
Fast, Effective Dynamic Compilation

Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and Brian N. Bershad

Department of Computer Science and Engineering

University of Washington

{auskmd,matthai,chanrbers,eggers,bershad) t?cs.Washington.edu

Abstract

Dynamic compilation enables optimization based on the values of
invariant data computed at run-time. Using the vafues of theserun-
time constsmts, a dynamic compiler can eliminate their memory
loads, perform constant propagation and folding, remove branches
they determine, and fully unroll loops they bound. However, the
performance benefits of the more efficient, dynamically-compiled

code are offset by the run-time cost of the dynamic compile. Our

approach to dynamic compilation strives for both fast dynamic

compilation and high-quality dynamically-compiled code: the

programmer annotates regions of the programs that should be

compiled dynamically; a static, optimizing compiler automatically

produces pre-optimized machine-code templates, using a pair of

dataflow analyses that identify which variables will be constant at

run-time; and a simple, dynamic compiler copies the templates,
patching in the computed values of the run-time constants, to

produce optimized, executable code. Our work targets general-
purpose, imperative programming languages, initially C. Initial
experiments applying dynamic compilation to C programs have

produced speedups ranging from 1.2 to 1.8.

“One man’s variable is another man’s constant.”

— adapted from Alan J. Perlis per90]

1 Introduction

Traditional compilation performs optimizations that either are

independent of the actual values of program variables or depend on

tbe values of compile-time constants. It is unable to optimize

around variables whose values are invariant during program
execution, but are unknown until then. Consequently, these
variables must be reinterpreted on each run-time use and cannot

trigger value-based optimization.

Our work applies dynamic compilation to enlarge the scope of

optimization to include those that depend on the values of variables
that are computed at run-time, and once computed, remain fixed for

some significant period of time. By compiling performance-critical

parts of the program at run-time, more efficient code can be
produced. For example, run-time constants can become instruction
immediate rather than memory loads, constant propagation and

folding can be applied to them, conditioned branches based on them

can be eliminated, and loops they control cart be fully unrolled.

Data structures can be considered run-time constants whenever
they are accessed through run-time constant pointers. Applications
with such run-time constants include interpreters (where the data

structure that represents the program being interpreted is the run-
time constant), simulators (where the circuit or architecture
description is a run-time constant), graphics renderers (where the

scene or viewing parameters are constant), numerical codes (where

Permissionb make digitalhr’d COPYof part or all of this work for personal
or dassmom use is ranted without fee provided that @pies are not made

ior distribubsdtir pm t or eommeroial advantage. the mpyright notica, the
title of (he publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwka, to republish, to
post on servers,or to redistribute to lists, requires prior specific permission
anctlora fee.

PLDI ’96 5/96 PA, USA
O 1996 ACM 0-69791-79549640005...$5959

scalars, vectors, matrices, or the patterns of sparsity can be run-time

constant), and extensible operating system kernels (where the

current set of extensions to the kernel is run-time constant

@SP+95,CEA+96]).

Dynamic compilation can realize overall performance
improvements, however, only if the execution time savings from
the dynamically-generated code is greater than the time to compile

at run-time. Different trade-offs between dynamic compilation time

and dynamically-compiled code quality are possible, and previous
systems have explored several alternatives
[CN96,EHK96,LL96]. Our approach strives to achieve the best of

both options: fast dynamic compilation and high-quality

dynamically-generated code. We do this by planning out most of

the actions of dynamic compilation in advance (during static

compilation), based on the static knowledge of which variables and

data structures will be invariant at run-time, but without knowing

their exact run-time vafues.

Our dynamic compilation system targets general-purpose,
imperative programming languages, initially C. Because of the

difficulty in this general setting of automatically identifying which
data structures will be invariant over which portions of the program,

and where this invariance will be profitable to exploit through

dynamic compilation, our current implementation relies on simple,

programmer-inserted annotations. The annotations indicate which

parts of the program should be compiled dynamically (called

dynamic regions) and which source variables will be constant

during execution of the dynamic regions. Through a kind of
constant propagation and constant folding, our system

automatically identifies other derived run-time constants in the

region,

Our dynamic compilation system is composed of both a static and

a dynamic compiler. To achieve fast dynamic compile times, the

static compiler produces pre-compiled machine-code femplates,
whose instructions contsin holes that will be filled in with run-time

constant values. The static compiler also generates set-up code to

calculate the values of derived run-time constants, and directives

that instruct the dynamic compiler how to produce executable code

from the templates and the set-up code’s computed constants.

~

~

Given this advance preparation, the dynamic compiler (called the
stitcher) simply follows the directives to copy the machine-code
templates and fill in the holes with the appropriate constants. The

run-time overhead of dynamic compilation (the stitcher, set-up
code, and directives) is executed at most once per dynamic region;
the dynamically-compiled templates become part of the application
and usually are executed marry times.

149

To generate high. qu~ity dynamically-compiled code, the static

compiler applies standard global optimization to the machine-code

templates, optimizing them in the context of their enclosing

procedure. It also plans out the effect of run-time constant-based

optimization, so that the final, optimized templates contain only
the calculations that remain after these optimization have been

performed.

Our dynamic compilation work is novel in several respects. First, it
is capable of handling the full functionality of C, without restricting

its normal programming style. Second, automatic run-time constant

derivation is accomplished via two interconnected dataflow

analyses, one that identifies run-time constants and another that

determines their reachability conditions downstream of run-time

constant branches. When executed in parallel, they provide an

analysis that is general enough to handle unstructured control flow.

Finally, by integrating our analyses into an optimizing compiler,

dynamically-compiled code can be heavily optimized with its
surrounding code, with few limitations on the kinds of

optimization that can be applied.

This paper presents our dynamic compilation framework and the
algorithms that optimize dynamic regions with respect to their nm-

time constants. The next section outlines the programmer

annotations that drive the analysis. Sections 3 and 4 describe the
static and dynamic compilers, respectively. Section 5 reports on

empirical studies of the effectiveness of dynamically compiling

several programs. Section 6 provides a detailed comparison to

related work, and section 7 concludes with a summary of our main

contributions and directions for future work.

