
Fine-Grained Power Modeling for Smartphones

Using System Call Tracing

Abhinav Pathak

Purdue University

pathaka@purdue.edu

Y. Charlie Hu

Purdue University

ychu@purdue.edu

Ming Zhang

Microsoft Research

mzh@microsoft.com

Paramvir Bahl

Microsoft Research

bahl@microsoft.com

Yi-Min Wang

Microsoft Research

ymwang@microsoft.com

Abstract

Accurate, fine-grained online energy estimation and ac-
counting of mobile devices such as smartphones is of criti-
cal importance to understanding and debugging the energy
consumption of mobile applications. We observe that state-
of-the-art, utilization-based power modeling correlates the
(actual) utilization of a hardware component with its power
state, and hence is insufficient in capturing several power
behavior not directly related to the component utilization in
modern smartphones. Such behavior arise due to various low
level power optimizations programmed in the device drivers.
We propose a new, system-call-based power modeling ap-
proach which gracefully encompasses both utilization-based
and non-utilization-based power behavior. We present the
detailed design of such a power modeling scheme and its
implementation on Android and Windows Mobile. Our ex-
perimental results using a diverse set of applications confirm
that the newmodel significantly improves the fine-grained as
well as whole-application energy consumption accuracy.We
further demonstrate fine-grained energy accounting enabled
by such a fined-grained power model, via a manually im-
plemented eprof, the energy counterpart of the classic gprof
tool, for profiling application energy drain.

Categories and Subject Descriptors D.4.8 [Operating
Systems]: Performance–Modeling and Prediction.
General Terms Design, Experimentation, Measurement.
Keywords Smartphones, Mobile, Energy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’11, April 10–13, 2011, Salzburg, Austria.
Copyright c© 2011 ACM 978-1-4503-0634-8/11/04. . . $10.00

1. Introduction

Mobile devices such as smartphones provide significant con-
venience and capability to the users. A recent market anal-
ysis [Com] shows that the smartphone market is the fastest
growing segment of the mobile phone market; in 2010 over
45.5 million people in the United States owned smartphones.
Despite the incredible market penetration of smartphones,
their utility has been and will remain severely limited by
their battery life. As such, understanding the power con-
sumption of applications running on mobile devices has at-
tracted much research effort. Early research [Flinn 1999a;b,
Mahesri 2005] has focused on power measurement, i.e.,
measuring the power consumption of the mobile device dur-
ing the execution of an application using a power meter, with
the goal of understanding energy consumption by individual
applications. These studies directly rely on the availability of
power meters and do not develop a power estimation model
for use in the “wild” without a power meter.

More recent efforts have focused on developing online
powermodels for mobile devices. Typically, during the train-
ing phase, a power consumption model is developed by run-
ning sample applications, and correlating certain application
behavior, or triggers, with specific power states or power
state transitions, of individual components or the entire sys-
tem, measured using an external power meter. The generated
power model during this training phase can then be used on-
line, without any measurement from a power meter, for esti-
mating the energy consumption in running any application.
Thus such an online power model enables application devel-
opers to develop energy profiling tools to profile and con-
sequently optimize the energy consumption of mobile ap-
plications, without the expensive power meters, much like
how performance profiling enabled by gprof [Graham 1982]
has facilitated performance optimization in the past several
decades.

There are two desirable features for such an online power
model: (1) It should incur low overhead in logging the trig-
gers, so that the energy estimation based on the model can be
performed online; (2) It should enable accurate fine-grained
energy accounting, e.g., on a per-subroutine basis, and in
the presence of multiple threads and processes. This is be-
cause as in performance profiling and optimization, the nat-
ural granularity in profiling and optimizing the energy con-
sumption of an application is at the subroutine level.

The large body of work on power modeling on smart-
phones [Shye 2009, Zhang 2010], and more generally for
desktops [Zeng 2002] and servers [Fan 2007, Kansal 2010],
are based on the fundamental yet intuitive assumption that
the (actual) utilization of a hardware component (e.g., disk,
NIC) corresponds to a certain power state and the change
of utilization is what triggers the power state change of that
component. Consequently, their design all use the notion of
utilization of a hardware component as the “trigger” in mod-
eling power states and state transitions. The usage statistics
of each hardware component (e.g. disk) are typically pro-
vided by the OS, for example, /proc on Linux.

In this paper, we make a key observation that the funda-
mental assumption behind utilization-based power modeling
does not hold in several scenarios on smartphones, due to the
increasingly sophisticated power optimization in the device
drivers and OS-level power management.

• Several components (e.g., NIC, drive, and GPS) have tail
power states.

• System calls that do not imply utilization (e.g., file open,
close, socket close) can change power states.

• Several components (e.g. GPS, camera) do not have
quantitative utilization.

An immediate consequence of these non-utilization-
based power behavior of smartphone components is that
while a utilization-based model may still achieve reasonable
accuracies in estimating the energy consumption of whole
applications due to the cancellation of per-interval estima-
tion errors in both directions [Shye 2009], they suffer poor
accuracy in fine-grained energy estimation. For example,
they are incapable of modeling the energy consumption due
to lingering tail power states which can last up to several
seconds, far beyond the completion of the triggering subrou-
tine. Consequently, such models cannot be used to develop
profiling tools that support accurate energy accounting on a
per-subroutine basis.

In this paper, we propose a new, system-call-based power
model that overcomes the above limitations of utilization-
based power modeling. Our design is motivated by the fol-
lowing observations. First, system calls provide the only
means via which applications gain access to the hardware
(I/O) components. As such their names along with the pa-
rameters give clear indication of the components and the
level of utilization being requested. Hence, they already en-

compass the triggers used in utilization-based power model-
ing. Second, such a model can capture all the power behavior
of I/O system calls that do not imply component workload
or utilization. Finally, a system call can be naturally related
back to the calling subroutine and the hosting thread and pro-
cess. Together, the above observations suggest system-call-
based power modeling can achieve accurate fine-gained en-
ergy estimation, and enable fine-gained energy accounting,
e.g., on a per-subroutine, per-thread, and per-process basis.

The design of our system-call-based power modeling
scheme consists of two major components. First, it uses Fi-
nite State Machines (FSM) to model the power states and
state transitions of each component as well as the whole
smartphone. Some states have constant power consumption;
they capture non-utilization-based power behavior. Other
states leverage a linear regression (LR) model to capture the
power consumption due to system calls that generate work-
load. Second, it uses a carefully designed testing applica-
tion suite which leverages the domain knowledge of system
calls (i.e., their semantics and causal invocation ordering) to
systematically uncover the FSM transition rules. We have
implemented the system-call-based power modeling scheme
on two smartphone OSes and validated that it significantly
improves fine-grained power estimation as well as whole-
application energy consumption estimation for a diverse set
of applications.

In summary, this paper makes following contributions.

• We make the observation that the fundamental assump-
tion behind utilization-based power modeling, that the
power state of a component is correlated with its utiliza-
tion, often does not hold on modern day smartphones,
due to the increasingly sophisticated power optimizations
in the device drivers. Consequently, utilization-based
power models can suffer poor accuracy in fine-grained
power estimation.

• We propose a new power modeling approach based on
tracing system calls of the applications, which grace-
fully captures both utilization-based and non-utilization-
based power behavior of I/O components, and hence can
achieve accurate fine-grained energy estimation.

• We present the detailed design and implementation of
our new approach on two smartphone operating systems,
Windows Mobile and Android.

