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ABSTRACT
Our accelerating computational demand and the rise of multicore
hardware have made parallel programs, especially shared-memory
multithreaded programs, increasingly pervasive and critical. Yet,
these programs remain extremely difficult to write, test, analyze,
debug, and verify. Conventional wisdom has attributed these dif-
ficulties to nondeterminism (i.e., repeated executions of the same
program on the same input may show different behaviors), and re-
searchers have recently dedicated much effort to bringing determin-
ism into multithreading. In this article, we argue that determinism
is not as useful as commonly perceived: it is neither sufficient nor
necessary for reliability. We present our view on why multithreaded
programs are difficult to get right, describe a promising approach
we call stable multithreading to dramatically improve reliability,
and summarize our last four years’ research on building and apply-
ing stable multithreading systems.

1 Introduction
Reliable software has long been the dream of many researchers,
practitioners, and users. In the last decade or so, several research
and engineering breakthroughs have greatly improved the reliabil-
ity of sequential programs (or the sequential aspect of parallel pro-
grams). Successful examples include Coverity’s source code ana-
lyzer [6], Microsoft’s Static Driver Verifier [3], Valgrind memory
checker [17], and certified operating systems and compilers [20].

However, the same level of success has not yet propagated to par-
allel programs. These programs are notoriously difficult to write,
test, analyze, debug, and verify, much harder than the sequen-
tial versions. Experts consider reliable parallelism “something of a
black art” [8] and one of the grand challenges in computing [1, 18].
Unsurprisingly, widespread parallel programs are plagued with in-
sidious concurrency bugs [15], such as data races (concurrent ac-
cesses to the same memory location with at least one write) and
deadlocks (threads circularly waiting for resources). Some of the
worst of these bugs have killed people in the Therac 25 incidents
and caused the 2003 Northeast blackout. Our study also reveals that
these bugs may be exploited by attackers to violate confidentiality,
integrity, and availability of critical systems [24].

In recent years, two technology trends have made the challenge
of reliable parallelism more urgent. The first is the rise of multi-
core hardware. The speed of a single processor core is limited by
fundamental physical constraints, forcing processors into multicore
designs. Thus, developers must resort to parallel code for best per-
formance on multicore processors. The second is our accelerating
computational demand. Scientific computing, video and image pro-
cessing, financial simulation, “big data” analytics, web search, and
online social networking are all massive computations and employ
various kinds of parallel programs for performance.

If reliable software is an overarching challenge of computer sci-
ence, reliable parallelism is surely the keystone. To make parallel
programs reliable, researchers have devoted decades of effort, pro-
ducing numerous ideas and systems, ranging from new hardware,

programming languages, programming models, to tools that detect,
diagnose, avoid, or fix concurrency bugs. As usual, new hardware,
languages, or models take years, if not forever, to adopt. Tools are
helpful, but they tend to attack derived problems, not the root cause.

Over the past four years, we have been attacking fundamental,
open problems in making shared-memory multithreaded programs
reliable. These programs express concurrency using threads, essen-
tially lightweight, sequential processes that share memory. We tar-
get these programs because they are the most widespread type of
parallel programs with mature support from hardware, operating
systems, libraries, and programming languages. They will likely re-
main prevalent in the foreseeable future.

Unlike sequential programs, repeated executions of the same
multithreaded program on the same input may yield different (e.g.,
correct vs. buggy) behaviors, depending on how the threads inter-
leave. Conventional wisdom has long blamed this nondeterminism
for the challenges in reliable multithreading [13]: threads are non-
deterministic by default, and it is the (tricky) job of developers to
account for this nondeterminism. Nondeterminism has direct impli-
cations on reliability. For instance, it makes testing less effective: a
program may run correctly on an input in the testing lab because
the interleavings tested happen to be correct, but executions on the
same exact input may still fail in the field when the program hits a
buggy, untested interleaving.

To eliminate this nondeterminism, several groups of researchers
including us have dedicated much effort to building deterministic
multithreading (DMT) systems [2, 4, 5, 7, 12, 14, 19]. These sys-
tems force a multithreaded program to always execute the same
thread interleaving, or schedule, on the same input, thus always re-
sulting in the same behavior. By mapping each input to only one
schedule, DMT brings determinism, a key property of sequential
computing, into multithreading.

However, we argue that nondeterminism is responsible for only
a small piece of the puzzle and that determinism, the cure to non-
determinism, is not as useful as commonly perceived: it is neither
sufficient nor necessary for reliability. It is not sufficient because a
perfectly deterministic system can map each input to an arbitrary
schedule, so that small input perturbations lead to vastly different
schedules, artificially reducing the program’s robustness and sta-
bility. It is not necessary because a nondeterministic system with a
small set of schedules for all inputs can be made reliable by exhaus-
tively checking all schedules. (See §2 for more discussion.)

We believe what makes multithreading hard is rather quantita-
tive: multithreaded programs have too many schedules. The number
of schedules for each input is already enormous because the paral-
lel threads may interleave in many ways, depending on such factors
as hardware timing and operating system scheduling. Aggregated
over all inputs, the number is even greater. Finding a few schedules
that trigger concurrency errors out of all enormously many sched-
ules (so developers can prevent them) is like finding needles in a
haystack. Although DMT reduces schedules for each input, it may
map each input to a different schedule, so the total set of schedules
for all inputs remains enormous.