2 Programmer Annotations

Our current implementation relies on programmer annotations to

specify which regions of code to dynamically compile, which
variables to treat as run-time constants, and which loops to

completely unroll. To illustrate the annotations (as well as the rest

of the dynamic compilation framework), we will use the following

cache lookup routine of a hypothetical cache simttl~tor (the bold

keywords are the programmer-supplied annotations):

cacheResult cacheLookup (void ‘addr, Cache *cache) {
dynaraicRegion (cache) { I* cache is run-lime constanr */

unsigned blockSize = cache- >blockSize;
unsigned numLines = cache ->numLines;
unsigned tag =

(unsigned) addr / (blockSize * numLines) ;
unsigned line =

((ursigned) addr / blockSize) % ntiines;
setStructure ●*setArray =

cache- >lines [line] ->sets;
int assoc = cache->associativity;
int set;
unrolled for (set = O; set < assoc; set++) {

if (setArray[set]dynsuaic->tag == tag)
return CacheHit;

}
return 2acheMiss;

) /*end ofdynamicRegion*/

}

dyra-cStegivxa delineates the section of code that will be

dynamically compiled (in the example, the body of the

cacheLookup function). The arguments to dy%mraicRegion
indicate which source variables are constant at the entry of the
dynamic region and remain unchanged throughout this and all
future executions. The static compiler automatically computes all

run-timeconstants thatarederived fromthisinitial set,asdescnbed
in section 3.1. There is no restriction on the kind of data that we can

* Our current implementation uses a collection of lower-level annotations
that provide the same information but do not require modifications to the
C parser.

treat as a run-time constant; in particular, the contents of arrays and

pointer-based data structures are assumed to be run-time constants
whenever accessed through run-time constant pointers. For

partially-constant data structures, we use an additional annotation

on memory dereference operators to indicate that the result of the
dereference isavtiable, even ifitsmgument isconstmt, e.g., x :=
dynaraic* p, x :=pdynaraic ->f, and x := a

dyna.rai c [i]. Qn the above example, the tags stored in the cache

arenot constant.’)

unrolled directs the dynamic compiler to completely unroll a

loop. The loop termination condition must be governed by a run-

time constant. Complete unrolling is a critical dynamic

optimization, because it allows loop induction variables and data

derived from them to be run-time constants (the value of an

induction variable in each unrolled copy of the loop is a distinct,

fixed vrdue). Since not all loops governed by run-time constants are
profitable or practical to unroll, we only unroll annotated loops. We

can automatically check whether an annotated loop is legal to
unroll, using the analyses described in section 3.1.

For some applications, it is important to produce several compiled
versions for a single dynamic region, each optimized for a different

set of run-time constants. For example, if the cache simulator were
simulating multiple cache confi~~rations simultaneously, each

configuration would have its own cache values and need cache

lookup code specialized to each of them. Accordingly, we allow a

dynamic region to be keyed by a list of run-time constants. Separate

code is generated dynamically for each distinct combination of
values of the key variables; the generated code is cached and reused

for later invocations of the region with the same key values. The

dynamic region of the multi-cache simulator example would be

annotated as follows:

dynasa.icRegi.on key(cache) (/*no other con.rtants */) { . . . }

Given these annotations, our system manages all other aspects of

dynamic compilation automatically. Programmers are insulated

from the dynamically-compiled code, and the interface to

procedures containing dynamic regions is unchanged. This is in

contrast to some other systems that require more programmer

involvement in the management of dynamically-compiled code

[EP92,EHK96,CN96].

We chose this set of annotations as a balance between a completely

manurd approach and a completely automatic approach. Given a
few select annotations, our compiler can automatically identify the

derived run-time constants and perform several important

optimization, saving the programmer much of the tedious and
error-prone effort of a fully-manual approach. The drawback is that
errors intheannotations canlead to incorrect optimizations being
performed dynamically. Unfortunately, automatic, safe, and

effective dynamic compilation is quite challenging: it requires
whole-program side-effect and pointer analysis to reason about

invariance of variables and (parts of) data structures, analysis of

loops to judge termination conditions, profile information to choose

both dynamic regions that are the most profitable and loops that

make sense to fully unroll, and so on. Data structures that are
invariant for only part of a program’s execution or routines that
should bereplicated for different invariant clients are even harder
to handle automatically. Ourlong-temn goal is to try to automate

most of thedynarrdc compilation process, but fornow our simple
annotations are both practical to use and facilitate early
experimentation with different choices for run-time constants and
dynamic regions. Annotations may also be useful as a human-

readable intermediate representation for more automatic

implementations.

t For this ex~pie, it turns out that this annotation is unnecessary, since the

dereferenced pointer is not run-time constant.

150

The run-time constants analysis is a forward dataflow analysis that3 The Static Compiler

The static compiler compiles procedures that do not contain

dynamic regions normally, For procedures with dynamic regions, it

performs the following four steps:

● It identifies which variables and expressions within the

dynamic region will be constant at run-time, based on the set of

variables annotated at the start of the region. This step plans the

constant propagation, constant folding, dead code elimination,

and loop unrolling that will be performed by the stitcher at run-
time.

● It splits each dynamic region subgraph into set-up and template

code subgraphs, replacing the region’s original subgraph with

the corresponding pair of subgraphs.

● It optimizes the control flow graph for each procedure, applying

all standard optimization with few restrictions.

● It generates machine code and stitcher directives.

We have chosen to embed our support for dynamic compilation into

a standard, optimizing compiler framework for two reasons. First,

we wished to generate high-quality dynamically-compiled code;
we therefore integrated our specialized analyses into an
infrastructure that already performed sophisticated optimization.

Second, we wished to support a variety of general-purpose

programming languages, including C, without restricting their
normal programming style. Accordingly, our analyses and

transformations operate at the lower but more general level of

control flow graphs connecting three-address code [ASU86], rather

than the higher, language-specific level of abstract syntax trees (as

does some other work “ this
[CN96,KR96,LL96])~ Our analyses go to sr%e length to sup&~

partially unstructured control flow graphs well, since these graphs

occur frequently in C programs. We consider the increased

generality of our analyses to be an important contribution of our
work.

The rest of this section discusses the four steps executed by the

static compiler when compiling code that contains dynamic

regions.

3.1 Computing Derived Run-Time Constants

As the first step in compiling a dynamic region, the static compiler

computes the set of variables and expressions that are constantt at

each point in the dynamic region, given the set of constants
annotated by the programmer. This analysis is similar to binding

time analysis in off-line partial evaluators [SZ88,JGS93] (except

that our analysis is at the level of control flow graphs rather than
abstract syntax trees) and to traditional constant propagation and

folding (except that our analysis must cope with knowing only that

a variable will be constant, not what the constant value is). We have
developed a pair of intercomected analyses, one that computes the

set of run-time constant variables at each program point, and

another that refines that solution by computing reachability
information downstream of run-time constant branches. We first

describe the run-time constants analysis alone, and then augment it

with the reachability analysis. Appendix A contains a more precise
specification of our algorithms,

* By “unstmcture& we mean graphs that are not composed solely of nested
singIe-entry/single-exit regions corresponding to syntactic nesting, but
rather have some control flow transfers that do not respect the syntactic
nesting structure. By this definition, commotdy-occurring unstructured
corNtucts in C include switch statements with fall-through case’s,

break and continue statements, and goto statements (for instance,
implementing multi-level loop exits and hand-eliminated tail recursion).

computes the set of variables that are run-time constants for each

program point. (To simplify the exposition, we assume that the

dynamic region is in static single assignment (SSA) form

[AWZ88,CFR+89].) At the start of a region, the set of constants is
the set of variables specified by the programmer. Analysis proceeds

by propagating this initial set of constants through the dynamic

region’s control flow graph, updating the set after each instruction
as follows:

● x : = y: x is a constant iff y is a constant.