• We present experimental results that demonstrate the ac-
curacy of our new modeling scheme using a diverse set
applications. When estimating the energy consumption
for 50ms time intervals, the 80th percentile intervals
across the applications report an error under 10%, but
vary between 16% and 52% across the applications un-
der the utilization-based modeling. Further, the whole-
application energy estimation error varies in the range of
0.2% to 3.6% under our scheme, compared to between
0.4% to 20.3% under utilization-based modeling.

• We further demonstrate fine-grained energy accounting
enabled by such a fined-grained power model, via a man-
ually implemented eprof, the energy counterpart of the
classic gprof tool, for profiling application energy con-
sumption on a per-subroutine basis.

2. Background: Power Management in
Smartphones

Modern day smartphones come with a wide variety of
hardware components embedded in them. Typical compo-
nents include CPU, memory, Secure Digital card (sdcard
for short), WiFi NIC, cellular, bluetooth, GPS, camera (may
be multiple), accelerometer, digital compass, LCD, touch
sensors, microphone, and speakers. It is common for smart-
phone applications to utilize several components simultane-
ously to offer richer user experience. Unlike on desktop and
server machines, the power consumed by each I/O compo-
nent is often comparable to or higher than that by the CPU
on smartphones.

Each component can be in several operating modes, each
draining a different amount of power. We call such different
modes different power states for that component. We note
that in our work and in all previous work, power modeling
is concerned with estimating the power consumption of the
whole phone as the components switch between operating
modes, not when they are turned off by the user or the
OS power manager, i.e., optimizations of their sleep-wakeup
cycles. The later cases can be easily incorporated into energy
accounting. In principle, the power state of the component
should simply correspond to the throughput of its work done,
i.e., the actual utilization of the component. For example, we
observed that for a fixed channel condition, theWiFi NICs of
the smartphones studied in this paper transmit at 5.5 Mbps at
a lower power state, but may switch to a higher power state
in order to transmit at 11 Mbps. We denote this assumption
as the utilization-power-state correlation assumption.

However, as the device drivers in modern day smartphone
operating systems incorporate more and more power man-
agement “smarts”, the above simple assumption on the tight
correlation between the utilization of a component and its
power state often does not hold. In particular, the power state
of a component could potentially depend on non-utilization-
based factors. These include external conditions (e.g., sig-
nal strength for WiFi and Cellular) and semantics of sys-
tem calls such as initiating a component or terminating the
usage of a component (e.g., closing a socket). Using these
factors as input, several power saving optimizations can be
programmed in a component’s device driver which decides
the component’s power transition rules. For example, the de-
vice drivers for the wireless NICs on the smartphones we
have studied adjust the transmission power when the sig-
nal strength changes. In principle, all the information about
power states and transition rules of a component can be un-
covered from reading the device drivers of the component.

However,most of the device drivers for smartphones, includ-
ing Android handsets, are proprietary.

3. State-of-the-Art: Utilization-based
Modeling

The large body of work on power modeling for desktops,
servers, and more recently for smartphones are based on
the utilization-power-state correlation assumption stated in
Section 2. Consequently, their designs all use the notion
of utilization of a hardware component as the “trigger” in
modeling power states and state transitions. We call this
class of modeling as utilization-based modeling.

Early utilization-based models focused on estimating the
power consumption of individual components, using the cor-
responding performance counters, e.g., CPU [Bellosa 2000,
Snowdon 2009, Stanley-Marbell 2001, Tiwari 1996], mem-
ory [Rawson 2004], disk [Zedlewski 2003], and of the entire
system [Bircher 2007, Flinn 1999b]. These models do not
relate the power consumption of the system with the appli-
cations. More recent utilization-based power models tried to
estimate the power consumption of applications running on
desktops [Zeng 2002], sensor nodes [Shnayder 2004], virtual
machines [Kansal 2010], data center servers [Fan 2007], and
most recently, mobile devices [Shye 2009, Zhang 2010].

There are two key ingredients in constructing a power
estimation model in a utilization-based power modeling
scheme. First, during the training phase, it collects the uti-
lization of individual hardware components, typically via
OS-provided utilization statistics (e.g. usage statistics in
/proc in Linux in [Shye 2009, Zhang 2010] for power mod-
eling in smartphones) while running some sample applica-
tions, and measures the corresponding power consumption
of those components, e.g., using power meters. Second, it
typically develops an LR model to correlate the sampled
trigger values, i.e., the utilization, and the measured power
consumption at that sampling moment (e.g. [Shye 2009,
Zhang 2010]). Once the model is constructed, it can be used
to perform online estimation of power consumption, by con-
tinuously collecting the utilization of the components and
feeding them into the model.

4. New Challenges

Utilization-based power modeling, however, cannot han-
dle the following non-utilization-based power behavior of
smartphone components.

Several components have tail power states. Components
such as NICs, sdcard and GPS on many smartphones ex-
hibit the so-called “tail” power state phenomenon; they stay
at high power state for a period of time after active I/O activ-
ities. Figure 1(a) shows after a read (same is true for write)
system call of 10 bytes which sent the sdcard to high power
state and lasted about 10 milliseconds, the sdcard stays in
high power state for 5 seconds, on the HTC Touch Pro phone
(touch for short) running Windows Mobile 6.1 (WM6 for

Figure 1: System call based power transitions: Top row: Disk on touch , GPS on magic , bottom row: network on touch and tytn2.

short). Similar tail power state lasts for 3 seconds on the
HTC Tytn 2 (tytn2 for short) phone running WM6. On all
the smartphones (WM6 on touch and tytn2, and Android on
HTC Magic (magic for short)) we have tested, the NIC con-
tinues to be in high power state for a few seconds after an ac-
tive send/recv is completed. Figure 1(c) shows the tail power
state lasts about 1.7 second on the tytn2 phone. Clearly the
utilization of the components (NIC or sdcard) is zero during
the tail power states. This breaks the fundamental assump-
tion behind utilization-based power models that the usage of
a components determines its power state.

System calls that do not imply utilization can change
power states.Many systems calls that do not imply high uti-
lization of components can send the components to high or
low power states. This could be due to power optimizations
programmed in device drivers. For example, on windows
mobile, file open, close, create, delete system calls trigger
a power level change in the sdcard device driver; after these
calls the component remains in a high power state for a few
seconds. Figure 1(a) gives the example of file open on the
touch phone. Similarly, a socket close system call immedi-
ately ends the high tail power state of the NIC on windows
mobile touch smartphones, shown in Figure 1(d). Such low
level power optimizations are typically done in the device
drivers and they also break the utilization-power-state corre-
lation assumption in utilization-based power models.

Several components do not have quantitative utilization.
Several “exotic” components on smartphones, such as GPS
and camera, do not have a notion of quantitative utiliza-
tion, that is parallel to the amount of data sent or received
by a NIC. These components typically are turned on or off
by system calls. For example, the “requestLocationUpdate”
call in Android sets GPS in a high power state, shown in
Figure 1(b). The “opencamerahardware” system call in An-
droid sets camera in a high power state. In principle, one
can add a counter (e.g. to /proc) to record the binary state of

these components to facilitate utilization-based power mod-
eling of these components. However, since utilization-based
modeling fundamentally assumes periodic sampling of per-
formance counters, it can suffer delay in reading the change
of power states of such components.