We attacked this root cause by asking: are all the enormously
many schedules necessary? Our study reveals that many real-world
programs can use a small set of schedules to efficiently process a
wide range of inputs [10]. Leveraging this insight, we envision a
new approach we call stable multithreading (StableMT) that reuses
each schedule on a wide range of inputs, mapping all inputs to
a dramatically reduced set of schedules. By vastly shrinking the
haystack, it makes the needles much easier to find. By mapping
many inputs to the same schedule, it stabilizes program behaviors
against small input perturbations. StableMT and DMT are not mu-
tually exclusive: a system can be both deterministic and stable.

To realize our vision of StableMT, we have built three sys-
tems: TERN [10] and PEREGRINE [11], two compiler and run-
time implementations of StableMT; and a program analysis frame-
work that leverages StableMT to achieve high coverage and pre-
cision unmatched by its counterparts [22]. These systems address
three complementary key challenges, two of which have been long
open in related areas. Specifically, TERN addresses the challenge of
how to compute highly reusable schedules. The more reusable the
schedules, the fewer of them are needed. Unfortunately, comput-
ing reusable schedules is undecidable at compile time and costly
at runtime. PEREGRINE addresses how to efficiently make execu-
tions follow schedules and not deviate, a decades-long challenge in
the area of deterministic execution and replay. Our analysis frame-
work addresses how to effectively analyze multithreaded programs,
a well-known open problem in program analysis. Our implemen-
tations of these systems are mostly transparent to developers and
fully compatible with existing hardware, operating systems, thread
libraries, and programming languages, simplifying adoption.

Our initial results are promising. Evaluation on a diverse set
of widespread multithreaded programs, including the Apache web
server and the MySQL database, show that TERN and PEREGRINE
dramatically reduce schedules. For instance, under typical setups,
they reduce the number of schedules needed by parallel compres-
sion utility PBZip2 down to two schedules for each different num-
ber of threads, regardless of the file contents. Their overhead is
moderate, less than 15% for most programs. Our program analy-
sis framework enables the construction of many program analyses
with precision and coverage unmatched by their counterparts. For
instance, a race detector we built found previously unknown bugs
in extensively checked code with almost no false bug reports.

In the rest of this article, we first present our view on why mul-
tithreaded programs are hard to get right. We then describe our
StableMT approach, its benefits, and the three StableMT systems
we built. We finally present some results and conclude.

2 Why Are Multithreaded Programs So Hard
to Get Right?

We start with preliminaries, then describe the challenges caused by
nondeterminism and by too many schedules. We then explain why
nondeterminism is a lesser cause than too many schedules.

2.1 Preliminaries: Inputs, Schedules, and Buggy Schedules

To ease discussion, we use input to broadly refer to the data a pro-
gram reads from its execution environment, including not only the
data read from files and sockets, but also command line arguments,
return values of external functions such as gettimeofday, and any
external data that can affect program execution. We use schedule to
broadly refer to the (partially or totally) ordered set of communi-
cation operations in a multithreaded execution, including synchro-
nizations (e.g., lock and unlock operations) and shared memory
accesses (e.g., load and store instructions to shared memory). Of
all the schedules, most run fine, but some trigger concurrency er-

rors, causing program crashes, incorrect computations, deadlocked
executions, and other failures. Consider the toy program below:

// thread 1 // thread 2
lock(l); lock(l);
*p = . . .; p = NULL;
unlock(l); unlock(l);

The schedule in which thread 2 gets the lock before thread 1 causes
a dereference-of-NULL failure. Consider another example. The toy
program below has data races on balance:

// thread 1 // thread 2
// deposit 100 // withdraw 100
t = balance + 100;

balance = balance − 100;
balance = t;

The schedule with the statements executed in the order shown cor-
rupts balance. We call the schedules that trigger concurrency er-
rors buggy schedules. Strictly speaking, the errors are in the pro-
grams, triggered by a combination of inputs and schedules. How-
ever, typical concurrency errors, such as most errors appeared in
previous studies [15, 24], depend much more on the schedules than
the inputs (e.g., once the schedule is fixed, the bug occurs for all
inputs allowed by the schedule). Thus, recent research on testing
multithreaded programs (e.g., [16]) is focused on effectively test-
ing schedules to find the buggy ones.

2.2 Challenges Caused by Nondeterminism

A multithreaded program is nondeterministic because even with the
same program and input, different schedules may still lead to dif-
ferent behaviors. For instance, the two toy programs in the previous
subsection do not always run into the bugs. Except for the schedules
described, the other schedules lead to correct executions.

This nondeterminism raises many challenges, especially in test-
ing and debugging. Suppose an input can execute under n sched-
ules. Testing n− 1 schedules is not enough for complete reliability
because the single untested schedule may still be buggy. An execu-
tion in the field may hit this untested schedule and fail. Debugging
is challenging, too. To reproduce a field failure for diagnosis, the
exact input alone is not enough. Developers must also manage to
reconstruct the buggy schedule out of n possibilities.

Figure 1a depicts the traditional multithreading approach. Con-
ceptually, it is a many-to-many mapping, where one input may ex-
ecute under many schedules because of nondeterminism, and many
inputs may execute under one schedule because a schedule fixes the
order of the communication operations but allows the local compu-
tations to operate on any input data.

2.3 Challenges Caused by Too Many Schedules

A typical multithreaded program has an enormous number of
schedules. For a single input, the number of schedules is asymp-
totically exponential in the schedule length. For instance, given m
threads each competing for a lock k times, each order of lock ac-
quisitions forms a schedule, easily yielding (mk)!

(k!)m
≥ (m!)k total

schedules—a number exponential in both m and k. Aggregated
over all inputs, the number of schedules is even greater.

