real-time on
incoming network traffic), we may implement
our own random forests algorithm.
Alternatively, we might optimize our fea-

tures and/or library random forest algorithm
usage, try expectation maximization with a
genetic algorithm, and/or hybridize our ran-
dom forests algorithm with a genetic algo-
rithm in order to boost the accuracy of our
pipeline.

References

P. Garćıa-Teodoro, J. Dı́az-Verdejo, G. Maciá-
Fernández, and E. Vázquez. 2009. Anomaly-
based network intrusion detection: Techniques,
systems and challenges. Computers And Security,
28:18–28.