An immediate consequence of these limitations is that
utilization-based modeling can suffer poor accuracy in fine-
grained energy estimation, i.e., for small intervals such as the
duration of subroutines in an application, for two reasons.
First, utilization-based modeling relies on periodic sampling
of the usage counters (e.g. reading /proc). The time inter-
val at which the sampling is performed can be too course-
grained compared to the duration of subroutines, or the sam-
pling can become costly if done at a very fine granularity.
Second, more importantly, a tail power state triggered by a
system call in a subroutine can last till long after that sub-
routine has returned. In addition, using a diverse set of ap-
plications we show in Section 7 that the error in per-interval
power estimation can add up and lead to poor accuracy in
whole-application energy consumption estimation for many
applications.

5. System-Call-Based Power Modeling

5.1 Key Idea

In this paper, we propose system-call-based power modeling
which overcomes the above limitations of utilization-based
power modeling. Our new approach is based on the follow-
ing five observations:

• System calls provide the only means via which applica-
tions gain access to the hardware (I/O) components. As
such their names along with the parameters give clear in-
dication of which components and what level of utiliza-
tion are being requested. Hence, they already encompass
the triggers used in utilization-based power modeling.
In fact, the utilization statistics used in utilization-based
power modeling such as for network and disk activities in

/proc in Linux are exactly updated based on the parame-
ters in selected system calls such as read/write. To model
CPU power consumption, we log context switch events
in the kernel.

• Using system calls as triggers to power state transitions
naturally solves the second limitation of utilization-based
power modeling. Those system calls that do not imply
utilization but trigger power state changes can be iden-
tified during the training phase and incorporated in the
power model.

• Similarly, the invocation of system calls that turn on
and off “exotic” components immediately triggers power
state change for those components, which avoids the de-
lay due to periodic sampling of performance counters in
utilization-based modeling.

• Using system calls as triggers naturally suggests using
a Finite State Machine (FSM) to model the state tran-
sitions. The states in an FSM can be easily annotated
with the timing and workload of recent events to ac-
curately model state transitions due to non-utilization-
based power behavior (e.g. tail states) and accumulated-
utilization-based power behavior (e.g., transmitting enough
packets causes the WiFi NIC to go to a higher power state
to increase the bitrate.)

• System calls can be easily related back to the calling
subroutine, the hosting thread and process. This, com-
bined with the above observations that they capture non-
utilization-based power behavior, enables fine-grained
energy accounting, e.g., on a per-subroutine, per-thread,
or per-process basis.

In the following, we first analyze the power states and
state transitions involved in a single system call to motivate
the Finite State Machine (FSM) implementation of system-
call-based power modeling. To systematically uncover the
FSM of power states for a given phone, we develop the
CTester application suite, based on the domain knowledge
of system calls for each OS, to automate the construction
of the FSM in three incremental steps. Step 1 uncovers the
FSM for individual system calls for a component. Steps 2
and 3 then exercise superposition of different power states
for one and multiple components, respectively.

5.2 Modeling Single System Call Power Consumption

The actual mechanism of system-call-based modeling is mo-
tivated by the typical sequence of power states and state tran-
sitions involved in a single system call.

5.2.1 Power Consumption Behavior of System Calls

The first column of Figure 2 plots the actual power levels of
a smartphone, measured using a power meter, from the start
of a typical system call and during the corresponding power
states and state transitions resulted. The three rows are for
a single disk read, a network send with a few packets, and

a network send with many packets, respectively. A system
call that specifies a certain amount of workload, e.g., send-
ing X bytes to the NIC, can send the component into one
of several possible base power states. For example, on tytn2,
touch and magic, sending a few packets within a short period
sends the NIC to a lower power base state, while sending
many packets, via one or multiple back-to-back send system
calls, sends the NIC to a high power base state. The work-
load specified by a system call eventually is carried out by
the component via a sequence of atomic I/O operations, e.g.,
a sequence of packet transmissions by the NIC, each cor-
responding to an instantaneous burst of power consumption
from the current base power state.

5.2.2 Abstraction of Power States

Since a system call is often turned into a sequence of low-
level hardware component operations, e.g., packet trans-
missions, the key to developing a system-call-based power
model which only uses system call information as input is to
devise power states that abstract away the low-level power
behavior, e.g., in between individual packet transmissions,
yet still capture the power consumption of that component
due to the system calls.

We denote the power state spanning the duration covering
the sequence of the component-level I/O operations due to
a system call a productive power state of that component.
Such a productive power state is characterized by the burst
power of individual I/O operations, and the duration of the
sequence of I/O operations. Each component can potentially
have multiple such productive states. Since the duration of a
productive state depends on the workload specified in the
input parameter of the system call, and the power bursts
due to individual packet transmissions cannot be exactly
captured (drivers are closed-source), we develop an LR-
based power model for that productive statewhich correlates
the input workload (e.g., bytes to be sent) with the total
duration of the power burst for that system call. We note
this usage of LR is different from in utilization-based power
modeling (e.g. [Shye 2009]) where LR is used to estimate
the power drain of the whole phone.

Next, we observe after a productive power state, i.e.,
when there are no more I/O operations, a component can
stay at the base power of the productive power state for a
period of time. This is previously known for cellular NICs
[Balasubramanian 2009], but we discovered it can also hold
true for disks and GPS on smartphones. Since the component
is not doing useful work, we call this state the tail power

state. A tail power state is characterized by its base power
and its duration.

Continuing on our example in Figure 2, the three figures
in the middle column depict the abstract productive and tail
power states and the transitions that model the measured
power states and transitions in the first column. The above
abstraction of two (types of) power states and state tran-
sitions triggered by system calls is general in that it cap-

Figure 2: Modeling power states following a system call.

tures that different I/O system calls can have different dura-
tion/power in either state, or may experience only one of the
two states. Finally, we observe that even consecutive burst
powers during a productive power state can fluctuate, as ob-
served in other work [Bellosa 2000] as well. We suspect this
is largely due to the sampling nature of power measurement
by the power meter. We calculate the average of all the burst
powers measured during the training phase and use it as the
burst power of that productive state.

5.2.3 System-Call-based Power Modeling using FSMs

The above abstraction of power states, which captures the
power behavior of individual I/O system calls, naturally sug-
gests a Finite State Machine (FSM)-based implementation
to capture the transitions between the power states. For-
mally, in our FSM-based power model, each state represents
a power state of a component, or of the set of all components
when extended to model the power of the entire smartphone
as discussed below. Each state is annotated with a (power,
timeout duration) tuple, and the timing and workload of re-
cent events of the component. The transitions between states
capture the conditions that trigger state changes. There are
three types of conditions: a timeout activity (e.g., the dura-
tion of the tail power state is over), a new system call, or
a combination of timeout and past history of device utiliza-
tion. As an example for the third condition above, a new send
system call of fewer than 50 packets only takes the NIC to a
low productive power state on WM6 on tytn2. A subsequent
system call that together with previous send system call gen-
erates more than 50 packets per second will cause the NIC
to enter a higher productive state followed by a tail state.
To capture this history information of device utilization, at
each state in the FSM, we need to keep information of all

system calls in the recent past. We find in our experiments
with two operating systems and three smartphone handsets
that storing system call information up to the past 60 sec-
onds while staying in a power state is sufficient to capture
all state transition conditions from that state due to recent
device utilization.