Finding a few buggy schedules in these exponentially many
schedules raises a series of “needle-in-a-haystack” challenges. For
instance, to write correct multithreaded programs, developers must
carefully synchronize their code to weed out the buggy schedules.
As usual, humans err when they must scrutinize many possibilities
to locate corner cases. Various forms of testing tools suffer, too.
Stress testing is the common method for (indirectly) testing sched-
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Figure 1: Different multithreading approaches. Red stars represent buggy schedules. Traditional multithreading (a) is a conceptual many-to-many mapping
where one input may execute under many schedules because of nondeterminism, and many inputs may execute under one schedule because a schedule fixes the
order of the communication operations but allows the local computations to operate on any input data. DMT (b) may map each input to an arbitrary schedule,
reducing programs’ robustness on input perturbations. StableMT (c and d) reduces the total set of schedules for all inputs (represented by the shrunk ellipses),
increasing robustness and improving reliability. StableMT and DMT are orthogonal: a StableMT system can be deterministic (c) or nondeterministic (d).

ules, but it often redundantly tests the same schedules while miss-
ing others. Recent tools (e.g., [16]) systematically test schedules
for bugs, but we seriously lack resources to cover more than a tiny
fraction of all exponentially many schedules.

2.4 Determinism Is Not As Useful as Commonly Perceived

To address the challenges raised by nondeterminism, researchers
including us have dedicated much effort and built several systems
that force a multithreaded program to always run the same sched-
ule on the same input, bringing determinism to multithreading. This
determinism does have value for reliability. For instance, one test-
ing execution now validates all future executions on the same input.
Reproducing a concurrency error now requires only the input.

In contrast to this effort, little has been done to solve the chal-
lenges caused by too many schedules. We believe the community
has charged nondeterminism more than its share of the guilt and
overlooked the main culprit—a rather quantitative cause that multi-
threaded programs simply have too many schedules. We argue that,
although determinism has value, its value is smaller than commonly
perceived. It is neither sufficient nor necessary for reliability.
Determinism 6=⇒ reliability. Determinism is a narrow property:
same input + same program = same behavior. It has no jurisdiction
if the input or program changes however slightly. Yet, we often ex-
pect a program to be robust or stable against slight program changes
or input perturbations. For instance, adding a debug printf should
in principle not make the bug disappear. Similarly, a single bit flip
of a file should usually not cause a compression utility to crash.
Unfortunately, determinism does not provide this stability and, if
naïvely implemented, even undermines it.

To illustrate, consider the system depicted in Figure 1b which
maps each input to an arbitrary schedule. This mapping is perfectly
deterministic, but it destabilizes program behaviors on multiple in-
puts. A single bit flip may force a program to discard a correct
schedule and adventure into a vastly different, buggy schedule.

This instability is counterintuitive at least, and raises new relia-
bility challenges. For instance, testing one input provides little as-
surance on very similar inputs, despite that the differences in input
do not invalidate the tested schedule. Debugging now requires ev-
ery bit of the bug-inducing input, including not only the data a user
typed, but also environment variables, shared libraries, etc. A dif-
ferent user name? Error report doesn’t include credit card numbers?
The bug may never be reproduced, regardless of how many times
developers retry, because the schedule chosen by the determinis-
tic system for the altered input happens to be correct. Note that
even a correct sequential program may show very different behav-
iors for small input changes across boundary conditions, but these

conditions are typically infrequent and the different behaviors are
intended by developers. In contrast, the instability introduced by the
system in Figure 1b is artificial and on all inputs.

Besides inputs, naïvely implemented determinism can destabi-
lize program behaviors on minor code changes, so adding a de-
bug printf causes the bug to deterministically disappear. Another
problem is that the number of all possible schedules remains enor-
mous, so the coverage of schedule testing tools remains low.

In practice, to mitigate these problems, researchers have to aug-
ment determinism with other techniques. To support debug printf,
some propose to temporarily revert to nondeterministic execu-
tion [12]. DMP [12], CoreDet [4], and Kendo [19] change schedules
only if the inputs change low-level instructions executed. Although
better than mapping each input to an arbitrary schedule, they still al-
low small input perturbations to destabilize schedules unnecessarily
when the perturbations change the low-level instructions executed
(e.g., one extra load executed), observed in our experiments [10].
Our TERN and PEREGRINE systems and others’ DTHREADS [14]
built subsequently to TERN combine DMT with StableMT (elabo-
rated next section) to frequently reuse schedules on a wide range of
inputs for stability.
Reliability 6=⇒ determinism. Determinism is a binary property:
if an input maps to n > 1 schedules, executions on this input may
be nondeterministic, however small n is. Yet, a nondeterministic
system with a small set of total schedules can be made reliable eas-
ily. Consider an extreme case, the nondeterministic system depicted
in Figure 1d which maps all inputs to at most two schedules. In
this system, the challenges caused by nondeterminism (§2.2) are
easy to solve. For instance, to reproduce a field failure given an in-
put, developers can easily afford to search for one out of only two
schedules. To offer an analogy, a coin toss is nondeterministic, but
humans have no problem understanding and doing it because there
are only two possible outcomes.

3 Shrinking the Haystack with Stable Multi-
threading

Motivated by the limitations of determinism and the challenges
caused by exponentially many schedules, we investigated a central
research question: are all the exponentially many schedules nec-
essary? A schedule is necessary if it is the only one that can (1)
process specific inputs or (2) yield good performance under spe-
cific scenarios. Removing unnecessary schedules from the haystack
would make the needles easier to find.