“X:=yopz: x is a constant iffy and z are constants and op

is an idempotent, side-effect-free, non-trapping operato~ for

example, / is excluded, since it might trap. Unary operations

are handled similarly.

“X:= f(yl, . . . , Yn): x is a constant iff the Yi are constants
and f is an idempotent, side-effect-free, non-trapping function,

such as ntax or COS. mal 10C is excluded, since it is not

idempotent.

.X:= *P: x is a constant iff p is a constant,

● x : = dynamic* p: x k not a constant.

● *p : =x: Stores have no effect on the set of constants. A load
through a constant pointer whose target has been modified to

hold a non-constant value during execution of the dynamic

region should use dynamic *.

After a control flow merge, if a variable has the same run-time-

constant reaching definition along all predecessors, it is considered

a constant after the merge. However, if a variable has different

reaching definitions along different predecessors, the value of the

variable may not be a run-time constant after the merge, even if all

reaching definitions before the merge are constant. For example, in

the following control flow graph, if testis not a constant, after the

merge x could be 1 on some executions and 2 on others, and hence
it cannot be treated as a run-time constant. (h the figure, the sets

labeling each arc represent the computed constant sets at those

program points.)

*

t~
/* assume Iesr is not constant *I

: = test

if (test) { (}

} %l~e 1/
t~?

.X2 =2; (} (}

]“ xl and x2 are constants ‘/

= @(xl, xZ);
2X3 is not constant V

v

On the other hand, if test is a constant, for any execution of the

dynamic region in a given program run, either testis always true

and x is always 1 after the merge, or test is always false and x is
always 2 after the merge. In the first case, the 1$function after the

merge is not an idempotent operator (and so its result is not constant

t For brevi~ we use. the term “cOnStMt” tIJ refer to inn-time Constmts.

which include compile-time constants as a special case.

151

irrespective of whether its arguments are constant), while

second case it is.

I* testis a constant V

*

t~ := test

if (test) ((tl}

x* = 1; .-.

in the

} <lse { z~1~

X2 = 2; (tl} {tl}

;* xl and X2 are constants *1 xl := 1 X2 := 2

X3 = +(X1,X2); {xl, t~ Xzltl)
I* x, is constant *I const:

(xl, x~, tl}

X3 := $l(x~,x~)

(X3, tl}

Identifying constant merges whose comesponding branches have

constant predicates cart be done for structured, nested control flow

graphs by identifying diamond-shaped, single-entry/single-exit

subgraphs.* However, to handle general C programs well, we need

to identify constant merges even in unstructured control flow

graphs. Accordingly, we supplement our run-time constants

analysis with a reachability analysis that computes the conditions

(in terms of branch outcomes for run-time constant branches) under

which each program point can be reached during execution. Then,

if the reachability conditions for each merge predecessor are

mutually exclusive, the merge is labeled as a constant merge and

can use the better idempotent-$ rul~ otherwise, the merge must use

the more conservative non-idempotent-$ rule.

Our reachability analysis is a forward dataflow analysis that is

performed in parallel with the run-time constants analysis.+ The

reachability analysis computes conjunctions and disjunctions of

branch conditions at each program point, where each branch

condition has the form B+.,$ for a constant branch B (either 2-way

or n-way) that goes to successor arc S. We use sets of sets to

represent disjunctions of conjunctions, in conjunctive normal form

(CNF). For example, the set {{A+ T), {A+~ B-+1}}, computed for

program point p, can only be executed if A’s constant predicate is

true or if A’s constant predicate is false and B’s constant switch
value takes case 1.

At the start of the dynamic region, the reachability condition is true

(represented by the set {{}}), since the entry is always reachable.

Straight-line code and branches whose predicates are not run-time

constants have no effect on the reachability analysis. A branch B

whose predicate is a run-time constant updates the reachability set

along successor S by atrd’ing in the condition B+,S (in the CNF set

representation, B+~ k added to each of the element sets). At

merges, the incoming conditions are or’d together. (At the

representation level, the incoming sets are combkted with set union,
followed by simplifications which reduce sets of the form

{{A+~ CS},{A+F, cs},~.s} to {{ CS},DS}.) The following example

illustrates the results of reachability analysis on an unstructured
control flow graph for two different situations (the labels on the arcs

* Alpem et al. extended $ functions to include an argument representing the
corresponding branch predicate, for structured if and 1 oop constructs

[AWZ88]. This would allow $ to be treated as idempotent for atl merges:
if all the reaching definitions and the branch predicate were constant, then

the result would be constant. Unfortunately, this technique dces not
extend easily to unstructured control flow graphs.

t The ~achabiliry malysis uses the resuks of run-time Constantsm~ysis to
identify run-time constant branches, and the run-time constants analysis
uses the results of reachability anatysis to choose between $ merge rules

[CC95].

in this figure are reachability conditions in the CNF set

representation, not sets of run-time constants):

if (a) (
...h’l... ;

} else {
switch (b) (

case 1: ...N.... Pfall through *I
case 2: ...0.... break;
case 3: ...p... ; goto L;

)

:.Q...;

?.R... ;
L:

If a and b are constant branches:

-L-({N
{(a+7))

I ...M...
{{a+F,b+l}}

...N...
I 1

{{a+F,b+l},(a+F,b+2})

Con.m

[R... ...

Cortst:

If only a is a constant branch:

L
{{})

{{a+n}

I ...M... 1
{{a+F)}

1 ...N... 1 1

Const:

[R... . ..

var:

In the upper graph, where both a and b are cortstrmt, the
reachability analysis determines that all three merges are constant

merges, since the reachability conditions of the predecessors of
each of the merges are mutually exclusive. As a result, any
variables identified as run-time constant along all predecessor

branches of a merge will be considered constant after the merge. In
the lower graph, only one of the merges is constant.

Conjunctions of branch conditions support sequences of branches,

while disjunctions of branch conditions are crucial for coping with

unstructured graphs.t An analysis based solely on abstract syntax

trees would have a difficult time identifying as many run-time

constants on unstructured programs.