Continuing our example in Figure 2, the last column
shows the three FSMs that model the power states and state
transitions of the three system calls, respectively. Unless
otherwise stated, all power measures in FSMs in the rest
of paper refer to the additional power consumption on top
of an idle phone, i.e., with no application activities. For
simplicity, we represent power consumed at an instant using
the current drawn by the phone in milliAmperes. The actual
power consumed would be the current drawn multiplied by
3.7V, the voltage supply of the battery. Similarly, energy
is reported in uAH (micro Ampere Hours), and the actual
energy would be the uAH value multiplied by 3.7V. These
metrics are used since smartphone batteries are rated using
these metrics and hence is easy to correlate.

5.3 Modeling Multiple System Calls

Once the FSMs for individual system calls are generated
for a component, we systematically integrate them to model
the power consumption when there are multiple concurrent
system calls to the same component. Concurrent system
calls here are defined as where the second system call is
invoked before the component is out of the productive or
tail state due to the first system call. Concurrent system calls
can be issued from the same process or from concurrently
running processes. For example, when multiple processes
are running, a system call causes the context switch from the
calling process (which is now blocked) to another process,

which then issues another system call before the first one is
completed.

We first observe that since a component can only be in a
small number of possible power states, taking the union of
all power states discovered by modeling individual system
calls is sufficient to discover all possible power states for that
component. We next focus on modeling state transitions.

There are two possible timings in which two concurrent
system calls can arrive. In the first case, a subsequent sys-
tem call arrives after the previous one is out of its productive
power state (it could still be in the subsequent tail power
state). In this case, the resulting power behavior when the
second system call arrives can be modeled by simply super-
imposing the FSM of the second system call on top of the
first, i.e., taking the maximum of the power states due to
them for the overlapping time period.

In the second case, the second system call arrives while
the first is still in its productive state. Since a productive
state models the power consumption when the component
is performing actual I/O operations, if the second system
call is a workload-based system call, e.g., read/write, the
effect on the component power behavior will be as if the
first system call was invoked with the total workload of
both system calls. If the second call is an initialization-based
system call, e.g., open, the component will first come out of
the productive state of the previous read/write, enters the tail
state of that read/write, and then starts the FSM due to the
open system call. From this time on, the FSM of the open
call will be superimposed on the tail state of the previous
call.

5.4 Modeling Multiple Components

After we generate the FSM models for the individual com-
ponents, we develop one FSM model for the entire smart-
phone, by driving all components simultaneously. One may
expect the total power consumption of multiple components
to be a simple summation of those of individual components
when active in isolation. Our experiments show that this was
indeed the case on Android, but not on Windows Mobile.
In particular, the tail states of different components interfere
with each other on Windows Mobile. The basic idea behind
combining FSMs of different smartphone components is to
try out all possible combinations of the sets of conditions,
each set for driving one component into all possible states of
that component, and measure the corresponding total power
consumption. This process is automated via the CTester ap-
plication suite described later.

Complexity.While the above approach can result in a com-
binatorial number of power states and testing runs, in prac-
tice it remains practical. First, the major components we
tested (CPU, disk, network, GPS, camera) typically have
only up to three power states each (one or two productive
states and one tail state), and hence even the total number
of combinations is still under 20 for the three major compo-

nents (CPU, disk, network). Second, since energy modeling
is a one-time procedure per smartphone per OS, it is accept-
able for this procedure to take some time.

Completeness of the methodology. We expect the method-
ology above can capture all the possible states and transition
conditions in practice. All the power states are likely to be
accounted for as each component can have a finite number
of power states and our CTester application suite exercises
all combinations of the states across components. Further-
more, we run the CTester application suite multiple times to
ensure the the derived FSMs are consistent. This repeatabil-
ity serves as an assurance of the completeness of the FSM
power model. Finally, we validate the derived FSM power
model by performing fine-grained energy estimation against
actual measurement from a power meter, using a diverse set
of applications (Section 7.3).

We note the above completeness issue also exists in
utilization-based modeling. Since our methodology for con-
structing the FSM-based power model offers a systematic
way of searching for all possible states and state transitions,
it is more likely to result in a more complete model than
utilization-based modeling, which is typically based on try-
ing random sample applications (e.g. [Shye 2009]).

5.5 The CTester Applications

To support the above methodology for uncovering the power
states and state transitions of various components, we design
a testing benchmark suite, called CTester, which includes an
application for each component carefully designed to exer-
cise all the relevant system calls, and a wrapper application
that invokes individual applications at predetermined timing
to create scenarios of concurrent system calls on the same
or multiple components. During a CTester application run,
we measure the power dissipated through an external power
meter which reports fine-grained power consumption of the
smartphone. The difference from the base power when the
phone is in idle state is the extra power due to running the
application.

Creating the benchmark applications requires the knowl-
edge of all the possible system calls and their ordering (e.g. a
read call cannot proceed an open system call) through which
applications or the kernel can access a component. The first
step is to classify all I/O system calls into two categories:
initialization-based which includes calls that initialize or
uninitialize a component such as file open, close, create,
delete, and workload-based which includes calls that gen-
erate the actual workload to the component, such as file read
and write. Next, for each component, we develop a testing
application to exercise the relevant system calls by interleav-
ing initialization and workload system calls. Figure 3 shows
the generic structure of a CTester application for one com-
ponent which consists of a sequence of initialization (e.g.
file open/close) and workload (e.g. send/recv) system calls,
which respects their correct usage ordering, i.e., a workload-

Init Init Util Init

SleepSleep
Sleep

Sleep, Change rate

Init

Figure 3: Structure of a CTester program.

based call has to follow an open system call. We introduce
sufficient interval (on the order of several seconds) between
the system calls.

The range of input parameters to the consecutiveworkload-
based calls is decided based on the component’s throughput,
with the goal of uncovering all productive states and the
threshold on the workload that triggers the transition from a
low productive power state to a high productive power state
if there are multiple. For example, the WiFi NIC of some
smartphones has two productive states and the switching
happens when there are more than 50pkts/sec transmitted
or received. To search for such transitions efficiently, we
increase the input parameters exponentially and perform bi-
nary search between two consecutive parameters if they lead
to different productive states. In principle, the search pro-
cess should continue until reaching the limits of the argu-
ment space. In practice, the thresholds for power transitions
usually occur at small parameter values, e.g. 50 packets/sec
for the WiFi NICs. Hence the search finishes very quickly,
i.e., after observing that there is no more power state change
after a few iterated doubling of the input parameter values.

6. Implementation
We have implemented system call tracing on Windows Mo-
bile 6.5 running Windows CE 5.2 kernel and Android 2.2
running Linux Kernel 2.6.34. We note such system call trac-
ing is previously available in desktop OSes [etw, str] but not
in smartphone OSes.

6.1 Tracing System Calls in Windows Mobile 6

WM6 provides a logging mechanism called CeLog [cel],
which only tracks all the events related to CPU (context
switch and thread suspend/resume), memory (virtual and
heap page fault), TLB, and interrupt. CElog is implemented
by instrumenting the corresponding functions in the kernel
source code. In principle, we could extendCElog to log other
system calls needed for our power modeling, such as file
system, GUI, and network interface, by instrumenting other
parts of the kernel. However, this requires kernel source code
and is tedious.

Instead, we leveraged the mechanism used by WM6 to
implement system calls, a process called thunking. A system
call is made to a special invalid address, which will result in
a prefetch-abort trap, and the trap handler recognizes which
system call was being made based on the invalid address. To
log the needed additional system calls, we reroute the system
calls in coredll.dll and ws2.dll (for networking)
to enable logging. Essentially, we replace the thunks (e.g.
xxx send) with our own functions (e.g. celog send),

Android Runt ime

APPLICATIONS

Libraries

SQLite OpenGL

Linux Kernel
Camera Driver Network Driver File System Power Mgmnt.

