
Auto-tuning Sorting Algorithms

Sam White, Yeab Wondimu, Kyle Knapp

October 4, 2013

Abstract

The purpose of this project is to develop a system that can auto-tune the sorting
of a given set of data. Auto-tuning involves empirically searching through a set
of parameters such that a given set of data can be sorted as fast as possible.
The parameters involved in this empirical search include the type of sorting
algorithm used, the type of hardware used, the degree of parallelism, and the
partitioning of data. The sorting algorithms that will be used include quicksort,
merge sort, and bitonic sort. In terms of hardware,, the GPU, the network,
the number of cores, and the size of the L1 and L2 cache will all factor into the
empirical search. Parallelism will be tuned via controlling the number of threads
processing the data. Then, based on the hardware being used and the amount
of parallelism, an appropriate partitioning size will be determined. Once auto-
tuned, the system will produce a set of parameters that can be input to the
system such that data of similar type can be sorted as fast as possible without
the need for further auto-tuning.

Motivation

Sorting algorithms constitute one the most performance-critical and well-researched
domains in computer science. Automatic performance tuning, or auto-tuning,
is a more emergent topic. Research into both general auto-tuning and domain-
specific auto-tuning has grown in the last decade, with projects like ATLAS,
FFTW, and SPIRAL tuning numerical algorithms for different architectures
and memory hierarchies. We hope to take these methods and apply them to
sorting algorithms in order to gain optimal performance for different types of
input data and different types of systems.

Auto-tuning involves two basic steps: generation of parameterized code or
various algorithms, and searching through these algorithms in order to find the
best possible runtime performance. We will take into consideration parameters
such as the randomness of the data to be sorted, the cache and memory resources
of the machine being used, and the level of parallelism used. Our goal is to
create a library that will provide users with a single API to a set of sorting

1



algorithms that are performance tested and tuned based on the input data and
the underlying machine architecture.

Background

Research into auto-tuning domain-specific problems has been less extensive the
further one gets from numerical linear algebra problems. We were only able
to find two papers on auto-tuning sorting algorithms. Both were authored by
Xiamong Li, Mari Jesus Garzaran, and David Padua.

Their first paper, “A Dynamically Tuned Sorting Library” [1] , focuses on ex-
amining the inputs to sorting algorithms and using an empirical search algorithm
to figure out what combinations of parameters generate optimal performance.
Specifically, the group focused on quicksort, multi-way merge sort and radix
sort. They found that a cache-conscious radix sort gave them the best data
locality and runtime performance. The multi-way merge sort was also highly
tunable and adaptive. Quicksort, though, was harder to optimize, because of
its inherently random memory access pattern.

More specifically, Li et al. tried to tune performance based on both archi-
tectural factors and characteristics of the input data. Architectural parameters
included cache size, cache line size, and numbers of registers available to the
CPU. The authors also preliminarily scanned the data being sorted to deter-
mine its size and standard deviation. Different sorting algorithms perform better
on data with less of a distribution, while others are more agnostic to the input
datas randomness.

Their second paper, “Optimizing Sorting with Genetic Algorithms” [2] ,
concentrates more on the Artificial Intelligence concepts used to speed up the
empirical search. They use a genetic algorithm to search through the many
combinations of parameters that could be used in order to adaptively partition
the data and select the best sorting routines for each partition.

For each sorting algorithm, the authors use a library generator that searches
through algorithm-specific parameters to find the optimal parameters for that
search algorithm. Some of the examples of parameters that the library generator
searches are: the value of the pivot used in the first phase of quicksort and the
size and number of children in the heap used to merge the input array.

Work

Li, Garzaran, and Padua did not implement any parallel sorting algorithms, so
we hope to in some ways extend their work by considering the optimal com-
binations of different levels of parallelism. We will tune our system based on
parameters such as the randomness of the data to be sorted, the cache and
memory resources of the machine being used, and the level of parallelism used.
We hope to experimentally build up a knowledge base of tuning parameters and
their effects on performance, so that eventually we can have a set formula for

2



handling different input data and hardware specifications. Our goals section
details the work we hope to finish for each milestone.

Goals

Milestone 1 First, we will write code for all of the various sorting algorithms
that will be used during auto-tuning. Also, we will ensure that they are fully
tested and are functional. Secondly, a suite of functions will be implemented
such that the sorting algorithms can be performed via threads, processes, GPU,
or the network. It is important that all of these components are modular such
that any of the sorting algorithms can be easily combined with any of the
implementation methods. Yeab will primarily work with the implementation
of the sorting algorithms. Sam will focus on writing code involving the GPU
and MPI. Kyle will focus on writing code for making the threads and processes.

Milestone 2 For the second milestone, we plan to have our core system in
place. First, this means we will be able to choose one of our algorithms and one
of our implementations from the suite of functions and be able to successfully
sort the data. When choosing, these functions we have should be able to pick
important factors related to the function such as size of partitions and number
of threads. Secondly, we will have created some expert system along with some
AI that will help our system close in on the appropriate choice of functions and
variables. This part of the system will use a combination of past experimental
data and dynamic profiling to come to a decision. Yeab will work on the first
part of this system. Kyle and Sam will work together on this second part.

Milestone 3 For the third milestone, the system will be completely finished.
This entails that both functions and the expert system work together in har-
mony. We will be in the middle of writing our final paper and collecting data
for the paper. This part of the project will be done together, and work will be
appropriately allocated based on what needs to be completed.

References

[1] Xiaoming Li, Maŕıa Jesús Garzarán, and David Padua. A dynamically tuned
sorting library. In Proceedings of the international symposium on Code gen-
eration and optimization: feedback-directed and runtime optimization, CGO
’04, pages 111–, Washington, DC, USA, 2004. IEEE Computer Society.

[2] Xiaoming Li, Maria Jesus Garzaran, and David Padua. Optimizing sorting
with genetic algorithms. In Proceedings of the international symposium on
Code generation and optimization, CGO ’05, pages 99–110, Washington,
DC, USA, 2005. IEEE Computer Society.

3