We investigated this question on a diverse set of popular multi-
threaded programs, ranging from server programs such as Apache,



Program Purpose Constraints on inputs sharing schedules
Apache Web server For a group of typical HTTP GET requests, same cache status
PBZip2 Compression Same number of threads
aget File download Same number of threads, similar file sizes
barnes N-body simulation Same number of threads, same values of two configuration variables
fft Fast Fourier transform Same number of threads
lu-contig Matrix decomposition Same number of threads, similar sizes of matrices and blocks
blackscholes Option pricing Same number of threads, number of options no less than number of threads
swaptions Swaption pricing Same number of threads, number of swaptions no less than number of threads

Table 1: Constraints on inputs sharing the same equivalent class of schedules. For each program, one schedule out of the class suffices to process any input
satisfying the constraints in the third column under typical setups (e.g., no system call failures or signals). We describe how to compute such constraints in §4.

to desktop utilities such as parallel compression utility PBZip2, to
parallel implementations of computation-intensive algorithms such
as fast Fourier transformation. These programs use diverse synchro-
nization primitives such as locks, semaphores, condition variables,
and barriers. Our investigation reveals the following two insights.

First, for many programs, a wide range of inputs share the same
equivalent class of schedules. Thus, one schedule out of the class
suffices to process the entire input range. Intuitively, an input often
contains two types of data: (1) metadata that controls the commu-
nication of the execution, such as the number of threads to spawn;
and (2) computational data that the threads locally compute on. A
schedule requires the input metadata to have certain values, but it al-
lows the computational data to vary. That is, it can process any input
that has the same metadata. For instance, consider the aforemen-
tioned PBZip2 which splits an input file among multiple threads,
each compressing one file block. The communication, i.e., which
thread gets which file block, is independent of the thread-local com-
pression. Under a typical setup (e.g., no read failures or signals),
for each different number of threads set by a user, PBZip2 can use
two schedules (one if the file can be evenly divided by the number
of threads and another otherwise) to compress any file, regardless
of the file data.

This loose coupling of inputs and schedules is not unique to
PBZip2; many other programs also exhibit this property. Table 1
shows a sample of our findings. The programs shown include
three real-world programs, Apache, PBZip2, and aget (a paral-
lel file download utility) and five implementations of computation-
intensive algorithms from two widely used benchmark suites, Stan-
ford’s SPLASH2 and Princeton’s PARSEC. (We describe how to
compute the constraints that a schedule places on the inputs in §4.)

Second, the overhead of enforcing a schedule on different in-
puts is low. Presumably, the exponentially many schedules allow
the runtime system to react to various timing factors and select an
efficient schedule. However, results from the StableMT systems we
built invalidated this presumption. With carefully designed sched-
ule representations (§4.2), our systems incurred less than 15% over-
head enforcing schedules on different inputs for most evaluated pro-
grams (§6). We believe this moderate overhead is worth the gains
in reliability.

Leveraging these insights, we have invented stable multithread-
ing (StableMT), a new multithreading approach that reuses each
schedule on a wide range of inputs, mapping all inputs to a dramat-
ically reduced set of schedules. By vastly shrinking the haystack,
it addresses all the needle-in-a-haystack challenges at once. In ad-
dition, StableMT stabilizes program behaviors on inputs that map
to the same schedule and minor program changes that do not af-
fect the schedules, providing robustness and stability anticipated by
developers and users.

StableMT and DMT are orthogonal. StableMT aims to reduce
the set of schedules for all inputs, whereas DMT aims to reduce
the schedules for each input (down to one). A StableMT system
may be either deterministic or nondeterministic. Figure 1c and Fig-

ure 1d depict two StableMT systems: the many-to-one mapping
in Figure 1c is deterministic, while the many-to-few mapping in
Figure 1d is nondeterministic. A many-to-few mapping improves
performance because the runtime system can choose an efficient
schedule out of a few for an input based on current timing factors,
but it increases the efforts and resources needed for reliability. For-
tunately, the choices of schedules are only a few (e.g., a small con-
stant such as two), so the challenges caused by nondeterminism are
easy to solve.

3.1 Benefits
By vastly reducing the set of schedules, StableMT brings numerous
reliability benefits to multithreading. We describe several:
Testing. StableMT automatically increases the coverage of sched-
ule testing tools, with coverage defined as the ratio of tested sched-
ules over all schedules. For instance, consider PBZip2 again which
needs only two schedules for each different number of threads un-
der typical setups. Testing 32 schedules effectively covers from 1 to
16 threads. Given that (1) PBZip2 achieves peak performance when
the number of threads is identical or close to the number of cores
and (2) a typical machine has up to 16 cores, 32 tested schedules
can practically cover most schedules executed in the field.
Debugging. Reproducing a bug now does not require the exact in-
put, as long as the original and the altered inputs map to the same
schedule. It does not require the exact program either, as long as
the changes to the program do not affect the schedule. Users may
remove private information such as credit card numbers from their
bug reports. Developers may reproduce the bugs in different envi-
ronments or add printf statements.
Analyzing and verifying programs. Static analysis can now focus
only on the set of schedules enforced in the field, gaining preci-
sion. Dynamic analysis enjoys the same benefits as testing. Model
checking can now check drastically fewer schedules, mitigating the
so-called “state explosion” problem [9]. Interactive theorem prov-
ing becomes easier, too, because verifiers need to prove theorems
only on the set of schedules enforced in the field. We will describe
these benefits in more detail in §5.
Avoiding errors at runtime. Programs can also adaptively learn
correct schedules in the field, then reuse them on future inputs to
avoid unknown, potentially buggy schedules. We will describe this
benefit in more detail in §4.1.

