
Understanding Complex Multithreaded
Software Systems by Using Trace Visualization

Jonas Trümper
jonas.truemper@

hpi.uni-potsdam.de

Johannes Bohnet
johannes.bohnet@
hpi.uni-potsdam.de

Jürgen Döllner
juergen.doellner@
hpi.uni-potsdam.de

Hasso-Plattner-Institute, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

ABSTRACT
Understanding multithreaded software systems is typically
a tedious task: Due to parallel execution and interactions
between multiple threads, such a system’s runtime behavior
is often much more complex than the behavior of a single-
threaded system. For many maintenance activities, system
understanding is a prerequisite. Hence, tasks such as bug
fixing or performance optimization are highly demanding in
the case of multithreaded systems. Unfortunately, state-of-
the-art tools for system understanding and debuggers pro-
vide only limited support for these systems. We present a
dynamic analysis and visualization technique that helps de-
velopers in understanding multithreaded software systems in
general and in identifying performance bottlenecks in partic-
ular. The technique first performs method boundary trac-
ing. Second, developers perform a post-mortem analysis of
a system’s behavior using visualization optimized for trace
data of multithreaded software systems. The technique en-
ables developers to understand how multiple threads collab-
orate at runtime. The technique is integrated into a profes-
sional and scalable tool for visualizing the behavior of com-
plex software systems. In case studies, we have tested the
technique with industrially developed, multithreaded soft-
ware systems to understand system behavior and to identify
multithreading-related performance bottlenecks.

Categories and Subject Descriptors
K.6.3 [Management of Computing and Information
Systems]: Software Management—Software Maintenance;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering, and
reengineering

General Terms
Design, Documentation, Performance

Keywords
Dynamic Analysis, Multithreading, Visualization, Program
Comprehension, Performance Optimization

1. INTRODUCTION
A large fraction of costs in a software system’s life cy-

cle is spent on its maintenance [9]. A survey performed by
Erlikh [14] reports an estimate of 85-90%. Common main-
tenance tasks include bug fixing and performance optimiza-
tion. Locating and fixing bugs in software systems has al-
ways been tedious work for developers [28, 47]. The most
common debugging workflow is as follows: (1) Form a hy-
pothesis about the root cause of the bug, (2) try to fix this
cause, (3) check whether the bug still exists, (4) if yes, re-
turn to (1), else (5) verify that the fix has not caused other
interferences [30]. Forming a hypothesis is commonly sup-
ported by debuggers in that they provide a simple means of
dynamic analysis: They allow stepping through a system’s
execution and support monitoring of its variable values.

Although debuggers and profilers are effective tools for
debugging and performance optimization of single-threaded
software systems, there are issues unique to multithreaded
software systems that are insufficiently supported by today’s
techniques and tools [10]. These issues include deadlocks,
load imbalance, data-sharing patterns, race conditions, and
contention. Timing and scheduling, which have to be consid-
ered in concurrent systems, are mostly ignored by existing
tools. In addition, it is difficult for developers to assess the
concurrent runtime behavior, which is typically not directly
reflected by the source code. That is, there is only a non-
obvious mapping between control structures in the source
code and a system’s runtime behavior.

Moreover, the size of a system’s implementation and soft-
ware aging play important roles in maintenance. Hence,
aged systems are often insufficiently understood and an up-
to-date documentation is typically not available. Further-
more, there are substantial violations of design principles
due to the system’s long evolution period and its modifica-
tion by a constantly changing team of developers [13, 36]. As
Waters and Chikofsky [46] state: “Year after year the lion’s
share of effort goes into modifying and extending preexisting
systems, about which we know very little”.

To overcome the lack of appropriate tool support for un-
derstanding multithreaded systems, developers have
‘invented’ workarounds to ease the forming of hypotheses.
For instance, they often manually augment the source code
with statements that print debug output to the console [21,
43]. Despite this being a time consuming and tedious task,

133

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOFTVIS’10, October 25–26, 2010, Salt Lake City, Utah, USA.
Copyright 2010 ACM 978-1-4503-0028-5/10/10 ...$10.00.

dumping output to the console is a resource intensive oper-
ation that may cause noticeable performance drop or even
alter the system’s timing significantly. Thus, developers try
to minimize usage of console output and apply guesswork
instead. Consequently, mentally tracking the execution of
a multithreaded software system is a highly demanding and
additionally error-prone task. With increasing importance
and market share of multi-core machines and multithreaded
applications [16, 44], tools that better support maintenance
of multithreaded software systems are more in demand.

The main contributions of this paper are (1) a visual-
ization concept that applies out-of-core techniques to cope
with the vast amount of trace data and that is suitable to
display large traces of multithreaded software systems and
(2) a technique that enables synchronization of multiple sep-
arate compacted views on trace data of multithreaded soft-
ware systems. The views are compacted using a (nonlinear)
mathematical time transformation. The level of compact-
ness can continuously be changed from (a) highly compact
(strong nonlinearity) to make optimal use of available screen
space to (b) linear time-to-screen-space mapping to reveal
performance issues such as long waiting times.