All

Devices

Disk

Network

Sensors

GPS, ...

Events

Core Libraries Dalvik VM

Appl icat ion Framework

Window Manager

Location Manager

Content Provider

Telephone Manager

Activity Manager

Notif ication Manager

Figure 4: System call instrumentation in Android.

which are simply wrappers that log the system calls be-
fore calling the thunk exported by coredll.dll and
ws2.dll. The new functions are implemented as a part
of a library that is statically linked with coredll.dll

and ws2.dll during compilation. System calls to GPS and
various sensors are logged in a similar way.

6.2 Tracing System Calls in Android

Figure 4 shows the Android framework. It consists of an ap-
plication framework which is built on top of a few C/C++
libraries and Android runtime. The runtime consists of core
java libraries and Dalvik Virtual Machine which are opti-
mized for mobile platforms. The entire Android stack sits on
top of the standard Linux kernel. Applications on Android
can be either written using Android SDK in java which will
run in isolation in Dalvik VM, or written in native C/C++
compiled using the arm compiler which will run outside
Dalvik, or written in both using Google’s Native Develop-
ment Kit (NDK). NDK assists compute-intensive applica-
tions written in java on Android SDK, to run part of their
code (usually the compute-intensive part) outside Dalvik to
improve their performance.

Ideally we just need to log all the events at the kernel
layer. However, since Android uses many daemon processes
that run on Dalvik to coalesce requests from different appli-
cation processes, it would be difficult to attribute the cause of
a system call back to the specific caller, which is needed to
perform accurate energy accounting, e.g., on a per-process
basis. For this reason, we log events not only at the kernel
level, but also the framework level and the VM level (the
three boxes in Figure 4). In particular, we use SystemTap
[sys] to log system calls and CPU scheduling events in the
sched.switch function in the kernel, use the logging li-
brary that comes with Android to additionally log different
sensors, GPS, accelerometer, camera accesses at the frame-
work level, and log disk/network at the DalvikVM level. We
changed the default timer granularity of 10 ms to 1ms.

6.3 Flashing Customized Kernel Images

We built a WM6 and Android image with our modifications
using platform builder [pb] and shared WM kernel source
code [cec] for WM6 and cynogenmod tools [cyn] for An-
droid. The customized images can directly work in corre-

Table 1: Mobile handsets used throughout the paper.

Name Handset

HTC-

CPU

(MHz)

OS (kernel) Base

power

magic Magic 528 Android 2.0 (Linux 2.6.34) 160mA

touch Touch 528 WM6.1 (CE5.2) 250mA

tytn2 Tytn II 400 WM6.1 (CE5.2) 130mA

sponding emulators running on a desktop PC. We flashed
commodity smartphones with customized kernel images.

7. Evaluation

We now present the FSM power models using our system-
call-based power modeling approach for Android and WM
running on three smartphones and validate their accuracy in
energy estimation on a set of diverse applications.

7.1 Hardware Platform

Table 1 lists the hardware, the OS, and the base power of
three smartphones used throughout this paper. We use out-
of-box settings for LCD brightness and other system param-
eters. We use PowerMonitor [pow] to measure the power
consumed by the smartphone. The smartphone battery is by-
passed; the power terminals of the phone are connected to
the power supply from the power monitor and the phone is
powered through the monitor. PowerMonitor samples cur-
rent draw once every 200 microseconds.

7.2 FSMModels Constructed

We start with the FSMs constructed for individual compo-
nents of the three smartphones, followed by the FSMmodels
for the entire smartphones.

7.2.1 FSMs for Individual Components

Figure 5 depicts the FSMs for CPU, sdcard and WiFi NIC
for the three smartphones. We also modeled LCD, GPS,
and camera, but omit them from the FSMs for clarify. The
state transitions are labeled by the system calls or history-
based conditions. The productive states in the FSMs are
color shaded while the tail/base states are not shaded.

For CPU, we observe a simple FSM for all three smart-
phones. A process (thread) scheduled to run on the proces-
sor consumes a constant current. When the null loop exe-
cutes on the CPU (thread 0x0 (idle) in process NK.EXE on
WM6 and process pid 0 on Android), the system goes to
the base state. The productive state for magic, tytn2 and touch

consumes +100mA, +130mA and +200mA, respectively.
For sdcard, we observe a simple FSM for Android on

magic where disk read/write system calls trigger the state
change to a productive state with an average power con-
sumption of +105mA. Other disk system calls do not have
any noticeable effect on power consumption. The duration
of the productive state is determined by the amount of data
written or read and the sdcard throughput. On WM6, we
find that system calls file open, close, create, delete, read

and write transit the sdcard to a high power state which con-
sumes +125mA on tytn2 and +190mA on touch. The dura-
tion of read/write system calls is determined similarly for
Android. A productive state is followed by a tail state which
consumes +75mA and +110mA and lasts for 3 and 6 sec-
onds for tytn2 and touch, respectively, before going back to
the base state. If another system call is observed in tail state,
it jumps into productive state and the above cycle repeats.

For wireless NIC, we observe a few power optimizations
implemented by the device drivers. For all the handsets,
there were two productive states and one tail state. We see
that state transitions occur only on network send/recv system
calls in all the handsets, except touch where a socket close
call also triggers a transition. For all handsets, we find that
transmitting (or receiving) packets in the base state causes a
state transition to a low productive state (called “low net”).
If the transmission rate increases beyond a threshold (12
packets in the past 1 second), the component transits to
another base state (called “high net”), which is the same as
the tail state. Any further workload-based system calls, i.e.,
send/recv, cause the NIC to transit to the second productive
state. When the sending rate drops below 12 packets in the
past 1.5 seconds, the NIC transits to the base state in magic.
When there is no network activity for 1.7 seconds, similar
transition occurs on tytn2. On touch, a socket close call or
12 seconds of no activity, whichever occurs first, causes the
NIC to transit to the base state.

The signal strength of the wireless network affects the
power consumption of the productive states. The signal
strength can vary from -20dBm to -90dBm (best to worst),
and increases the productive state power consumption by a
maximum of 20% from best to worst (nearly linearly). Using
simple network API calls, the model periodically samples
the network signal strength and corrects the power consump-
tion accordingly.

We also developed FSMs for LCD, GPS and camera. The
later two are turned on and off using system calls. For ex-
ample, GPS and camera on Android can be accessed by ap-
plications on the Android framework through requestLoca-
tionUpdates and OpenCameraHardware system calls. One
interesting observation about the FSM for GPS is that after
the GPS is turned off, a tail state of +70mA follows for 3
seconds on Android (Figure 1(b)).

7.2.2 FSMs for the Entire Smartphone

Figure 6 plots the FSMs for entire phones for all three
phones. For clarity, we only include CPU, sdcard and WiFi
NIC, and omit GPS and camera. The names of the states are
simply composed from the state names in the FSMs of indi-
vidual components in Figure 5 (separated by “,”). The com-
posite states that exhibit similar characteristics have been
merged; their names contain names before merging sepa-
rated by a “/”. As in Figure 5, the power consumed in each
state in Figure 6 represents the additional current (in mA)
consumed in that state above the base current. Specifically,

Figure 5: FSM for CPU, Disk and WiFi NIC for three smartphones. The circles in shades are productive states.

we run the cTester benchmark programs to drive different
components to reach the desired states (e.g. CPU busy and
WiFi NIC in tail) and measure the current consumed by the
entire smartphone above the base level.