A loop head is a merge node. Since the reachability conditions of

the loop entry arc and the loop back edge arc will not normally be

mutually-exclusive, our analysis as described so far will treat the

loop head as a non-constant merge. This is safe, and it is appropriate

for loops that are not unrolled. For unrolled loops, however, only
one predecessor arc will ever enter an unrolled copy of the loop

head merge at run-time: either the loop entry predecessor (for the

first iteration) or the loop back edge predecessor (for subsequent

iterations). Accordingly, we mark all loop heads for unrolled loops
as constant merges. As a consequence, loop induction variables can

be identified as constants within the loop body. The following

example illustrates how labeling an unrolled loop head as constant

enables the main loop induction variable p to be marked constant

(arcs are labeled by constant sets and/or reachability conditions,
depending on what information changes at that arc):

/’ 1st is constant V
+ {lSt} {{}}

unrolled for(p = lst;
Pi := 1st~ != ~~;

p = p->next) { (PI, lst}
const:

F p is constant “/
. . . (Plr P3,1st}

) P2 := 0(P1, P3)
t := (P2 != NULL)

{(t+q}

[. . . 1

P3 := p2 ->next I
J {p2,p3,t,kt} T

The following code shows (using underlining) the expressions

identified as run-time constants in the dynamic region of the cache

lookup example from section 2:

dynam.icRegion(cache) (

ze . -->blo~ ;
s . ca ~;

unsigned tag =
(unsigned) addr / J&&.&Slze

.*
;

unsigned line =
((unsigned) addr / ~) % ~;

setStructure **setArray =
--> “m[linel->sets;

APt set ;
=. < ++~ (

if (setArray[~]dynamic->tag .= tag)
return CacheHit;

)
return CacheMiss;

}

3.2 Extracting Set-Up Codeand Templates

After identifying run-time constant calculations, the static compiler

divides each dynamic region into twoseparate subgraphs: set-up
code and template code. Set-up code includes alI the calculations

that define run-time constants. Templates contain all the remaining
code within the region, with “holes” embedded in some instructions

for run-time constant operands. Additionally, templates contain
marker pseudo-instructions identifying the entry, exit, snd back

‘Theextratlexibility ofbeingabletorepresent disjunctionsdoes, however,
lead to a worst-case sirs of a reachability condition for a program point
that is exponential in the number of constant branches in the dynamic
region. In practice, the size of reachability conditions has been smatl.

edge arcs of unrolled loops to help generate stitcher directives

(described in section 3.4). The control flow connections of the two

subgraphs are the same as in the original dynamic region.

Once constructed, these two subgraphs replace the original
subgraph of the dynamic region, roughly as follows:

dynamic region entrance

&

Jirsttime?

set-up code

+

template code

dynamic region exit

Theset-upcodeis executedonlythe firsttimethedynamic region

is entered, and it calculates all the run-time constants needed in the
region. The set-up code stores all the constants referenced by
template code in a table data structure, which it passes to the

dynamic compiler for use in instantiating templates into executable

code (asdescribed infection 4). Formost code, run-time constant

table space can be pre-allocated, enabling the set-up code to store

computed constants quickly into the table. However, for fully-

unrolled loops, an unbounded amount of space maybe needed. We

solve this problem by allocating a fresh record for each iteration of

an unrolled loop. Within each iteration, we can statically allocate

the run-time constants computed within that iteration.

The set-up and template code for the cache Iookup routine
(expressed in C rather than as a flow graph, for readability) is shown

in Figure 1. The set-up code calculates all constants and stores those
needed by the template code into the table t. The last element of t

acts as the head of a linked-list of table records for the run-time

constants within the unrolled loop. The template code contains hole

markers for the necessary run-time constants, plus markers that
delimit the unrolled loop’s iterations.

3.3 Optimization

A major goal of our approach is to allow MI optimization to be

performed on procedures that contain dynamic regions. In

particular, we wish optirnizations such as global common

subexpression elimination and global register allocation to be
performed across dynamic region boundaries. Optimizations can be

performed both before and atler the body of the dynamic region is
divided into set-up and template code. We pIace no restriction on

optimizations performed before this division. Optimization

performed afterwards must be modified slightly to deal with the

special semantics of “hole” operands in templates.

For the most part, the compiler’s analyses can treat each hole

marker asacompile-time constant oftmknownvahse. However, in
a few circumstances hole markers must be treated differently:

● Instructions in a template subgraph that contain hole markers

cannot be moved (e.g., by code motion or instruction

scheduling) outside the template subgraph.

● Holemmker vduesshould not retreated aslegal values outside
the dynamic region. In particular, copy propagation should not

propagate references to holes outside the dynamic region.

● 1401es that correspond to induction variables defined in run-

time unrolled loops cannot be treated as loop-invariant with
respect to the unrolled loop; each iteration of the unrolled loop
will get its own distinct version of the value.

In our current implementation, we conservatively satisfy these
requirements by placing barriers to code motion and other

153

Original dynamic region, after run-time constants identification:
dynemicRegion(cache) {

lze . r?che ->blocw;

mluned . cache ->numL~;

unsigned tag =
(unsigned) addr /

unsigned line =
((unsigned) addr / blockSize)%m&in.eS;

setStructure ●’setArray =
~ [line]->sets;

,...~;

;
unxolled for (set =. set < AS.sot; set ++) {

if (setArray[W]dynarnic->tag == tag)
return CacheHit;

)
return CacheMiss;

J

Set-upcode:
t = allocateTable (5); I“allocate space forconstanttable”l
t[O] = tO = cache->blockSize;
t[l] . tl = cache->ntiines;
t[2] = to * tl;
t[3] = cache->lines;
assoc = cache->associativity: P’notusedintemplates*/
loopTable = &t[4]; Pheadofunrolledloop’s listoftables V
for (set = O; ; set++) {

lt = ●loopTable = allocateTable(3);
It[O] = ltO = (set < assoc);
if (!ltO) break;
lt[l] = set;
loopTable = <[2]; Pnex!poiruerforloop’s linkedlist *I

)

Template code (where hole4,x references the Xth entty of the
appropriate iteration of the loop headed by t [4]):

LO:
L1 :
L2 :
L3 :
L4 :
L5 :
L6 :
L7 :
La:
L9 :

L1O
Lll

enter region marker;
unsigned tag = (Unsigned)addr / hole2;
unsigned tl = (Unsigned)addr 1 holeo;
unsigned line = tl % holel;
set_structure **setArray = hole3[linel->sets;
unrolled loop entry marker;
constant branch marker (hole4:o)
t2 = setArraylhole4.11 ->tag;
if (t2 == tag) {

unrolled loop em”t marker;
return CacheHit; }

unrolled loop back edge marker;
unrolled loots exit marker;
return CacheMiss;

L12: exitregionmarker;

Stitcher directives, ianorina labels:
START(LO) - -
HOLE(L1,2,2) HOLE(L2
HOLE(L3,2,1) HOLE(L4
ENTER_LooP(L5 ,4)
CONST_BRANCH (L6,4:O)
HoLE(L7,2,4:1)
BRANCH(L8)
ExIT_LooP(L9)
RESTART_LOOP (L1O,4:2
EXIT_LOOP(Lll)
END(L12)

2,0)
1,3)

Shape of constants table computed by set-up code:

t + blockSize
nurnLines
%S * nL
lines
loopTableO- ~ set. < assoc

set.
loopTablel

Figure 1: Set-Up Code, Templates, and Directives

..

optirnizations atthestart and end of the template code and at the

head of unrolled loops.