The proposed technique selectively instruments binaries
of the analyzed C/C++ software system to record execu-
tion traces at runtime. These traces are post-processed and
imported into the analysis tool. The proposed visualization
technique generates stack based, synchronized views on se-
quences of method calls1 for multiple threads. The visualiza-
tion permits developers to interactively explore such traces.
The tool has been tested with software systems consisting
of over 4 million lines of code (LOC). Its usage and benefits
are demonstrated by means of case studies with one of our
industrial partners and with the Google Chrome code base.

The concept for visualizing the behavior of multithreaded
software systems is implemented as prototypical plug-in as
part of the Software Diagnostics Developer Edition—a pro-
fessional tool for tracing and visualizing runtime behavior of
complex software systems.

2. RELATED WORK
Since the early 1970s, multithreaded computing has

evolved from being a niche technology to being a technology
for the masses [8, 35]. Toolkits such as Qt [38], OpenMP [8],
boost [22], or Intel’s Threading Building Blocks [39] pro-
vide abstraction mechanisms to reduce the complexity that
is inherent to writing multithreading code. Furthermore,
a large body of research exists in the modeling and for-
ward engineering community to cope with parallel systems.
Momotko (2003) [32] proposed extensions to the Business
Process Modeling Notation (BPMN) such that it allows for
the modeling of parallel business processes. Among others,
Mehner (2005) [31], Artho et al. (2007) [1], and Xie et al.
(2009) [49] propose extensions to the Unified Modeling Lan-
guage (UML) to enable modeling of concurrent behavior.

Tool support for understanding existing multithreaded sys-
tems, however, is still limited. Cornelissen et al. [10] empha-
size that “the importance of understanding multithreading
behavior [...] is currently not reflected” in the dynamic anal-
ysis research community. Early work on the analysis of mul-
tithreaded runtime behavior was done by Malony and Reed

1The term method is used interchangeably with the terms
function, procedure, routine, etc.

(1989) [29]. Their approach focuses on monitoring systems
and collecting statistics such as communication bandwidth.
Heath and Etheridge (1991) [19], Nutt et al. (1995) [34],
Nagel et al. (1996) [33] and Zaki et al. (1999) [51] propose
tools that aim at performance optimization of parallel mes-
sage passing systems. Sharma (1990) [40] introduces real-
time visualization for multi-core machines, targeting spe-
cific hardware. Visualization is done on a dedicated ma-
chine connected to the machine running the instrumented
software system. Yamaguchi and Itoh (2003) [50] propose
a visualization similar to treemaps that depicts overviews
of distributed processes to ease management of distributed
systems. Hao (1998) [18] introduces SmallSync, a tool for
monitoring and visualizing remote processes. In contrast to
our approach, these approaches focus on analyzing interac-
tion between processes, often running on separate machines.

Stasko and Kraemer (1993) [42] introduce PARADE that
targets program comprehension and performance optimiza-
tion. Their tool visualizes multiple threads in an isolated
and not synchronized way. This renders it difficult for de-
velopers to understand interactions between the threads.
Kraemer and Stasko (1994, 1998) [25, 26] further introduce
Animation Choreographer, a tool that permits to explore
thread interactions in a synchronized manner. However, it
uses different shapes to distinguish methods and only de-
picts each threads’ state instead of their stacks. Kergom-
meaux and Stein (2000) [23], Bedy et al. (2000) [2], and
Berthold and Loogen (2007) [5] propose visualization that
depicts 2-dimensional graphs with life lines for each thread
showing their state (running, suspended etc.). This graph
visualization, by contrast, does not show the threads’ actual
execution contexts or call stacks. Broberg et al. (1999) [6]
introduce VPPB, a tool for visualizing and predicting perfor-
mance of multithreaded systems by means of kernel thread
tracing. Their approach differs from ours in that it does not
support program comprehension tasks and requires instru-
mentation of the host operating system.

De Pauw et al. (2002) [12] propose Jinsight, a tool sim-
ilar to ours. However, it does not provide means of view
compaction or overviews to ease analysis. TAU, proposed
by Shende and Malony (2006) [41], is a framework for pro-
filing and tracing of parallel systems that focuses on perfor-
mance optimization rather than on program comprehension.
Wheeler and Thain (2009) [48] propose ThreadScope, a tool
for identifying structural and synchronization problems. A
limitation of the tool is that the generated 2-dimensional
graphs do not scale well for large execution traces. Further-
more, and by contrast to our approach, there is potential
for interactive exploration that would in turn allow for en-
hancing their tool’s scalability. Kim et al. (2009) [24] in-
troduce a visualization that targets uncovering of potential
deadlocks in multithreaded systems. Program comprehen-
sion, in comparison to our approach, is not in the focus.
George and Nagpal (2010) [17] propose Concurrency Visu-
alizer, which is a visualization technique integrated into Mi-
crosoft Visual Studio 2010. It is based on profiling samples
and depicts all threads’ states (running, waiting, synchro-
nizing etc.) along the recorded time span. In contrast to
our approach, exploration of a thread’s execution context
is restricted to selecting a thread’s sample and then man-
ually expanding its recorded stack in a list view. The tool
Zinsight, introduced by De Pauw and Heisig (2010) [11],
targets special mainframe software and hardware. In con-

134

trast to visualizing control flows in a single software sys-
tem, their visualization is tuned towards analysis of isolated
events and event patterns recorded in an operating system
context.