3.2 Caveats
StableMT is certainly not for every multithreaded program. It works
well with programs whose schedules are loosely coupled with in-
puts, but there are also other programs. For instance, a program
may decide to spawn threads or invoke synchronizations based on
intricate conditions involving many bits in the input. The parallel
grep-like utility pfscan is an example. It searches for a keyword
in a set of files using multiple threads, and for each match, it grabs
a lock to increment a counter. A schedule computed on one set of
files is unlikely to suit another. To increase the input range each
schedule covers, developers can exclude the operations on this lock



from the schedule using annotations.
StableMT provides robustness and stability on small input and

program perturbations when they do not affect schedules. However,
there is still room to improve. For instance, when developers change
their programs by adding synchronizations, it may be more efficient
to update previously computed schedules rather than to recompute
from scratch. We leave this idea for future work.

4 Building Stable Multithreading Systems
Although the vision of stable multithreading is appealing, realizing
it faces numerous challenges. Three main challenges are:

• How can we compute the schedules to map inputs to? The
schedules must be feasible so executions reusing them do not
get stuck. They should also be highly reusable.

• How can we enforce schedules deterministically and effi-
ciently? “Deterministically” so executions that reuse a sched-
ule cannot deviate even if there are data races, and “effi-
ciently” so overhead does not offset reliability benefits. This
challenge is also a decades-long challenge in the area of de-
terministic execution and replay.

• How can we handle multithreaded server programs? They of-
ten run for a long time and react to each client request as it
arrives, making their schedules very specific to a stream of
requests and difficult to reuse.

Over the past four years, we have been tackling these challenges
and building StableMT systems, which resulted in two StableMT
prototypes, TERN [10] and PEREGRINE [11], that frequently reuse
schedules with low overhead. This section describes our solutions
to these challenges. Our solutions are by no means the only ones;
subsequent to TERN, others have also built a system that stabilizes
schedules for general multithreaded programs [14].

4.1 Computing Schedules
Crucial to implementing StableMT is how to compute the set of
schedules for processing inputs. At the bare minimum, a schedule
must be feasible when enforced on an input, so the execution does
not get stuck or deviate from the schedule. Ideally, the set of sched-
ules should also be small for reliability. One possible idea is to pre-
compute schedules using static source code analysis, but the halt-
ing problem makes it undecidable to statically compute schedules
guaranteed to work dynamically. Another possibility is to compute
schedules on the fly while a program is running, but the computa-
tions may be complex and their overhead high.

Instead, we compute schedules by recording them from past ex-
ecutions; the recorded schedules can then be reused on future in-
puts to stabilize program behaviors. TERN, our system implement-
ing this idea, works as follows. At runtime, it maintains a persistent
cache of schedules recorded from past executions. When an input
arrives, TERN searches the cache for a schedule compatible with
the input. If it finds one, it simply runs the program while enforcing
the schedule. Otherwise, it runs the program as is while recording
a new schedule from the execution, and saves the schedule into the
cache for future reuse.

The TERN approach to computing schedules has several bene-
fits. First, by reusing schedules shown to work, TERN may avoid
potential errors in unknown schedules, improving reliability. A real-
world analogy is the natural tendencies in humans and animals to
follow familiar routes to avoid possible hazards along unknown
routes. Migrant birds, for example, often migrate along fixed fly-
ways. Why don’t our multithreading systems learn from them and

1 : main(int argc, char *argv[ ]) {
2 : int i, nthread = atoi(argv[1]);
3 : for(i=0; i<nthread; ++i)
4 : pthread create(worker); // create worker threads
5 : for(i=0; i<nthread; ++i)
6 : worklist.add(read block(i)); // add block to work list
7 : // Error: missing pthread join() operations
8 : worklist.clear(); // clear work list
9 : . . .
10: }
11: worker() { // worker threads for compressing file blocks
12: block = worklist.get(); // get a file block from work list
13: compress(block);
14: }
15: compress(block t block) {
16: if(block.data[0] == block.data[1])
17: . . .
18: }

Figure 2: An example program based on parallel compression utility
PBZip2. It spawns nthread worker threads, splits a file among the threads,
and compresses the file blocks in parallel.

reuse familiar schedules? (The name TERN comes from the Arctic
Tern, a bird species that migrates the farthest among all animals.)

Second, TERN explicitly stores schedules, so developers and
users can flexibly choose what schedules to record and when. For
instance, developers can populate a cache of correct schedules dur-
ing testing and then deploy the cache together with their program,
improving testing effectiveness and avoiding the overhead to record
schedules on user machines. Moreover, they can run their favorite
checking tools on the schedules to detect a variety of errors, and
choose to keep only the correct schedules in the cache.

Lastly, TERN is efficient because it can amortize the cost of com-
puting schedules. Specifically, recording and checking a schedule
is more expensive than reusing a schedule, but, fortunately, TERN
does it only once for each schedule and then reuses the schedule on
many inputs, amortizing the cost.

A key challenge facing TERN is to check that an input is compat-
ible with a schedule before executing the input under the schedule.
Otherwise, if TERN tries to enforce a schedule, for instance, of two
threads on an input that requires four, the execution would not fol-
low the schedule. This challenge turns out to be the most difficult
one we must solve in building TERN. Our final solution leverages
several advanced program analysis techniques, including two new
ones we invent. We refer interested readers to our papers [10, 11]
for details, and only describe the high level idea here.