3.4 Code Generation

The final step of static compilation is to generate machine code

from the optimized control flow graph. For dynamic regions, code

generation also produces stitcher directives. The stitcher directives

forrnasimple instrttction set, described in Table 1. Directives are

generated as a side-effect of generating code for instructions

containing holes (toinform the stitcher to patch in the hole’s nm-

time value), for the markers that identify the entry, exit, and back-

edge branches of unrolled loops (to inform the stitcher how to break

up the pieces of the loop for loop unrolling), and for any pc-relative

instructions, such as branches (which need to be adjusted when the

stitcher copies the templates). Section 4 describes the actions

performed by the stitcher for these directives.

Table l: Stitcher Directives

Directive When Generated

START(inst) beginning of template code

END(insr) end of template code

I HOLE(inst, operand #, const’s table index) I hole marker operand in instr I

lCONST_BRANCH(inst, test3t&le index) lholemmkerm brmcht=t I

ENTER_LOOP(insr, ~able header index) unrolled loop en@y marker

EXIT_LOOP(inst) unrolledloopexit marker

lRESTART_LOOP(ins/, nexttableindex) Iunrolled backedgemsrker I

lBRANCH(insr) Iuc-relativeinstruction I

LABEL(ins?) target of pc-rdative instr.

The stitcher directives for the cache lookup example appear in

Figure 1.

4 The Stitcher

Given the preparation by the static compiler, the stitcher has only to
follow the directives to instantiate the machine-code templates.

Most of these tasks are straightforward, such as copying blocks of

machine code between directive labels and updating offsets in pc-

relative branch and call instructions. For run-time constant

branches, the stitcher uses the corresponding value in the run-time

constants table (computed by the set-up code) to select the

appropriate successor path, implicitly performing dead code

elimination of the other path(s). For unrolled loops, the stitcher
traverses links in the run-time constants table to access the
appropriate subtable for each iteration; the directives at loop

entries, exits, and back edges instruct the stitcher when to switch
between subtables.

The stitcher also patches the vahres of run-time constants into the

machine-code template holes. For an integer operand, the static

compiler has selected an instruction that admits the hole as an
immediate operand, and the stitcher first tries to fit the run-time

constant integer value into it. If the value is toolsrge, the stitcher

either generates code to load the value from a table of large run-time
constants or constructs it from smaller constants. For floating-point

and pointer constant operands, which typically will not fit into the
immediate field, the static compiler inserts the load instruction as
part of producing template code, so that the load can be better
scheduled during regular static optimizations.

As initialIy constructed, the nested structure of the run-time
constants table requires afairarnount ofrun-time bookkeeping to

track which loop iteration is being handled. In addition, accesses to
the table are likely to be sparse, since only the large or non-integer

154

Benchmark

Reverse-polish stack-based desk
calculator

Scalar-matrix multiply (adapted

from lJiHK96])

Sparse matrix-vector multiply

Event dispatcher in an extensible

OS [BSti95,CEA+96]

QuickSort record sorter (extended

from [KEH93])

Table 2: Speedup and Breakeven Point Results

Asymptotic Dynaxnic Cycles/Instruction

Run-time Constant
Speedup Compilation Stitched

Configurations
(static/ Breakeven Point Overhead: (number of

dynamic set-up & stitcher instructions
region times) (1000s cycles) stitched) .

ixy - 3y~ - XL+ (x+5) * 1.7 916 interpretations with 452 734
‘y-x) +x+y-l (1690/997) different x, y values 183 (865)

IOOX800matrix, multi- 1.6 31392 individual muki- 260 4032
JIied by all scalars 1..100 (16000/10000) placations 34.3 (73)

!OOx21Xlmatrix, 10 ele- 1.8 2645 matrix 83,700 7390
nent.show, 570 density (76200/43200) multiplications 3,580 (11810)

)6x96 matrix, 5 elements/ 1.5 1858 matix 7,070 2478
OW,5% density (13200/8840) multiplications 1,030 (3269)

f predicate types; 10 dif- 1.4 722 event dispatches 638 597
erent event guards (4606/3228) 357 (1667)

I keys, each of a different 1.2 3050 records 444 8446

YPe (1 140/960) 105 (65)

2 keys, each of a differ- 1.2 4760 records 790 6869

:nt type (1310/1060) 400 (173)

run-time constants are accessed indirectly. To avoid these
problems, the stitcher constructs a second linearized, compressed
array to hold the large and non-integer constants. Since loads from

the linearized table are fast, requiring only a dedicated base pointer

register and a fixed index for each reference, the stitcher fills holes
for large and non-integer constants with references to the linearized

table, The structured table is deallocated after stitching completes.

The stitcher performs simple peephole optimization that exploit

the actual values of the constant operands. For example, integer

multiplications by constants are rewritten as shifts, adds, and

subtracts, and unsigned divisions and modulus’s by powers of two

become shifts and bit-wise sod’s, respectively.

The final code generated by the stitcher for the cache lookup

example, invoked for a cache configuration of 512 lines, 32-byte

blocks, and 4-way set associativity, is the following (where

cacheLines is an address loaded from the linearized run-time

constants table):

uns&ned tag . (unsigned) addr >> 14;

unsigned line . ((Unsigned) addr >> 5) & 511;

setStructure **setArray . cacheLines[line] ->sets;

if (setArray[O] ->tag == tag) goto Ll;

if (setArray[l] ->tag == tag) goto Ll;

if (setArray[2]->tag == tag) goto Ll;

if (setArray[3]->tag .= tag) goto Ll;

return CacheMiss;

Ll: return CacheHit;

In our design, the static compiler is separated from the stitcher
through a simple interface language comprised of directives and the

run-time constants table. Analtemative wotrldbe to fold together

the set-up code with the stitcher, with the set-up code directly
invoking stitcher primitives at appropriate places or even

generating instantiated machine code directly without copying

templates, as is done in some other systems [CN96,LL96]. This

approach would eliminate the need for directives and for the

intermediate constants table computed by the current set-up code,
and consequently would most likely produce significantly quicker

dynamic compiles. Our current approach is a convenient
intermediate point, since it is simple, flexible, and reasonably fast,

and it side-steps difficult problems of planning out final stitcher
activities for arbitrary control flow graphs prior to optimization.

5 Experimental Assessment

We embedded our static analysis in the Multiflow optimizing

compiler [LFK+93,FRN84] and dynamically compiled kernels

from several application domains (Table 2). All programs, both the

static and dynamic versions, were executed onaDECAlpha21064,
Each program wasexectrted with a variety ofrun-time constant

configurations; we report results for two configurations for those

programs whose speedups were sensitive to multiple factors. For

example, execution times for sparse matrix multiplication depend

on both the size of the matrix and the number of non-sparse

elements per row. Speedups on scalar-matrix multiply, on the other
hand, are relatively independent of the size of the matrix.