For our approach to achieve configurable level of com-
pactness of trace views, we apply nonlinear mathematical
operations. Nonlinear mathematics is used in a wide range
of research domains. Examples include human behavior [15,
27] and self-adaptive systems [3, 20].

3. THE APPROACH
The proposed approach for facilitating an understanding

of the behavior of multithreaded software systems comprises
two main analysis steps: (1) Applying dynamic analysis and
tracing the software system. (2) Applying visualization to
permit developers to gather insights into the vast amount of
extracted data.

3.1 Dynamic Analysis
Before the runtime behavior of the analyzed software sys-

tem can be captured, the system is instrumented. We apply
a light-weight instrumentation technique provided by the
Software Diagnostics Developer Edition’s framework. The
technique is seamlessly integrated into the build process.
However, it neither increases the build time nor affects the
runtime behavior if tracing is disabled. Tracing can be inter-
actively activated and deactivated for selected methods and
modules of the software system at runtime. When tracing
is enabled, a trace is recorded and stored persistently.

3.2 Trace Data Properties
The recorded trace comprises events e with timestamps i,

i.e., timestamped events, ei. Each event is associated with a
thread x. All events of a thread x form an ordered set: Event
exi happens before exj if i < j. The combined set of events
of multiple threads (x, y) forms a partially ordered set: exi
happens before or is concurrent to eyj if i ≤ j. Events are
typed: They are either of type method entry or method exit.
Furthermore, each event comprises two code addresses: (1)
The address of the code line of method f that is the calling
method and (2) the address of the start code line of the
called method.

An event’s timestamp has to be unique with respect to
the event’s thread; timing information needs to be provided
with high precision to be able to distinguish timing behavior
across multiple threads. Thus, we use processor ticks [37] as
measure for event timestamps. On modern multi-core sys-
tems that support variable clock speeds per core, processor
ticks may drift between cores [7]. In this paper, we assume
that processor ticks are in sync.

3.3 Minimizing Runtime Overhead
In general, tracing a software system means introducing

a runtime performance overhead. If timing is critical, this
overhead may alter the system’s runtime behavior uninten-
tionally. Multithreaded software systems are particularly
prone to this issue because deadlocks or race conditions, for
instance, may be caused or prevented if timing is changed.
To minimize the likelihood of such interferences, we provide
developers with means to instrument only those parts of the
system’s implementation that are relevant for the function-
ality to be debugged: They initially run the system with
full instrumentation and record a trace. Next, they explore

Figure 1: Textual thread overview depicting statis-
tics on a single thread’s activity.

this first trace and gain an understanding of which parts
of the system’s implementation are relevant for the given
task. Particularly, they identify low-level methods that have
short execution times and are often contained in the trace,
but do not contribute to the process of understanding. The
developers subjectively decide which parts of the implemen-
tation are excluded from further tracing. Finally, they ex-
ercise the functionality again with only selective instrumen-
tation. This approach permits to obtain a low performance
overhead—even with a costly event registration mechanism:
The methods with short execution times are excluded from
tracing; hence, the performance overhead is only added to
more costly calls which results in a lower relative and there-
fore lower absolute overhead.

Our experience shows that this approach works well for
maintenance questions regarding our industrial partner’s soft-
ware systems. A limitation of this approach is its limited
applicability for small sized or highly time critical systems.
Examples of such systems include specific embedded real-
time systems in the automotive domain.

4. VISUALIZATION
A software system instrumented for method boundary

tracing easily generates a million events and more within
a few seconds. Consequently, a developer needs effective
visualization that presents the trace data in an interactive
manner and permits to apply top-down and bottom-up ex-
ploration strategies [4].

4.1 Concept
For our visualization technique to scale with large execu-

tion traces comprising millions of events, we apply out-of-
core concepts: Only a subset of all recorded method invo-
cations is kept in main memory and is depicted as detailed
sequence.

Besides millions of events, in multithreaded software sys-
tems numerous threads may be spawned at runtime. To fa-
cilitate analysis of this behavior, developers should be able
to choose a representative subset of all spawned threads. For
this, our analysis tool provides a textual thread overview that
depicts the activities of selected threads, i.e., lists methods
invoked in the context of selected threads together with their
invocation count (Fig. 1). This way, developers identify and
select representative threads for visualization. For our tech-
nique, we assume that the total number of threads can be
reduced to a small number for a given task; so far we did
not evaluate the visualization technique for massive threads
because our main focus is on applications using threads in a
non-massive way.

Each selected thread’s trace data is depicted in a visual
thread overview and a sequence view. These views are syn-

135

Stack
Depth

Time

foo()

bar()bar()
foobar() foobar()

Figure 2: Concept for the sequence visualization for
a single thread.