When recording a schedule, TERN tracks how the synchroniza-
tions in the schedule depend on the input. It captures these depen-
dencies into a relaxed, quickly checkable set of constraints called
the precondition of the schedule. It then reuses the schedule on all
inputs satisfying the precondition, avoiding the runtime cost of re-
computing schedules.

A naïve way to compute the precondition is to collect constraints
from all input-dependent branches in an execution. For instance, if a
branch instruction inspects input variable X and goes down the true
branch, we add a constraint that X must be nonzero to the precondi-
tion. A precondition computed this way is sufficient, but it con-
tains many unnecessary constraints concerning only thread-local
computations. Since an over-constraining precondition decreases
schedule-reuse rates, TERN removes these unnecessary constraints
from the precondition.

We illustrate how TERN works using a simple program based
on the aforementioned parallel compression utility PBZip2. Fig-
ure 2 shows this example. Its input includes all command line argu-
ments in argv and the input file data. To compress a file, it spawns



// main // worker 1 // worker 2
4: pthread create(worker);
4: pthread create(worker);
6: worklist.add();

12: worklist.get();
6: worklist.add();

12: worklist.get();
8: worklist.clear();

Figure 3: A synchronization schedule of the example program. Each syn-
chronization is labeled with its line number in Figure 2.

3: 0 < nthread ? true
3: 1 < nthread ? true
3: 2 < nthread ? false
5: 0 < nthread ? true
5: 1 < nthread ? true
5: 2 < nthread ? false
16: . . . // constraints collected from compress()

Figure 4: All input constraints collected for the schedule. Each constraint is
labeled with its line number in Figure 2. Constraints collected from function
compress are later removed by TERN because they have no effects on the
schedule. The remaining constraints simplify to nthread = 2.

nthread worker threads, splits the file accordingly, and compresses
the file blocks in parallel by calling function compress. To coordi-
nate the worker threads, it uses a synchronized work list. (Here we
use work-list synchronization for clarity; in practice, TERN handles
Pthread synchronizations.) The example actually has a bug: it is
missing pthread_join operations at line 7, so the work list may
be used by function worker after it is cleared at line 8, causing po-
tential program crashes. This bug is based on a real bug in PBZip2.

We first illustrate how TERN records a schedule and its precon-
dition. Suppose we run this example with two threads, and TERN
records a schedule as shown in Figure 3, which avoids the use-after-
free bug. (Other schedules are also possible.) To compute the pre-
condition of the schedule, TERN first records the outcomes of all ex-
ecuted branch statements that depend on input data. Figure 4 shows
the set of constraints collected. It then applies advanced program
analyses to remove the constraints that concern only local compu-
tations and have no effects on the schedule, including all constraints
collected from function compress. The remaining ones simplify to
nthread = 2, which forms the precondition of the schedule. TERN
stores the schedule and precondition into the schedule cache.

We now illustrate how TERN reuses a schedule. Suppose we want
to compress a completely different file also with two threads. TERN
will detect that nthread satisfies nthread = 2, so it will reuse the
schedule in Figure 3 to compress the file, regardless of the file data.
This execution is reliable because the schedule avoids the use-after-
free bug. It is also efficient because the schedule orders only syn-
chronizations and allows the compress operations to run in paral-
lel. Suppose we run this program again with four threads. TERN will
detect that the input does not satisfy the precondition nthread = 2,
so it will record a new schedule and precondition.

4.2 Efficiently Enforcing Schedules

Prior work enforces schedules at two different granularities: shared
memory accesses or synchronizations, forcing users to trade off ef-
ficiency and determinism. Specifically, memory access schedules
make data races deterministic but are prohibitively inefficient (e.g.,
1.2X-6X as slow as traditional multithreading [4]); synchroniza-
tion schedules are much more efficient (e.g., average 16% slow-
down [19]) because they are coarse grained, but they cannot make
programs with data races deterministic, such as our second toy pro-
gram in §2 and many real-world multithreaded programs [15, 23].

Synchronization 
schedule

Synchronization 
schedule

Memory access 
schedule

Memory access 
schedule

Hybrid 
schedule

Hybrid 
schedule

Bug!Bug!

Figure 5: Hybrid schedule idea. Circles represent synchronizations, and tri-
angles memory accesses. A synchronization schedule is efficient because
it is coarse-grained, but it is not deterministic because data races may still
cause executions to deviate from the schedule and fail. A memory access
schedule is deterministic, but it is slow because it is fine-grained. A hybrid
schedule combines the best of both by scheduling memory access only for
the racy portion of an execution and synchronizations otherwise.

This determinism vs. performance challenge has been open for
decades in the areas of deterministic execution and replay. Because
of this challenge, TERN, our first StableMT system, enforces only
synchronization schedules.

To address this challenge, we have built PEREGRINE, our second
StableMT system [11]. The insight in PEREGRINE is that although
many programs have races, the races tend to occur only within small
portions of an execution, and the majority of the execution is still
race-free. Intuitively, if a program is full of data races, most of them
would have been caught during testing. Empirically, we analyzed
the executions of seven real programs with races, and found that,
despite millions of memory accesses, only up to 10 data races were
detected per execution.

Since races occur rarely, we can schedule synchronizations for
the race-free portions of an execution, and resort to scheduling
memory accesses only for the “racy” portions, combining both
the efficiency of synchronization schedules and the determinism of
memory access schedules. These hybrid schedules are almost as
coarse-grained as synchronization schedules, so they can also be
frequently reused. Figure 5 illustrates this idea.