Android on magic has the simplest FSM. It has a base
state, one productive state for each component (CPU, sd-
card, network), and a network tail state. When multiple com-
ponents are active, the total power consumption equals the
summation of those of individual components when active
alone. For WM6 on the other two handsets, there are two
tail states, one of sdcard and the other of the network. We
find that these states interact with each other; they do not
add up as in case of Android. For example, an application
consuming high CPU consumes +200mA (+130mA) irre-
spective of whether the transition came from the tail state of
disk (which consumes +110mA (+75mA)) or from the base
state (at 0mA) on the touch (tytn2) handset. A similar interac-
tion exists between network and CPU on the touch handset.
Another feature we observe is that when the tail states of sd-
card and network overlap, the power draw does not equal the
sum. For example, when sdcard and network are in their tail
states, the power consumed on tytn2 will be the maximum
of the power of the two states (in this case +270mA which
is that of network). When the network tail state expires, the
system falls back to the disk tail state (+75 mA), which lasts
for 3 seconds from the last disk activity.

7.3 Energy Consumption Estimation

We now compare the accuracy of fine-grained and whole-
application energy consumption estimation under our system-
call-based modeling (FSM model for short) and under
utilization-based modeling. For utilization-based modeling,
we implemented the LR model for smartphones as described
in [Shye 2009], by considering four components: LCD,
CPU, sdcard, and NIC. We do not compare applications
that use GPS or camera, since they are not modeled in [Shye
2009]. LR is developed by training with random application
runs (as in [Shye 2009]).

For both OSes, we created /proc like utilization entries
using our system call tracing, since our tracing captures non-
utilization-based calls and hence forms a superset of the
/proc-like logging utilities. However, the real benefit of us-
ing the same /proc under FSM and LR is that it allows us
to run each application once, and perform offline compar-
ison of their energy estimation accuracy for that run. This
is important as most of the smartphone applications are in-
teractive; the run time (and energy consumption) in differ-
ent runs of the same application can easily fluctuate by over
10%. Further, if we ignore the extra overhead of periodically
sampling /proc in LR for now, we can isolate and study the
impact of /proc sampling frequency on LR’s accuracy. We
compare the overhead of FSM and LR in Section 7.4.

Figure 6: FSMs for entire smartphones when considering only CPU, Disk and WiFi NIC. The legends are the same as in Figure 5.

Table 2: Applications used throughout the paper.

App. Description

Windows Mobile (on tytn2)
game First person shooter game (graphical)
chess Mobile optimized version of chess
diskB Open a file, sleep for 10 sec, write to file for 5 sec
netB Connect, sleep for 10 sec, write over network for 5 sec
ie.cnn User browsing mobile version of CNN on IE
pviewer Slideshow of photos from SD card
docConv A document converter (from .abc to .def)
virusScan Performs an antivirus scan on SDcard
youtube User watching a youtube video of 150 sec
puploader Upload 8 photos to desktop using NIC from SDcard

Android (on magic)

csort sort program in native C
dropbear ssh server process in native C, user listing all files
maps google maps using GPS and network
facebook facebook logging process
youtube User watching a youtube video of 41 sec

Table 2 describes the applications used for both WM6
and Android, running on one handset each. We selected
the tytn2 handset for evaluating WM6 applications since it
has a more complex FSM when compared to touch, and
the magic handset for Android applications. We selected a
mixture of applications that utilize either a single, two, or
more components at a time. For Android, we also selected
a mixture of applications that are either written in native C
(csort and dropbear), or in java based on Android SDK and

Google NDK (youtube, facebook), and included ones which
use GPS (maps).

7.3.1 Fine-grained Energy Estimation

We first measure the error in fine-grained energy estimation.
For each application, we split its execution time into 50ms
intervals and calculate the absolute error of per-interval en-
ergy estimation under FSM and LR. Figure 7 shows the CDF
of these errors for eight applications on WM6 and Android.
We omitted simpler applications from these figures. They
have comparable or better accuracy. Figure 7(a) shows that
for all of the applications, the 80th percentile energy estima-
tion error under FSM is less than 10%, and is less than 5%
if we increase the time interval to 1s (not shown).

In contrast, Figure 7(b) shows that LR with 1s intervals
(LR/1s) performs far worse than FSM. The error at the 80th
percentile varies between 16% and 52%. A close look at
the ie.cnn and youtube applications on WM6 shows why
LR incurs much larger error. The ie.cnn application is CPU-
intensive, with minimal network activity (about 20 packets
of data). For each 1s interval, LR attributes a uniform power
value for all 50ms intervals based on the average CPU uti-
lization in that 1s, as shown in Figure 8(d). For youtube,
when streaming a video from the youtube server, packet ar-
rival is spread over the entire time duration of the video.
There are several periods lasting between a few hundred ms
to 1s during which there is no network activity (no network
receive). During a specific 1s time period, if there is no net-
work activity, LR attributes 0 power for the NIC. But in re-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Error %

Error CDF using FSM

ie.cnn (WM6)
pviewer (WM6)

docConv (WM6)
youtube (WM6)

puploader (WM6)
youtube (Android)

facebook (Android)
dropbear (Android)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Error %

Error CDF using Regression (1 second granularity)

ie.cnn (WM6)
pviewer (WM6)

docConv (WM6)
youtube (WM6)

puploader (WM6)
youtube (Android)

facebook (Android)
dropbear (Android)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Error %

Error CDF using Regression (50ms granularity)

ie.cnn (WM6)
pviewer (WM6)

docConv (WM6)
youtube (WM6)

puploader (WM6)
youtube (Android)

facebook (Android)
dropbear (Android)

Figure 7: CDF of absolute error percentage between measured and
estimated energy consumption per 50 ms for applications using (a)
FSM, (b) LR with 1s granularity, (c) LR with 50ms granularity.

ality, due to recent high network activity (> 12 packets in
past 1.5 second), the NIC is in tail power state consuming
+180mA. As a result, all 20 50ms time intervals in this sec-
ond have high error, as shown in Figure 8(f).

7.3.2 Impact of Fine-grained Sampling in LR

An intuitive way to improve LR’s estimation accuracy is to
improve its frequency in sampling utilization counters. How-
ever, high sampling frequency can lead to very high over-

head, as we show in Section 7.4. Ignoring the overhead for
now, we increase the sampling frequency from once per sec-
ond to once every 50ms, and the CDF of the resulting energy
estimation error of LR (LR/50ms) is shown in Figure 7(c).
We see that compared to LR/1s, the accuracy (a) increases
for ie.cnn, docConv, puploader, and dropbear, (b) is mostly
unaffected for pviewer, and (c) degrades for youtube (on
WM6 and Android) and facebook.

Figure 8(g)-(i) plot the energy estimation under LR/50ms
for the same three applications. Compared to LR/1s, LR/50ms
performs quit well for the CPU-intensive ie.cnn since the
more frequent sampling captures the fine-grained CPU uti-
lization. However, since LR can not capture the disk tail
states exhibited in running pviewer, like LR/1s (Figure 8(e)),
LR/50ms (Figure 8(h)) also incurs about 30-40% error dur-
ing the tail states. LR/50ms gives worse accuracy for ap-
plications in category (c) because of the network tail phe-
nomenon. As explained earlier, packet arrival to NIC is
spread throughout the time period of video. When we in-
crease the sampling frequency of LR, LR only reports NIC
utilization for the 50ms durations when there is actually a
network receive, and zero NIC utilization in all other 50ms
intervals. Relatively few 50ms intervals contain a recv call.
As a result, though more precisely capturing the timing of
network activities, LR’s accuracy actually degrades. Pu-
ploader and dropbear are unaffected by this phenomenon
as their destination servers are nearby (1ms RTT) and hence
the gap between consecutive packets is only a few ms.