Figure 3: Sequence visualization shows 2 threads.
A slider enables to configure timestamp scaling (1).
Activity markers highlight invocations of methods
hovered in the sequence visualization (2a) within
each visual thread overview (2b). The detailed de-
picted sub time span (in the sequence visualization)
is denoted by time span markers in the respective
visual thread overview (3).

chronized, which allows developers to efficiently analyze the
threads’ concurrent behavior. The basic visualization con-
cept for these two view types is as follows: In the sequence
views, each thread’s activity is represented by a 2-dimen-
sional graph. The execution sequences are depicted such
that developers see the call stack for every point in time.
Time is mapped along the graph’s x-axis and stack depth
along the y-axis (Fig. 2). Invocation relations between meth-
ods are thereby given implicitly. That is, if method foo in-
vokes bar, then bar is drawn underneath foo. Since even
a single thread’s complete sequence graph typically exceeds
a screen’s size, panning and zooming are provided so that
developers can adjust the currently depicted time span as
needed. Zooming only affects the time (x) axis such that the
graph is compressed (or stretched) in x-direction, i.e., the
aspect ratio of the sequence graph changes. Consequently,
stack height (y-axis) is preserved, which in turn also pre-
serves the readability of method annotations.

Visual thread overviews facilitate quick orientation within
the trace data. Time span markers denote the current de-
tailed sequence sub range within the respective visual thread
overview, activity markers denote invocations of methods
hovered in the sequence visualization (Fig. 3). As Ware [45]
points out, “the human visual system is a pattern seeker of
enormous power”. To utilize this power, the visual thread
overviews derive visual patterns from execution patterns.
The overviews are generated as follows: We compute a 2-
dimensional grid where methods are mapped along the grid’s
y-axis and time is mapped along the x-axis. When a method
is executed at a specific point in time, the respective grid cell
is colored black, white otherwise. This way, repeated execu-

Methods

Time

foo()
bar()

foobar()
barfoo()

Figure 4: Concept for the visual thread overview:
Multiple execution of the same (or similar) function-
ality is represented by repeating visual patterns.

Stack
Depth

Time

foo()
bar() foobar()

Stack
Depth

Time

foo()
bar() barfoo()

Thread 2

Thread 1
bar()

c

d

a b

Figure 5: Raw time stamps. Execution durations of
methods, e.g., foo() and bar(), vary significantly.

tion of the same (or similar) functionality causes repeating
visual patterns in the overview (Fig. 4). The resulting grid
is then mapped to a fixed size representation such that it
fits the screen’s size.

4.2 Configurable Level of View Compactness
Execution durations of methods typically vary significant-

ly: Whereas execution of method foo takes 20,000 millisec-
onds on average, the execution of method bar may take only
a few nanoseconds on average. Even for depicting a single
thread’s activity, this poses a major challenge: When de-
picting these raw execution durations, lengthy method exe-
cutions would span multiple screens while very short method
executions might span only a single pixel (Fig. 5). Conse-
quently, a time warping—a scaling—is required for explo-
ration.

We provide configurable scaling for time spans∆t between
successive timestamps ti, tj . The scaling is either linear or
logarithm-based. Linear scaling enables to analyze raw ex-
ecution time stamps and as such is suited for performance
analysis and optimization tasks. Linear scaling, however,
hinders program comprehension tasks as developers typi-
cally have to explore execution traces at low detail (zoomed
out) in order to grasp the context of the currently depicted
method executions (Fig. 6).

In contrast, logarithm-based scaling is better suited for
program comprehension tasks, as short time spans are
shrinked only slightly while long time spans are shrinked
massively. Hence, idle times between method executions
typically ‘vanish’ such that relevant parts of the trace can
be explored in more detail. To achieve a configurable loga-
rithmic scaling, we do not use the plain natural logarithm.
Instead, we multiply ∆t with a factor and divide the result
of the logarithm by the same factor to achieve configurable
shrinking. This is motivated by the approximation of the
natural logarithm by a Taylor series:

ln(1+∆t) =
∞∑

k=1

(−1)k+1∆tk

k
= ∆t−∆t2

2
+

∆t3

3
−∆t4

4
±· · ·

136

Figure 6: Sequence view depicting the same se-
quence sub range using linear (1) and logarithmic
(2) scaling. Linear scaling requires to zoom out (low
detail) due to long thread idle time. The same set
of method executions can be depicted in more detail
using logarithm-based scaling.

The scaling function then reads as:

logscale(∆t, θ) =
ln(1 + θ ·∆t)

θ

=

∑∞
k=1(−1)k+1 (θ·∆t)k

k

θ

=
θ ·∆t
θ

− θ2 ·∆t2

2θ
+

θ3 ·∆t3

3θ
− θ4 ·∆t4

4θ
± · · ·

= ∆t− θ ·∆t2

2
+

θ2 ·∆t3

3
− θ3 ·∆t4

4
± · · ·

Whereas θ cancels out in the first term of the power se-
ries, all subsequent terms contain θ. Hence, shrinking of ∆t
can essentially be adjusted continuously between linear and
logarithmic (Fig. 7) as for θ → 0 all terms but the first are
eliminated:

lim
θ→0

ln(1 + θ ·∆t)
θ

= ∆t

In contrast to that, for θ > 0, all subsequent terms account
for the power series and scaling is logarithm-based.