How can we predict where data races may occur before an exe-
cution actually starts? One possible idea is to use static analysis to
detect data races at compile time. However, static race detectors are
notoriously imprecise: a majority of their reports tend to be false
reports, not true data races. Scheduling many memory accesses in
the false reports would severely slow down the execution.

PEREGRINE leverages the record-and-reuse approach in TERN
to predict races: a recorded execution can effectively foretell what
may happen for executions reusing the same schedule. Specifically,
when recording a synchronization schedule, PEREGRINE records a
detailed memory access trace. From the trace, it detects data races
that occurred (with respect to the schedule), and adds the mem-
ory accesses involved in the races to the schedule. Now, this hybrid
schedule can be efficiently and deterministically enforced, solving
the aforementioned open challenge. To reuse the schedule on other
inputs, PEREGRINE provides new precondition computation algo-
rithms to guarantee that executions reusing the schedule will not run
into any new data races. To enforce an order on memory accesses,
PEREGRINE modifies a live program at runtime using a safe, effi-
cient instrumentation framework we built [21].

4.3 Handling Server Programs

Server programs present three challenges for StableMT. First, they
may run continuously, making their schedules effectively infinite
and too specific to reuse. Second, they often process inputs, i.e.,
client requests, as soon as the requests arrive. Each request may
arrive at a random moment, causing a different schedule. Third,
since requests do not arrive at the same time, PEREGRINE cannot
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Figure 6: Recording and reusing schedules for a server program with three
threads. The continuous execution stream is broken down into windows of
requests, and PEREGRINE records and reuses schedules across windows.

check them against the precondition of a schedule upfront.
Our observation is that server programs tend to return to the same

quiescent states, so PEREGRINE can use these states to split a con-
tinuous request stream down to windows of requests, as illustrated
in Figure 6. Specifically, PEREGRINE buffers requests as they arrive
until it gathers enough requests to keep all worker threads busy. It
then runs the worker threads to process the requests, while buffer-
ing newly arrived requests to avoid interference between windows.
If PEREGRINE cannot gather enough requests before a predefined
timeout, it proceeds with the partial window to reduce response
time. By breaking a request stream into windows, PEREGRINE can
record and reuse schedules across windows, stabilizing server pro-
grams. Server quiescent states may evolve. For instance, a web
server may cache requests in memory. Developers can annotate the
functions that query cache, and PEREGRINE treats the return values
as inputs and selects proper schedules. Windowing reduces concur-
rency, but the cost is moderate based on our experiments.

5 Applying Stable Multithreading For Better
Program Analysis

As discussed in §3, StableMT can be applied in many ways to im-
prove reliability. In this section, we describe a program analysis
framework we have built atop PEREGRINE to effectively analyze
multithreaded programs, an open challenge in program analysis.

At the core of this open challenge lies the tradeoff between pre-
cision and coverage. Of the two common types of program analy-
sis, static analysis, which analyzes source code without running it,
covers all schedules but with poor precision (e.g., many false error
reports). The reason is that it must over-approximate the enormous
number of schedules, and thus it may analyze a much larger set of
schedules, including those impossible to occur at runtime. Not sur-
prisingly, it may detect many “bugs” in the impossible schedules.
Dynamic analysis, which runs code and analyzes the executions,
precisely identifies bugs because it sees the code’s precise runtime
effects. However, it has poor coverage because of the exponentially
many schedules.

Fortunately, StableMT shrinks the set of possible schedules, en-
abling a new program analysis approach that gets the best of both
static analysis and dynamic analysis. Figure 7 illustrates the high
level idea of this approach. It statically analyzes a parallel program
over only a small set of schedules at compile time, then dynamically
enforces these schedules at runtime. By focusing on only a small set
of schedules, we vastly improve the precision of static analysis and
reduce false error reports; by enforcing the analyzed schedules dy-
namically, we guarantee high coverage. Dynamic analysis benefits,
too, because it enjoys automatically increased coverage defined as

static analysis

all possible 
schedules

w/o StableMT w/ StableMT

dynamic analysis

Figure 7: Program analysis with and without StableMT. Without StableMT,
static analysis tends to analyze many more schedules than all possible
schedules; dynamic analysis tends to analyze a tiny fraction of all possible
schedules. StableMT shrinks the set of schedules, automatically improving
both static analysis and dynamic analysis.

the ratio of checked schedules over all schedules.
A key challenge in implementing this approach is how to stat-

ically analyze a program with respect to a schedule. A static tool
typically invokes many analyses to compute the final results. To
modify this tool for improved precision, a naïve method is to mod-
ify every analysis involved, but this method would be quite labor-
intensive and error-prone. It may also be fragile: if a crucial analysis
is unaware of the schedule, it may easily pollute the final results.

To solve this challenge, we have created a new program analysis
framework and algorithms to specialize a program according to a
schedule. The resultant program has simpler control and data flow
than the original program, and can be analyzed with stock analy-
ses, such as constant folding and dead code elimination, for vastly
improved precision. In addition, our framework provides a precise
def-use analysis that computes how values are defined and used in
a program. Its results are much more precise than those of regular
def-use analyses, because it reports only facts that may occur when
the given schedule is enforced at runtime. This precision can be the
foundation of many powerful tools such as race detectors.

We illustrate the high-level idea of our framework reusing the
example in Figure 2. Suppose we want to build a static race detec-
tor that flags when different threads write the same shared memory
location concurrently. Although different worker threads do access
disjoint file blocks, existing static analysis may not be able to deter-
mine this fact. For instance, since nthread, the number of threads,
is determined at runtime, static analysis often has to approximate
these dynamic threads as one or two abstract thread instances. It
may thus collapse different threads’ accesses to distinct block as
the same access, emitting false race reports.