7.3.3 Whole-application Energy Estimation

Finally, we also compare the whole-application energy esti-
mation accuracy under FSM and LR. Figure 9 plots the per-
centage error for all applications on both OSes under FSM
and under LR/1s (using 1 second time granularity for train-
ing and estimation as in [Shye 2009]). We see that the esti-
mation error under FSM varies between 0.2% and 3.6%. We
note that if we just use the FSM for each component and add
up the estimated energy consumption, the estimation error
would be 22%, 45%, 11% and 36% for docConv, virusScan,
youtube and puploader, respectively, on WM6 (not shown).
In contrast, LR performs well for the applications that do
not have dominant tail power patterns, but the estimation
error varies between 3.5% to 20.3% for the rest, including
diskB, pviewer, youtube, facebook, and dropbear. These re-
sults show system-call-based power modeling is not only far
more accurate in fine-grained energy estimation, but can also
significantly improve the accuracy of whole-application en-
ergy estimation.

7.4 Logging Overhead

Since /proc comes from logging system calls (though a sub-
set of those in FSM), in principle both FSM and LR in-
cur system call tracing overhead. In addition, LR incurs the
overhead of periodic sampling of /proc. Below, we conser-

Figure 8: Power Profile: Measured vs estimated energy consumption over time on WM6 (tytn2 handset) under FSM, LR/1s, and LR/50ms.

vatively compare the system call tracing overhead in FSM
with only the periodic sampling of /proc in LR.

We measure the system call logging overhead of FSM
by comparing the execution time of the applications when
logging is turned on versus off. Since re-execution of an in-
teractive application (such as youtube) can experience sig-
nificant variability in execution time due to external factors
such as variability in server response time, network delay,
and authentication schemes, we focus on applications that
are not affected by external factors in measuring the logging
overhead. The logging overhead under FSM varies between
5.4%-9.8% on Android and 1.1%-8.9% on WM6.

For LR, note the overhead of sampling /proc is propor-
tional to the sampling frequency and independent of the
frequency of system calls triggered by the application. We
measured the overhead of reading /proc (CPU and IO (per-
process network utilization is not available in /proc)) stats
values for all processes from a user-level C application on
Android. The overhead ranges between 7.5%-10.0% when
sampling once per second, 15.2%-17.5% once every 500ms,
and 35.3%-52.5% once every 200ms. The results show that
due to high overhead, it is not even practical to obtain fine-
grained utilization information using /proc.

8. Applications: Energy Profiler

We give a proof-of-concept demonstration of an important
application of fine-grained energy estimation enabled by our
system-call-based power modeling, by showing a manually
implemented eprof, the energy counterpart of the classic
gprof tool [Graham 1982], for profiling application energy
consumption.

Figure 9: Absolute error in end-to-end energy consumption esti-
mation.

Building on top of our FSM power model, there are two
remaining challenges in the design of eprof. First, as in
gprof, we need to construct the call graph and perform book-
keeping of each invocation of each subroutine, i.e., execution
counts and energy consumption. Currently, we manually
annotate every subroutine in the source code to log the entry
and exit points. This also allows us to trace each system call
to the caller subroutine.

The second challenge is per-subroutine energy account-
ing. A major difference between per-subroutine (or per-
process, per-thread) execution time accounting in gprof and
energy accounting in eprof comes from the tail energy con-
sumption by many components. Figure 10 shows an example
where a network system call in subroutine F1 sends the NIC
to a tail state which lasts beyond the completion of both F1
and subroutine F2. The energy consumption during F2 was
an accumulative effect of both CPU activities of F2 and the
tail state of the NIC due to F1. A complete solution to the
above problem of fine-grained energy accounting is beyond
the scope of this paper. In our proof-of-concept implemen-

Table 3: Eprof output for three applications: The columns of the table are: % time and % energy spent in self, cumulative time and energy
spent by all the function descendants, actual time spent in a function itself, number of times a function is called, time and energy spent in self
per call, time and energy spent non-cumulative per call, and name of the function.

% cum. self # self total name

time energy s uAH s uAH calls ms/call nAH/call ms/call nAH/call

chess

30.4 30.4 34.4 1243.0 21.6 779.9 61931 0.4 12.6 0.56 20.1 Is Move Legal
19.7 19.7 22.9 825.9 14.0 505.0 73665 0.2 6.9 0.3 11.2 Is Move Valid
14.9 14.9 75.1 2713.0 10.6 382.1 60416 0.2 6.3 1.2 44.9 CheckHumanMove
12.0 12.0 8.6 308.8 8.6 308.8 919 9.3 336.0 9.3 336.0 CountScore Human
5.9 5.9 4.2 150.4 4.2 150.4 433 9.6 347.3 9.6 347.3 CountScore

docConv
42.0 36.6 34.0 1063.0 24.9 762.9 77 323.4 9907.3 441.9 13805.6 ExtractTextFromFile
28.3 25.9 45.8 1443.6 16.8 539.6 148133 0.1 3.6 0.3 9.8 CheckToken
19.5 28.0 55.1 1951.9 11.5 583.6 1 11533.7 583569.2 55120.9 1951933.5 ExtractText
7.0 6.3 59.3 2082.6 4.2 130.6 1 4186.6 130639.5 59307.5 2082573.0 main
3.2 3.2 1.88 65.9 1.9 65.9 77 24.5 855.8 24.5 855.8 getpagecontent

puploader

50.2 67.9 2.0 167.9 2.0 167.9 8 245.8 20987.6 245.8 20987.6 sendfile
18.0 15.0 0.7 37.0 0.7 37.0 8 88.2 4628.0 88.2 4628.0 readfile
17.5 9.0 0.7 22.2 0.7 22.1 8 85.9 2769.7 85.9 2769.7 calchash
5.7 3.3 0.2 8.1 0.2 8.1 1 224.8 8118.7 224.8 8118.7 GUI Form
5.2 3.0 0.2 7.4 0.2 7.4 1 203.4 7345.7 203.4 7345.7 initnet

tation, we take the following simple approach: we always
break up the power consumed in a power state into power
consumed per component, by assigning a continuing power
state (e.g. tail state) the same power when occurring alone.
For example in Figure 10, F1 and F2 will be charged P1
and (P2-P1) during T2 to T3, respectively. We leave more
complicated cases where multiple subroutines (threads or
processes) in the past intervals are responsible for the total
power as future work.

Table 3 shows the gprof-style time and energy breakdown
for top 6 functions (sorted by runtime) in three applications
(chess, docConv and puploader on WM6 on tytn2). We ob-
serve that the time and energy percentages are about the
same for all the functions in chess (only CPU), but differ
in docConv (CPU, sdcard). The most interesting applica-
tion is puploader, where three functions, calchash, readfile
and sendfile, use CPU, disk and network respectively. Send-
file consumes the most time (50.2%) and energy (67.9%).
Calchash, though consuming 17.5% of the time, spends only
9.0% of the energy. If we did not apply fine-grained energy
accounting as discussed above, sendfile and calchash would
have been reported to consume 57.5% and 13.0% of energy.