4.3 Synchronizing Multiple Sequence Views
Applying the nonlinear scaling logscale separately to each

thread’s events would hinder the visual comparability of con-
current method executions: Method executions or idle times
in separate threads (time spans a, b, c and d in Fig. 5) that
happen before the execution of foobar and/or barfoo may be
scaled differently (Fig. 8(a)) such that method entry and exit
timestamps of foobar and barfoo are warped. In other words,
the partial order of scaled timestamped events (across mul-
tiple selected threads) may differ from the order of unscaled
timestamped events. Thus, synchronization would fail to
provide usable visual results.

sc
al

ed
 ti

m
e

[ti
ck

s]

raw time [ticks]

ln(1+10-10*t)/10-10

ln(1+0.25*t)/0.25
ln(1+0.5*t)/0.5
ln(1+1.5*t)/1.5

100
101
102
103
104
105
106
107
108
109

100 103 106 109

Figure 7: Plots of logscale for different values of θ:
The plot for θ = 1 · 10−10 is already linear for ∆t in
[1, 109]. Larger values of θ, e.g., θ = 1

4 and θ = 1
2 ,

allow for logarithm-based shrinking of ∆t.

Consequently, a key challenge is the way to synchronize
multiple views—each depicting a single thread’s activity—
such that collaboration between threads gets visible. In the
absence of effective synchronization, developers would need
to compare event timestamps manually to assess whether a
specific method execution in the context of thread i is actu-
ally concurrent to another method execution in the context
of thread j.

To address this issue and to preserve visual comparabil-
ity of concurrent method executions, we apply on-demand
scaling for the selected threads and the depicted sub time
span. That is, we merge all events of all selected threads
into a single queue (Fig. 8(b)). Concurrent events (having
the same timestamp) are allowed to be enqueued at the same
place within the queue. Thus, we can safely scale each ∆t
of successive events in the queue whilst preserving partial
event order across all selected threads (Fig. 8(c)).

Our approach both scales time and synchronizes multiple
views by focusing on a specific point in time in the trace
and by updating all views such that the views are centered
around this point in time.

5. CASE STUDIES
We discuss two case studies that we have performed on

industrially developed, multithreaded software systems: (1)
Chromium2, the open-source code base of Google’s web brow-
ser Chrome and (2) Building Reconstruction (BRec), a tool
for reconstructing 3D building models from laser scan data
from virtualcitySYSTEMS GmbH3, one of our industrial
partners.

5.1 Chromium: Bookmark Search
Chromium consists of approximately 4 million lines of

code4, thereof approximately 2.7 million LOC in C and C++.
According to the source code repository, more than 390 au-
thors contributed to the code base. The implementation
concepts of Chromium strongly rely on deferred process-
ing, e.g., tasks are ‘posted’ by one thread and successively
processed by another dedicated thread. Hence, developers

2http://www.chromium.org, last accessed 04/28/2010
3http://www.virtualcitysystems.de, last accessed
04/28/2010
4http://www.ohloh.net/p/chrome/analyses/latest, last
accessed 04/28/2010

137

Stack
Depth

Time

foo()
bar() foobar()

Stack
Depth

Time

foo()
bar() barfoo()

Thread 2

Thread 1
bar()

logscale(c)

logscale(d)

logscale(a) logscale(b)

(a) Logarithmic scaling per thread. The execution of foobar()
in thread 1 is no longer depicted as concurrent to the execution
of barfoo() in thread 2.

foo()

foo()

Stack
Depth

Time

bar() bar()

Stack
Depth

Time

bar() barfoo()
Thread 2

Thread 1
foobar()

a b gf edc

(b) Partial order-preserving scaling: All selected threads’
timestamped events are merged into a single queue. Times-
tamp differences (a, b, c, ...) are now calculated based on the
merged queue.

Stack
Depth

Time

foo()
bar() foobar()

Stack
Depth

Time

foo()
bar() barfoo()

Thread 2

Thread 1
bar()

lo
gs

ca
le

(a
)

lo
gs

ca
le

(b
)

lo
gs

ca
le

(g
)

lo
gs

ca
le

(f)

lo
gs

ca
le

(e
)

lo
gs

ca
le

(d
)

lo
gs

ca
le

(c
)

(c) Logarithmic scaling based on the merged queue
(logscale(a), logscale(b), ...): Visual comparability of foobar()
and barfoo() is preserved.

Figure 8: Preserving visual comparability with log-
arithmic scaling.

concerned with fixing performance weaknesses in Chromium
likely face understanding problems that also occur during
development of complex closed-source multithreaded sys-
tems.

In this case study, we aim to identify the main bottle-
neck in Chromium’s bookmark search: Searching for popu-
lar terms takes considerably more time than expected. Our
initial suspicion is that the database query could be respon-
sible for the slowdown. To verify this, we identify relevant
parts of Chromium’s implementation (Section 3.3) and re-
run the scenario with selective instrumentation. We exercise
the bookmark search scenario and import the resulting trace
into our tool.

Using the textual thread overview, 3 out of 10 threads turn
out to be relevant for our analysis task: Searching for ‘book-
mark’ in the textual thread overview yields hits in one thread
(Fig. 9). Two other threads are identified as relevant as they
seem to be concerned with deferred processing of jobs.

We initially seek through the trace data by using the zoom
and pan facilities of the sequence view with logarithm-based
scaling. We identify key points for further inspection in
the trace by remembering the respective patterns that are
enclosed by time span markers in the visual thread overview.
Subsequently, we issue a search for the term ‘bookmark’ in
our tool and yield 9 hits. In contrast to that, a search for
the same search term in Chromium’s source code results
in approximately 19,000 hits in more than 800 files. One
of the hits in the trace data is BookmarksFunction::Run.
As that draws our attention, we inspect it first, tuning the
mathematical scaling operation to linear.