Fortunately, such difficult problems are greatly simplified by
StableMT. Suppose whenever nthread is 2, we always enforce the
schedule shown in Figure 3. Since the number of threads is fixed,
our framework rewrites the example program to replace nthread
with 2. It then unrolls the loops and clones function worker to give
each worker thread its own copy of worker, so that distinguishing
different worker threads becomes automatic.

Our framework enables the construction of many high coverage
and highly precise analyses. For instance, the static race detector we
built found seven previously unknown, harmful races in programs
extensively checked by previous tools. It emits extremely few false
reports, none for 10 out of 18 programs, a huge reduction compared
to other static race detectors.

6 Evaluation
In this section, we describe the main results of PEREGRINE, our
latest StableMT system. We focus on two evaluation questions:

§6.1: Can PEREGRINE frequently reuse schedules? The higher the



Program-Workload Reuse Rates (%) Schedules
Apache-trace 90.3% 100
MySQL-simple 94.0% 50
MySQL-tx 44.2% 109
PBZip2-usr 96.2% 90

Table 2: Schedule reuse rates under four workloads. Column Schedules
indicates the number of schedules in the schedule cache.

reuse rate is, the more stable program behaviors become, and
the more efficient PEREGRINE is.

§6.2: Can PEREGRINE efficiently enforce schedules? A low over-
head is crucial for programs that frequently reuse schedules.

We choose a diverse set of 18 programs as our evaluation bench-
marks. These programs are either widely used real-world parallel
programs, such as Apache and PBZip2, or parallel implementations
of computation-intensive algorithms in standard benchmark suites.

6.1 Stability
To evaluate PEREGRINE’s stability, i.e., how frequently it can reuse
schedules, we compare the preconditions it computes to the best
possible preconditions derived from manual inspection. (Some of
the manually derived preconditions are shown in Table 1.) For half
of the 18 programs, the preconditions it computes are as good as
or close to the best preconditions, allowing frequent reuses. For the
other programs, the preconditions are more restrictive.

We also evaluate stability by measuring the schedule reuse rates
under given workloads. Table 2 shows the results, obtained from
TERN and replicable in PEREGRINE. The four workloads are either
real workloads collected by us or synthetic workloads used by the
developers themselves [10]. For three out of the four workloads,
TERN reuses a small number of schedules to process over 90% of
the workloads. For MySQL-tx, TERN has a lower reuse rate largely
because the workload is too random to reuse schedules. Nonethe-
less, it still processes 44.2% of the workload.

6.2 Efficiency
The overhead of enforcing schedules is crucial for programs that
frequently reuse schedules. Figure 8 shows this overhead for both
TERN and PEREGRINE. Each bar represents the execution time with
TERN or PEREGRINE normalized to traditional multithreading, av-
eraged over 500 runs. For Apache, we show the throughput (TPUT)
and response time (RESP).

We make two observations about this figure. First, for most
programs, the overhead is less than 15%, demonstrating that
StableMT can be efficient. For two programs (water-nsquared
and cholesky), the overhead is relatively large because they do
a large number of mutex operations within tight loops. However,
this overhead is still below 50%, and much lower than the 1.1X-
10X overhead of a prior DMT system [4]. Some programs enjoy
a speedup because our systems safely skip some blocking opera-
tions [10, 11].

Second, PEREGRINE is only slightly slower than TERN, demon-
strating that full determinism can be efficient. (Recall that TERN
schedules only synchronizations, whereas PEREGRINE additionally
schedules memory accesses to make data races deterministic.)

7 Conclusion and Future Work
Through conceiving, building, applying, and evaluating StableMT
systems, we have demonstrated that StableMT is feasible; it can sta-
bilize program behaviors for better reliability, work both efficiently
and deterministically, and greatly improve precision of static anal-
ysis. We believe StableMT offers new promises to solve the grand
parallel programming challenge. However, TERN and PEREGRINE
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Figure 8: Normalized execution time when reusing schedules. A bar with
value greater (smaller) than 1 indicates a slowdown (speedup) compared
to traditional multithreading. The overhead is smaller than 15% for most
programs, and up to 50% for two. Five programs run faster because TERN
or PEREGRINE safely skips some blocking operations.

are still research prototypes, not yet ready for wide adoption. More-
over, the ideas we have explored are just the first few in this direc-
tion of StableMT; the bulk of work still lies ahead:

• At the system level, can we build efficient, lightweight
StableMT systems that work automatically with all multi-
threaded programs? TERN and PEREGRINE require record-
ing executions and analyzing source code, which can be
heavyweight. As the number of cores increases, can we build
StableMT systems that scale to hundreds of cores?

• At the application level, we have only scratched the surface:
improving program analysis is just one possible application.
There are many others, such as improving testing coverage,
verifying a program with respect to a small set of dynam-
ically enforced schedules, and optimizing thread scheduling
and placement based on a schedule because it effectively pre-
dicts the future. Moreover, the idea of stabilizing schedules
may apply to other parallel programming methods such as
MPI, OpenMP, and Cilk-like tasks.

• At the conceptual level, can we reinvent parallel program-
ming to greatly reduce the set of schedules? For instance,
a multithreading system may disallow schedules by default,
and only allow those that developers explicitly write code to
enable. Since developers are already of different calibers, we
may let only the best programmers decide what schedules to
use, reducing the likelihood of programming errors.

We invite readers to join us in exploring this fertile and exciting
direction of stable multithreading and reliable parallelism.
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