Our preliminary results show good asymptotic speedups over

statically-compiIed code, but, as yet, high *dynamic compilation
overhead, leading to high breakeven points. As mentioned in the
previous section, the overhead of dynamic compilation is due to our

separation of set-up code from the stitcher, leading to extra
intermediate data structures and stitcher directive interpreter costs.
Merging these components into a single pass should drastically

reduce our dynamic compilation costs without affecting our

asymptotic speedups.

In some applications, most of the template code corresponds to
array loads and stores, which limits speedup. If all references to an

array are through run-time constant offsets, then some array
eIements can be allocated to registers by the stitcher. We have

begun experimenting with a variation of Wall’s register actions

used in his link-time register allocator ~a186]: the static compiler
produces directives that indicate how to remove or modify
instructions if a particular array element is stored in a registe~ the

stitcher then executes these directives to eliminate loads, stores, and

address arithmetic, after choosing registers for some number of
array elements. We have obtained a speedup of 4.1 (as opposed to

the current 1.7) on the calculator program using this technique.

* Asymptotic speedups were determined by comparing hardware cycle
counter values for statically and dynamically compiled versions of each
program’s dynamic region. The breakeven point is the lowest number of
executions of the dynarnicatly-compi[ed code (including the overhead of
executing set-up and stitcher code) at which the dynamic version is
profitable.

155

TabIe 3: Optimization AppIied Dynamically

Benchmark Constant Static Branch Load Dead Code Complete Loop Strength
Folding Elimination Elimination Elimination Unrolling Reduction

Calculator 4 4 i d d
! t

Scatar-matrix multiply 4 4

Sparse matrix-vector muttiply J d J

Event dispatcher d d d J 4

Record sorter d 4 d 4 d

Several optirrrizations, all applied dynamically, were responsible

for the asymptotic speedups (Table 3). Although constant folding,

load elimination, and complete loop unrolling were used most

often, each optimization was important for some application.

6 Related Work

6.1 Partial-Evaluation-Based Dynamic Compilers

Most closely related to our work are other dynamic compilation

systems that incorporate ideas from partial evahration
[SZ88,JGS93]. Partial evaluators enable a phased compilation

strategy, where a program is compiled, given partial knowledge of
its input, to produce a new faster program that takes the remaining

input. Analogously, our static compiler compiles a dynamic region,

given the partial knowledge that some of the variables at entry to

the region will be invariant; the output of the static compiler is a

subprogram whose compilation is completed by the stitcher. Off-

line partial evaluators incorporate a binding time analysis that

determines which variables depend only on the known inputs, much

like our run-time constants identification analysis. Sophisticated

partial evaluators handle partially-known data structures, as does

our compiler. On the other hand, partial evaluators are usually

source-to-source transformers for purely functional languages,
whose analyses are expressed as abstract interpretations over the
abstract syntax of the program; our system is an intermediate

representation-to-optimized machine-code translator for general-

purpose imperative languages, whose analyses operate over 10w-

level control flow graphs. Partial evaluators operate
interprocedurally (but over relatively small programs), often handle

higher-order functions, and can produce multiple, specialized
versions of procedures to maximize the flow of known inforination.

Our compiler currently is only intraprocedural, but it can produce

multiple compiled versions of a single dynamic region.

Both Leone and Lee [LL96] and Consel and Noel [CN96] use a
partial evaluation-based framework to build dynamic compilers.

Leone and Lee’s system, called Fabius, applies dynamic
compilation to a first-order, purely-functional subset of ML. The
programmer uses explicit currying to indicate where dynamic

compilation is to be applied. As each argument to a turned function

is supplied, a new function that takes the remaining ar=~ments is

dynamically compiled, specialized to the run-time value of the first

argument. An intraprocedural binding time analysis on the original
function body identifies the calculations that depend only on the
early argument values. The dynamic compilation step is fast,
because the statically-generated code for a function contains the
calculations that are based only on the first argument, interspersed
with emit pseudo-instructions that generate the remaining code.
However, the dynamically-generated code is not optimized across

instructions. (Leone and Lee suggest extending their run-time code
generator to perform register assignment at dynamic compile-time;
however, this will slow dynamic compilation.) In contrast, our
compiler targets a more general programming model and strives for

both fast dynamic compilation and fast dynamic execution. Finally,
Fabius is safe, n that the compileroptirnizations do not affect

program correctness; however, Fabius achieves safety by

disallowing side-effects, The correctness of our transformations

depends on the correctness of the programmer annotations.

Consel and Noel’s system, developed concurrently with ours,

follows a very similar structure. It too is a compiler for C programs

that produces machine-code templates with holes that are
instantiated at rim-time. Their system pre-plans run-time constant

propagation and folding, dead branch elimination, and loop

unrolling, like ours. Some key differences in our approaches are the
following:

● Their system follows more closely the traditional partial

4

.

.

.

.

evaluation approach. Programmers ¬ate arguments “of the

top-level procedure to be dynamically compiled, global
variables, and components of data structures as run-time

constant. Their binding time analysis then interprocedurally

identifies derived run-time constants. Our annotations currently

apply only intraprocedurally, but our annotations offer more

flexibility in treating a variable or data structure as constant in

one context but variable in another.

They do not describe their binding time analysis, other than to

show that its output annotates syntax trees, and their remaining

transformations are expressed as tree transformations. They do
not analyze reachability conditions for constant branches. This

suggests that they would have difficulty coping with the

unstructured C programs that we handle.

To produce machine-code templates, they generate C code

containing special marker code sequences, compile it with a

regular C compiler, and then post-process the assembly code to

rediscover the markers and identi~ templates and holes. The

post-processing tool is specific to a particular target machine
and compiler, and relies on the compiler’s optirnizations not

interfering with the marker structure. Our approach directly

modifies an optimizing compiler to avoid such limitations, at

some cost in implementation effort.

They do not perform peephole optirnizations at dynamic

compile time, nor do they maintain a table of large constants for
faster run-time access.

In their system, the programmer is responsible for managing

the code pointers that are returned from invoking a

dynamically-compiled function. Our system takes care of this

automatically, including managing a keyed collection of code
pointers for different invocation contexts.

To handle C pointers and support partially-constant data

structures, they include an automatic pointer/alias analysis
(which currently is not sound in the presence of C casts and
pointer arithmetic), while we rely on programmer annotations.

Although more susceptible to programmer errors, annotations
can identify constants that are beyond the ability of current alias
analyses. In addition, they do not do alias analysis of callers of
the dynamically-compiled function, so they cannot

automatically identify which formal parameters and global
variables really are constant. They rely on the programmer to

use the generated code pointer appropriately, analogous to our

reliance on the comectness bf the programmer assertions.

156

Guenter, Knoblock, and Ruf have developed a specialized compiler

that applies partial evaluation-like techniques to a graphics

rendering application [GKR95,KR96]. While not producing

machine code at run-time, their system does analyze the rendering

procedures to produce multiple, specialized versions for different

combinations of constant arewments, and dynamically computes

and caches the results of constant calculations in a data structure

much like our run-time constants table. They observed speedups of

up to 100 for their particular application.