It turns out, that the respective method’s invocation ac-
tually issues a query in the bookmark database (Fig. 10):
(1) BookmarksFunction::Run calls lower-level functionality
to process the database query. Among others, ExtractQuery-
Words is called. After the database query returns, (2) Book-
marksFunction::Run invokes SendResponse in class Async-

Figure 9: Textual thread overview: Identifying rel-
evant threads in Chromium.

Figure 10: Chromium bookmark search in detail, scaling tuned to linear: Database query (1) and result
dispatching (2).

138

Figure 11: Chromium bookmark search and result dispatching (1) (see Fig. 10) as well as asynchronous result
handling (2). Scaling is tuned to linear.

ExtensionFunction to enqueue the result processing job. Pro-
cessing of the search result is done asynchronously in another
thread (Fig. 11): After the database query is finished and
the job enqueued (1), RenderView ’s method OnExtension-
Response is invoked via an IPC to process the query re-
sult. OnExtensionResponse hands result processing over
to ExtensionProcessBindings::HandleResponse that subse-
quently calls some JavaScript functionality in Chromium’s
JavaScript engine V8.

In contrast to our initial expectations, the following facts
were observed: First, the database query is not the perfor-
mance bottleneck. Processing the result in OnExtension-
Response is. It consumes more than thrice the time of the
database query. Further, query execution and result process-
ing, while being executed in separate threads, are actually
executed sequentially. With parallelized querying and result
processing, processor utilization on multicore systems could
be increased and first search results could become visible in
less time. Second, only 2 of 3 chosen threads were actually
relevant for our comprehension task (threads 0 and 25). The
third thread (24) did not execute any relevant functionality.

5.2 BRec: Rendering Process
The software system of virtualcitySYSTEMS GmbH BRec

reconstructs and visualizes 3D building models from raw
laser scan data. Its rendering engine triangulates the build-
ing models in parallel with multiple threads. BRec’s de-
velopment started more than 10 years ago. The code base
comprises approx. 100k LOC written in C/C++ with 15
developers on average working on it.

In this case study, a developer is concerned with speeding
up the rendering process. The developer starts with record-
ing a trace of the complete rendering functionality. Using
the textual thread overview, he identifies one coordinating
thread and a vast amount of worker threads that all exe-
cute the same utility functionality: Delaunay triangulation.

Figure 12: Textual thread overview: (1) BRec’s co-
ordinator thread and (2) a worker thread.

Identification of the coordinating thread is based on two
facts: (1) It executes the main window’s event loop and (2)
it exhibits significantly higher invocation counts than the
other threads (Fig. 12). The developer selects the coordi-
nating thread and two worker threads as the worker threads
execute the same methods with the same invocation counts.

The developer explores the trace using logarithm-based
scaling to gain an initial overview of the rendering func-
tionality and of how the coordinating thread handles worker
threads. The first observation is that there is one coor-
dinating method, which is responsible for the whole ren-
dering process: BuildingWidget::UpdateRenderer. It creates
instances of class SolidRenderer that each instantiate Trian-
gulation3D2. The developer notices that Triangulation3D2
spawns two worker threads that calculate a triangulation
(Fig. 13). Each worker threads’ time span marker spans
the thread’s complete lifetime in the visual thread overview.
This shows that the thread terminates immediately after
finishing triangulation and complements the initial observa-
tion, which caused the developer to classify them as worker
threads.

139

Figure 13: BRec’s rendering engine: (1) Method UpdateRenderer of class BuildingWidget coordinates the
rendering process. The coordinator thread (2) spawns two worker threads (3a, 3b), each calculating a
triangulation. (4) Activity markers of threads 1136 and 1129 indicate that the sequence views (below) depict
the threads’ complete activity.

As a worker thread’s sole purpose is to calculate a sin-
gle Delaunay triangulation, a significant number of threads
is spawned during the rendering process. Although thread
creation is considered to be cheap in comparison to process
creation, its overhead cannot be neglected. Hence, the de-
veloper decides to use a thread pool for triangulation jobs
to speed up rendering by reducing thread creation costs.

A surprising result of this case study was that the per-
formance issue could be located without needing to explore
the trace with linear scaling, i.e., exploring the raw times-
tamps that show“real”waiting times. Different non-linearity
grades of the logarithmic scaling were sufficient to under-
stand the multithreading behavior and to locate the main
performance bottleneck in the rendering process.

6. CONCLUSIONS
Maintenance and debugging as well as performance tun-

ing are challenging and time-intensive tasks, especially in
the case of multithreaded software systems. Generally, such
tasks rely on understanding the concurrent control flows in
the different threads’ contexts. Furthermore, a single feature
may not only be distributed across multiple implementation
units but may be executed by multiple threads. A lack of
appropriate tools makes understanding the behavior of such
systems a costly work.

We have presented a visualization technique that supports
developers in understanding multithreaded system behav-
ior, i.e., developers can better understand interactions be-
tween threads and composition of functionality across multi-
ple threads. System behavior can be explored on various lev-
els of detail, which permits developers to perform top-down
exploration of execution traces. In particular, the execution

time spent in the different parts of a system’s implementa-
tion becomes visible.