9. Related Work

System call tracing has been exploited to develop useful
tools on desktop and server machines, in particular, for ac-
counting resource utilization [Barham 2004], building de-
buggers/replay tools [Guo 2008], automatic fault detection
and diagnosis [Yuan 2006], and energy measurement and
accounting [Zeng 2002]. It has also been used on mobile

Figure 10: Eprof: Function level breakdown.

devices for malware detection [Bose 2008], and on sensor
nodes for energy measurement [Shnayder 2004].

Our system-call-based power modeling is related to
[Shnayder 2004, Zeng 2002], which also exploit events as
opposed to utilization rates of components, but for desktop
machines and sensor nodes. Further, these work do not use
system calls to capture non-utilization-based power behav-
ior. In contrast, we discover non-utilization-based power
behavior on smartphones and use system call tracing to cap-
ture both utilization-based and non-utilization-based power
behavior to achieve accurate fine-grained energy estimation.

Finally, RevNIC [Chipounov 2010] aims to reverse-
engineer the exact behavior of device drivers, which is a
harder task than reverse-engineering device drivers’ power
optimization behavior. Our approach works well in practice
as fundamentally the power behavior of the drivers are corre-
lated with the intention and consequence of system calls that
trigger them, and there are only a small number of power
states per component in practice.

10. Conclusion

In this paper, we have presented the design and imple-
mentation of a system-call-based power modeling approach
which gracefully captures both utilization-based and non-
utilization-based power behavior. Our experimental results
on Android and Windows Mobile using a diverse set of ap-
plications show that the new model drastically improves the
accuracy of fine-grained energy estimation as well as whole-
application energy estimation. We further presented a proof-
of-concept demonstration of eprof, the energy-counterpart
of gprof, for optimizing the energy usage of application pro-
grams. We are developing a full-fledged eprof and plan to
release the modified Android image and tools to the public.
Our power modeling study also exposed significant diver-
sity of power behavior of different OSes and smartphone
handsets. As future work, we plan to develop detailed clas-
sification of power behavior of different OSes and handsets
and for different applications.

Acknowledgments

We thank the program committee and reviewers for their
helpful comments, and especially our shepherd, M. Satya-
narayanan, whose detailed feedback significantly improved
the paper and its presentation.

References
[Com] Android phones steal market share. URL
http://bmighty.informationweek.com/mobile/
showArticle.jhtml?articleID=224201881.

[cel] Celog event tracking. URL http://msdn.microsoft.
com/en-us/library/aa462467.aspx.

[cyn] Cyanogenmod: Android community rom based on froyo.
URL http://www.cyanogenmod.com/.

[etw] Event tracing for windows (etw). URL http://msdn.
microsoft.com/en-us/library/ms751538.aspx.

[pb] Microsoft platform builder. URL http://msdn.
microsoft.com/en-us/library/ms938344.aspx.

[pow] Monsoon power monitor. URL http://www.msoon.
com/LabEquipment/PowerMonitor/.

[str] Strace. URL http://linux.die.net/man/1/
strace.

[sys] System tap. URL http://sourceware.org/
systemtap/.

[cec] Windows embedded ce shared source. URL http://
msdn.microsoft.com/en-us/windowsembedded/
ce/dd567722.aspx.

[Balasubramanian 2009] Niranjan Balasubramanian, Aruna Bala-
subramanian, and Arun Venkataramani. Energy consumption in
mobile phones: a measurement study and implications for net-
work applications. In Proc of IMC, 2009.

[Barham 2004] Paul Barham, Austin Donnelly, Rebecca Isaacs,
and Richard Mortier. Using magpie for request extraction and
workload modelling. In Proc. of OSDI, 2004.

[Bellosa 2000] F. Bellosa. The benefits of event: driven energy
accounting in power-sensitive systems. In Proc. ACM SIGOPS
European workshop, 2000.

[Bircher 2007] W.L. Bircher and L.K. John. Complete system
power estimation: A trickle-down approach based on perfor-
mance events. In Proc. of ISPASS, 2007.

[Bose 2008] Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon
Park. Behavioral detection of malware on mobile handsets. In
Proc. of MobiSys, 2008.

[Chipounov 2010] Vitaly Chipounov and George Candea. Reverse
Engineering of Binary Device Drivers with RevNIC. In Proc. of
EuroSys, 2010.

[Fan 2007] X. Fan, W.D. Weber, and L.A. Barroso. Power provi-
sioning for a warehouse-sized computer. In Proc. of ISCA, 2007.

[Flinn 1999a] Jason Flinn and M. Satyanarayanan. Energy-aware
adaptation for mobile applications. In Proc. of SOSP, 1999.

[Flinn 1999b] Jason Flinn and M. Satyanarayanan. Powerscope:
A tool for profiling the energy usage of mobile applications. In
Proc. of WMCSA, 1999.

[Graham 1982] S. L. Graham, P. B. Kessler, and M. K. McKusick.
gprof: A call graph execution profiler. In Proc. of ACM PLDI,
1982.

[Guo 2008] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu,
Zhilei Xu, Ming Wu, M. Frans Kaashoek, and Zheng Zhang.
R2: An application-level kernel for record and replay. In OSDI,
pages 193–208, 2008.

[Kansal 2010] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A.A.
Bhattacharya. Virtual machine power metering and provision-
ing. In Proc. of SOCC, 2010.

[Mahesri 2005] A. Mahesri and V. Vardhan. Power consumption
breakdown on a modern laptop. Proc. of PACS, 2005.

[Rawson 2004] F. Rawson. MEMPOWER: A simple memory
power analysis tool set. IBM Austin Research Laboratory, 2004.

[Shnayder 2004] Victor Shnayder, Mark Hempstead, Bor rong
Chen, Geoff Werner Allen, and Matt Welsh. Simulating the
power consumption of large-scale sensor network applications.
In Proc. of Sensys, 2004.

[Shye 2009] A. Shye, B. Scholbrock, and G. Memik. Into the wild:
studying real user activity patterns to guide power optimizations
for mobile architectures. In Proc. of MICRO, 2009.

[Snowdon 2009] David C. Snowdon, Etienne Le Sueur, Stefan M.
Petters, and Gernot Heiser. Koala: a platform for os-level power
management. In Proc. of EuroSys, 2009.

[Stanley-Marbell 2001] P. Stanley-Marbell and M. Hsiao. Fast,
flexible, cycle-accurate energy estimation. In Proc. of ISLPED,
2001.

[Tiwari 1996] V. Tiwari, S. Malik, A. Wolfe, and M. Tien-
Chien Lee. Instruction level power analysis and optimization of
software. The Journal of VLSI Signal Processing, 13(2), 1996.

[Yuan 2006] C Yuan, N Lao, J Wen, J Li, Z Zhang, Y Wang, and
W Ma. Automated known problem diagnosis with event traces.
In EuroSys, 2006.

[Zedlewski 2003] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Kr-
ishnamurthy, and R.Wang. Modeling hard-disk power consump-
tion. In Proc. of FAST. USENIX Association, 2003.

[Zeng 2002] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin
Vahdat. Ecosystem: Managing energy as a first class operating
system resource. In Proc. of ASPLOS, 2002.

[Zhang 2010] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R.P. Dick,
Z.M. Mao, and L. Yang. Accurate Online Power Estimation and
Automatic Battery Behavior Based Power Model Generation for
Smartphones. In Proc. of CODES+ISSS, 2010.