6.2 Other General-Purpose Dynamic Compilers

Keppel, Eggers, and Henry [KEH93,Kep96] developed a library for

manually constructing expression trees and then compiling them

into callable machine code from within a program, in a portable

fashion, They also developed a template-based approach. Their

experiments demonstrated that these techniques outperformed the

best statically-compiled, hand-tuned code in several applications.
In a similar vein, Engler and Proebsting developed DCG [EF94], a

library for constructing and manipulating expression trees that

exploits the IBURG portable code generator library [Pro92]. The
code generator infrastructure performed no optimizations other

than instruction selection. Engler, Hsieh, and Kaashoek developed

‘C &HK96], an extension of the C language that makes
constructing and manipulating expression trees look syntactically

like fra=ments of C code, greatly easing the programming burden.

DCG is used as the back-end infrastructure, More recently, PoIetto,

Engler, and Kaashoek have retargeted ‘C to use a template-based

back-end [PEK96].

Compared to our approach, these manual approaches offer more
flexibility of optimization (since the programmer is responsible for

performing all global optimizations by hand), but at the cost of

longer dynamic compilation times (with the exception of template-

based ‘C) and more tedious and error-prone programming work.

6.3 Other Dynamic Compilation Systems

A number of previous systems have exploited dynamic compilation

for run-time performance or flexibility gains, for example, in

graphics displaying [PLR85], operating system operations
[PAAB+95,PM188], object-oriented
[DS84,CU89,HU94]. Ho~e~er, these systems did no~y%~~

dynamic compilation available to the programmer in more general

scenarios.

7 Conclusions

We have designed and built a dynamic compilation framework for

general-purpose imperative languages like C whose twin goals are
high-quaIity dynamically-compiled code and low run-time

compilation overhead. Several factors contribute to the quality of

the dynamically-compiled code optimizing dynamic regions
within the context of their enclosing procedure, planning out

optitnizations that depend on run-time constants (including the

capability to analyze unstructured control flow), segregating the

set-up code that applies these optimizations at run-time from the
repeatedly-executed templates, and embeddhg this entire analysis

within an optimizing static compiler. Dynamic compilation

overhead is reduced by presenting the dynamic compiler with
almost completely constructed machine code. Initial speedups over

a set of statically-compiled C programs range from 1.2 to 1.8.

We plan to extend our framework in several dimensions: to provide
run-time constants and reachability analyses on the interprocedural
level, to more fully automate the selection of run-time constants and
dynamic regions, to merge set-up code with stitching for faster

dynamic compilation, to provide dynamic compilation support for
other input languages, and to extend our benchmark suite to other
application areas and larger programs.

Acknowledgments

We would like to thank John O’Donnell (Equator Technologies,

Inc.) and Tryggve Fossum (Digital Equipment Corp.) for the source

for the Alpha AXP version of the Multiflow compile~ Ben Cutler

(Equator Technologies, Inc.), Michael Adler, and Geoff Lowney

(Digital Equipment Corp.) for technical advice in altering it; Marc
Friedman for work on the design and implementation of an early

version of our framework; Charles Consel, Wilson Hsieh, Jack Lo,

and the PLDI referees for their helpful comments on the submitted
version of the pape~ Jeffrey Dean and David Grove for discussions

on the run-time constant identification and reachability analyses;

and David Keppel, Markus Mock, Scott van Woudenberg, and in

particular Brian Grant for their help with the applications. The

research was supported by ARPA contract NOOO14-94- 1-1136,

NSF PYI Award MIP-9058439, NSF NYI Award CCR94-57767,

and ONR grant NOO014-92-J- 1395.

References

[ASU86] A.V. Aho, R. Sethi, and J.D. Unman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.

[AWZ88] B. Alpem, M.N. Wegman, and F.K. Zadeck. Detecting equality
of variables in programs. In Symposium on Principles of Pro-
gramming Languages, January 1988.

~SP+95] B.N. Bershad, S. Savage, P. Pardyak, E.G. Sirer, M. Fiuczynski,
D. Becker, S. Eggers, and C. Chambers. Extensibility, safety and
performance in the SPIN operating system. [n Symposium on Op-

erating Systems Principles, November 1995.

[CC95] C. Click and K.D. Cooper. Combining anafyses, combining opti-
rnizations. ACM Transactions on Programming Lunguages and
Systems, 17(2), March 1995.

[CEA+96] C. Chambers, S.J.Eggers, J. Auslander, M. Philipose, M. Mock,
and P. Pardyak. Automatic dynamic compilation support for
event dispatching in extensible systems. fn Workshop on Compil-

er Support for Systems So$ware, February 1996.

[CFR+89] R. Cyrron, J. Fermrrte, B.K. Rosen, M.N. Wegman, and F.K.
Zadeck. An efficient method of computing static single assign-
ment form. In Symposium on Principles of Progrming rhn-
guages, January 1989.

[CN96] C. Consel and F. Noi41.A generaJapproach for run-time special-
ization and its application to C. In Symposium on Principles of
Programming Lvrguages, Januasy 1996.

[CU89] C. Chambers asrdD. Ungar. Customization: Optimizing compiler
technology for SeIf, a dynamically-typed object-oriented pro-
gramming language. In Conference on Programming Lrznguage

Design and Implementation, JuIy 1989.

~S84] L. Peter Deutsch and AlIan M. Schiffman. Efficient implementa-
tion of the Smafltatk-80 system. In Symposium on Pn’nciples of
Programming Languages, January 1984.

~HK96] D.R. Engler, W.C. Hsieh, and M.F. Kaashoek. ‘C: A language for
high-level, efficient, and machine-independent dynamic code
generation. in Symposium on Principles of Programming .!xzn-
guages, January 1996.

@W94] D.R. Engler and T.A. Proebsting. DCG: An efficient, retargetable
dynamic code generation system. In International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems, October 1994.

~N84] J.A. Fisher, J.C. Rrrttenberg, and A. Nlcolau. Prmdlel processing:
A smart compiler and a dumb machine. In Symposium on Com-

piler Construction, 1984.

[GKR95] B. Guenter, T.B. KnobIock, and E. Ruf. Specinfizing shaders. In
S[GGRAPH ’95, 1995.

IJIU94] U. Holzle and D. Ungrrr. Optimizing dynanricafly-dispatched
calls with run-time type feedback. In Conference on Program-
ming Lrnguage Design and lmplementarion, June 1994.

[JGS93] N, Jww., C, Gornard, and P, S.srofs. ~amai Evahartrm and Au-

tomatic Progrrsm Generation. Prentice Hall, 1993.

[KEH93] D. Keppel, S.J. Eggers, and R.R. Henry. Evrduating mntime-
compiled, vafrre-specific optirnizarions. Technicrd Report 93-11-
02, University of Washington, Department of Computer Science
& Engineering, 1993.