Our technique, as dynamic analysis technique, exploits
that the developer’s search space to understand system be-
havior is reduced to those parts of the implementation that
are relevant for a given maintenance task. Thus, even devel-
opers with little knowledge of the system’s implementation
are able to quickly identify relevant parts of the system’s
implementation and understand their interactions. We have
demonstrated our approach and shown that it scales with
large software systems by case studies. The technique has
been tested with two large-scale and multithreaded software
systems; performance weaknesses in these systems and non-
obvious system behavior have been revealed.

As future work, we plan to extend the visualization to
support user-configurable elision and aggregation of parts of
a call sequence to improve analysis of large traces. Moreover,
we want to investigate how to (1) deliminate equal distances
in time in non-linear compacted views at all zoom levels
and (2) handle deep stacks that may occur due to recursion.
Likewise, we plan to investigate how to improve screen-space
usage such that a higher number of threads can be depicted
in parallel.

Further future work includes (1) extending the tracing
technique such that different threads’ accesses to shared
memory are recorded and (2) subsequently adapting the vi-
sualization according to this additional data so that com-
munication events between threads can be shown. Next, we
plan to perform controlled experiments to be able to quan-
tify the increase of developer performance when using our
approach to understand multithreaded software systems.

140

7. ACKNOWLEDGMENTS
We want to thank Software Diagnostics GmbH (http://

www.softwarediagnostics.com) for providing us with their
tracing and visualization framework. In addition, we want
to thank virtualcitySYSTEMS GmbH for providing us with
their BRec software system.

8. REFERENCES
[1] C. Artho, K. Havelund, and S. Honiden. Visualization

of concurrent program executions. In Proceedings of
the 31st Annual International Computer Software and
Applications Conference, pages 541–546, Washington,
DC, USA, 2007. IEEE Computer Society.

[2] M. Bedy, S. Carr, X. Huang, and C.-K. Shene. A
visualization system for multithreaded programming.
SIGCSE Bulletin, 32(1):1–5, 2000.

[3] M. Beetz and H. Grosskreutz. Probabilistic hybrid
action models for predicting concurrent percept-driven
robot behavior. Journal of Artificial Intelligence
Research, 24(1):799–849, 2005.

[4] C. Bennett, D. Myers, M.-A. Storey, and D. German.
Working with ‘monster’ traces: Building a scalable,
usable sequence viewer. In Proceedings of the 3rd
International Workshop on Program Comprehension
through Dynamic Analysis, pages 1–5, 2007.

[5] J. Berthold and R. Loogen. Visualizing parallel
functional program runs: Case studies with the eden
trace viewer. In Proceedings of the International
Conference Parallel Computing, pages 121–128, 2007.

[6] M. Broberg, L. Lundberg, and H. Grahn. Visualization
and performance prediction of multithreaded solaris
programs by tracing kernel threads. Parallel
Processing Symposium, International, 0:407–413, 1999.

[7] R. Brunner. Tsc and power management events on
amd processors. Technical report, AMD Corporation,
2005.

[8] B. Chapman, G. Jost, and R. v. d. Pas. Using
OpenMP: Portable Shared Memory Parallel
Programming. Scientific and Engineering
Computation. The MIT Press, 2007.

[9] T. A. Corbi. Program understanding: challenge for the
1990’s. IBM Systems Journal, 28(2):294–306, 1989.

[10] B. Cornelissen, A. Zaidman, A. van Deursen,
L. Moonen, and R. Koschke. A systematic survey of
program comprehension through dynamic analysis.
IEEE Transactions on Software Engineering,
35(5):684–702, 2009.

[11] W. De Pauw and S. Heisig. Visual and algorithmic
tooling for system trace analysis: a case study.
SIGOPS Operating Systems Review, 44(1):97–102,
2010.

[12] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky,
J. M. Vlissides, and J. Yang. Visualizing the execution
of java programs. In Revised Lectures on Software
Visualization, International Seminar, pages 151–162,
London, UK, 2002. Springer-Verlag.

[13] T. Eisenbarth, R. Koschke, and D. Simon. Locating
features in source code. IEEE Transactions on
Software Engineering, 29(3):210–224, 2003.

[14] L. Erlikh. Leveraging legacy system dollars for
e-business. IT Professional, 2(3):17–23, 2000.

[15] A. Foster. A nonlinear model of information-seeking
behavior. Journal of the American Society for
Information Science and Technology, 55(3):228–237,
2004.

[16] M. Franklin. The Computer Engineering Handbook:
Digital Systems and Applications (Second Edition),
chapter Multithreading, Multiprocessing, pages 35–51.
CRC Press, 2008.

[17] B. George and P. Nagpal. Optimizing parallel
applications using concurrency visualizer: A case
study. Technical report, Microsoft Corporation
(Parallel Computing Platform Group), 2010.

[18] M. C. Hao, D. Glajchen, and J. S. Sventek. Smallsync:
A methodology for diagnosis visualization of
distributed processes on the web. Technical report,
Hewlett Packard, 1998.

[19] M. T. Heath and J. A. Etheridge. Visualizing the
performance of parallel programs. IEEE Software,
8:29–39, 1991.

[20] J. H. Holland. Adaptation in natural and artificial
systems. MIT Press, Cambridge, MA, USA, 1992.

[21] P. Horwood, S. Wygodny, and M. Zardecki. Debugging
multithreaded applications. Dr. Dobb’s Journal of
Software Tools, 25(3):32, 34–37, March 2000.

[22] B. Karlsson. Beyond the C++ Standard Library.
Addison-Wesley Professional, 2005.

[23] J. C. D. Kergommeaux, B. D. O. Stein, and M. S.
Martin. Pajé: An extensible environment for
visualizing multi-threaded program executions. In
European Conference on Parallel Computing, pages
133–144, 2000.

[24] B.-C. Kim, S.-W. Jun, D. J. Hwang, and Y.-K. Jun.
Visualizing potential deadlocks in multithreaded
programs. In Proceedings of the 10th International
Conference on Parallel Computing Technologies, pages
321–330, Berlin, Heidelberg, 2009. Springer-Verlag.

[25] E. Kraemer and J. T. Stasko. Toward flexible control
of the temporal mapping from concurrent program
events to animations. In Proceedings of International
Parallel Processing Symposium, pages 902–908, 1994.

[26] E. Kraemer and J. T. Stasko. Creating an accurate
portrayal of concurrent executions. IEEE
Concurrency, 6(1):36–46, 1998.

[27] R. Libby. Man versus model of man: the need for a
nonlinear model. Organizational Behavior and Human
Performance, 16:23–26, 1976.

[28] P. Liggesmeyer. Software-Qualität: Testen,
Analysieren und Verifizieren von Software. Spektrum
Akademischer Verlag, 2002.

[29] A. D. Malony and D. A. Reed. Instrumentation for
future parallel computing systems, chapter Visualizing
parallel computer system performance, pages 59–90.
ACM, 1989.

[30] S. McConnel. Code Complete 2: A Practical Handbook
of Software Construction. Microsoft Press, 2004.

[31] K. Mehner. Trace-based Debugging and Visualisation
of Concurrent Java Programs with UML. PhD thesis,
Universität Paderborn, 2005.

[32] M. Momotko and B. Nowicki. Visualisation of
(distributed) process execution based on extended

141

bpmn. International Workshop on Database and
Expert Systems Applications, 0:280–286, 2003.

[33] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and
K. Solchenbach. Vampir: Visualization and analysis of
mpi resources. Supercomputer, 12:69–80, 1996.

[34] G. Nutt, A. Griff, J. Mankovich, and J. McWhirter.
Extensible parallel program performance visualization.
International Symposium on Modeling, Analysis, and
Simulation of Computer Systems, 0:205–211, 1995.

[35] V. G. Oklobdzija, editor. The Computer Engineering
Handbook: Digital Systems and Applications (Second
Edition). CRC Press, 2008.

[36] D. L. Parnas. Software aging. In International
Conference on Software Engineering, pages 279–287,
1994.

[37] D. A. Patterson and J. L. Hennessy. Computer
organization & design: the hardware/software
interface. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

[38] Qt. http://qt.nokia.com, 2010.
[39] J. Reinders. Intel threading building blocks. O’Reilly &

Associates, Inc., Sebastopol, CA, USA, 2007.
[40] S. Sharma. Real-time visualization of concurrent

processes. In Proceedings of the Joint International
Conference on Vector and Parallel Processing, pages
852–862, New York, NY, USA, 1990. Springer-Verlag
New York, Inc.

[41] S. S. Shende and A. D. Malony. The tau parallel
performance system. International Journal of High
Performance Computing Applications, 20(2):287–311,
2006.

[42] J. T. Stasko and E. Kraemer. A methodology for
building application-specific visualizations of parallel
programs. Journal of Parallel and Distributed
Computing, 18(2):258–264, 1993.

[43] J. M. Stone. Debugging concurrent processes: a case
study. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 145–153. ACM, 1988.

[44] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal,
30(3):202–210, 2005.

[45] C. Ware. Information Visualization: Perception for
Design. Morgan Kaufmann Publishers, 2nd edition,
2004.

[46] R. G. Waters and E. Chikofsky. Reverse engineering:
progress along many dimensions. Communications of
the ACM, 37(5):22–25, 1994.

[47] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller.
How long will it take to fix this bug? In 4th
International Workshop on Mining Software
Repositories, 2007.

[48] K. Wheeler and D. Thain. Visualizing massively
multithreaded applications with threadscope.
Concurrency and Computation: Practice and
Experience, 22:45–67, 2009.

[49] S. Xie, E. Kraemer, R. E. K. Stirewalt, L. K. Dillon,
and S. D. Fleming. Design and evaluation of
extensions to uml sequence diagrams for modeling
multithreaded interactions. Information Visualization,
8(2):120–136, 2009.

[50] Y. Yamaguchi and T. Itoh. Visualization of
distributed processes using ”data jewelry box”
algorithm. Computer Graphics International
Conference, 0:162–169, 2003.

[51] O. Zaki, E. Lusk, and D. Swider. Toward scalable
performance visualization with jumpshot. High
Performance Computing Applications, 13:277–288,
1999.

142