157

[Kep96] D. Keppel. Runtime code generation. Technical report, Universi-
ty of Washington, Department of Computer Science&Engineer-
ing, 1996.

[KR96] T.B. Knoblock and E. Ruf. Data specialization. In Conference on
Programming Language Design and Implementation, May 1996.

~FK+93] P.G. Lowney, S.M. Freudenberger, T.J. Karzes, W.D. Lichten-

&L96]

[PEK96]

[Per90]

[PLR85]

[PM188]

[Pro92]

[SZ88]

wrd86]

stein, R.P. Nix, J.S. O’Donnell, ~d J.C. Ruttenberg. The Multi-
flow trace scheduling compifer. Journal of Supercomputing, 7,

1993.

M. Leone and P. Lee. Optimizing ML with run-time code gener-
ation. In Conference on Programming Language Design and Im-
plementation, May 1996.

M. PoIetto, D.R. Engler, and M.F. Kaashoek. tee: a template-
based compiler for ‘C. In WorLrhop on Compiler Support for Syx-
terrrs Software, February 1996.

A.J. Perfis. Epigrams on programming. In Communications of rhe
ACM, 1990.

R. PAe, B.N. Locanthi, and J.F. Reiser. Hardware/softwam
trade-offs for bitmap graphics on the Blit. Sojlware - Practice and

Experience, 15(2), 1985.

C. Pu, H. Massalin, and J. Ioarmidis. The Synthesis kernel. Com-
puting Systems, (l), winter 1988.

T.A. Proebsting. Simple and efficient BURS table generation. fn
Conference on Programming Language Design and Implementa-
tion, July 1992.

P. Sestoft and A.V. Zatmdin. Annotated Bibliography on Partial

Evaluation and Mixed Computation. North. Holhmd, 1988.

D.W. Wafl. Global register allocation at link time. In Symposium

on Compiler Construction, June 1986.

158

Appendix A Specifications of Analyses

We use a kind of abstract interpretation-style, lattice-theoretic

specification for our dataflow analyses.

A.1 Run-Time Constant Identification Analysis

The domains and operations for instructions, variables, and

constant variables:

Ins t = set of straighr-line instructions in dynamic region

BranchIns t = set of branch instructions (both if and switch

branches) in region

POint = set of program points &’ow arcs between instructions) in

dynamic region

successors: Inst + BranchInst + 2p0int

successors(i) = set ofpoints afier i

Var = se! of variables in dynamic region

Constants = 2var; an element of this domain is the set of variables

known to be constant at aprogrampoint; g is the lattice < ordering
operator for this domain

C denotes the solution to the run-time constant analysis:

C: Point+ Constants

ClP) = greatestjlredpoint solution (largest set of run-time constants) to
following htaflow equations at point p

The interpretation of our analysis is Vpe point, if v e ~p), then

v is defined to the same value each time it is executed at ran-time,

assuming the programmer annotations are correct.

llte initial set of constants at the start of the dynamic region:

dPO) = setof variables labeled as constants by programmer annotation
at start of region

?

~w is the flow function for straight-line instructions, computing
t e set of constants at the point after an instruction from the set of

constants at the point before the instruction:

%,..

Inst + Constants -) Constants

[~ , = k] =5 = csu (X}, where k is a compile-time constant

[x :=yopz]cs=
c su (x }, if (y, z I scs and OP is idempotewandside-efeet-free.
CS- (x }, orherwi$e

Ux := f(Yl, . . .,yn)l Cs =
csu(x}, if(yl, . . . ,yn)Gc.Sa~

f is idempotent and sade-effect-free,
CS- (x }, otherwise

[x := ‘y] Cs =
csu{x), if {y}Gcs,
cs- (x }, otherwise

[x := dynamic” y] CS = CS-(X}

K’x := yn Cs= Cs

[x := $(X1,xn)n Cs=
cs-{x~, . . . , Xn}u(x}, if (xl, . . . ,xn}sc.s.
CS-{X, X1, . . . , ~}, otherwise

!ch k the flow function for branch nodes. Given a set of.. -----
constants before the branch, it computes a mapping from successor

points to the constant sets at those points, i.e., branches have no
effect on the set of computed constants:

Cb,@~h: BranchInst + Constants * (Point + Constants)

Cbramh b Cs = {(s, cs) Is c successors(b)}

The lattice meet function computes the set of constants after a

merge (this depends on the solution ~to the reachability analysis at
the merge):

~onsml.s: Constants x Constants 4 Constants

I Icon=tmt, (c% f,c52) :
CS1 u CS2, zfexcluswe(cnl, cnz),

where cnl = ~p,) for merge predecessor pi,
Csl n CS2, otherwise

subset of the predecessor branches survive to the point after the

merge.)

A.2 Reachability Conditions Analysis

The following additional domain supports the reachability analysis.
We define the values of this domain using a grammar rule (which

we assume is always simplified to conjunctive normal form):

condition : z=
B+S, where Be BranchIns t and SESuccessors

I Condition A Condition

I Condition v Condition
I true

Two conditions can be mutually exclusive:

exclusive (cnl, cn2) = (cnl=~cn2) A (cn~B~S:cnl),

where a(B~Sl) = Vsesucce~Om(B), s#sl .

This rule implies that B+SI and B+S2 are mutually exclusive iff
s~ # s~.

Reverse logical implication is the lattice S ordering operator for this

domain, i.e., if cnl =$ cn2, then cn2 S cnl.

B+sl and B+S2 are mutually exclusive if S1 # S2.

~denotes the solution to the reachability analysis equations:

~ point+ condition

ti) = greateslfiedpoint solution (most constrained set of branch
outcomes) to following dataflow equations at point p

The interpretation of our analysis is Vpe Point, @p) =

~.tua~(P), where fUUi(P) represents the ac~~ branch outcomes
at inn-time: ~tiI(P) = ABe BranchInst (vsetaken-successors(B)
(B+$)), where taken-successors(B) are those successors of B

that are taken at run-time.

The initial set of reachability conditions at start of dynamic region:

~ PO = Tc..az~ion = tme

~OW is the flow function for straight-line instructions, which have
no effect on the reachability conditions:

~w: Inst + Condition + Condition

~wicn=cn

~rmch is the flow function for branch nodes. Branches with run- ,

time constant predicates restrict the conditions along successor

branches, while non-constant branches have no effect on the
reachability analysis:

~~ch: BranchInst + condition -) (Point + Condition)

%rmch b cn =
{ (s, cn A &s) Is e successors(b)},

ifb = [q?] and q e C(before(b))
{ (s, cn) Is e successors(b)}, otherwise

The meet function, computing reachability conditions after a
merge, is simple disjunction:

~each: Condition Condition+ Condition

~each (cnl, cn,) = crq V cn2

(The meet function and the $ functions should be coordinated. The
$ functions should be part of the merge itself rather than located
after the merge, so that none of the values defined only along a

159

