
Active Harmony: Towards Automated Performance Tuning

Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth
crt@cs.caltech.edu, {ihchung, hollings}@cs.umd.edu

Department of Computer Science
University of Maryland

College Park, MD 20742

Abstract
I
p
v
h
a
s
t

1. Introduction

Applications are no longer monolithic programs
writ

Grid
[4]

 the needs of this type of computing envi-
ronm

ctive Harmony is an infrastructure that allows
appl

improve performance during a single execution based

s the Active Harmony automated
ru e tuning system. The Library Specification
Lay

Harmony server. The Adap bility component manages
the

n this paper, we present the Active Harmony automated runtime tuning system. We describe the interface used by
rograms to make applications tunable. We present the Library Specification Layer which helps program library de-
elopers expose multiple variations of the same API using different algorithms. The Library Specification Language
elps to select the most appropriate program library to tune the overall performance. We also present the optimization
lgorithm used to adjust parameters in the application and the libraries. Finally, we present results that show how the
ystem is able to tune several real applications. The automated tuning system is able to tune the application parame-
ers to within a few percent of the best value after evaluating only 11 out of over 1,700 possible configurations.

ten for a specific purpose. Instead, most software
today makes extensive use of libraries and re-usable
components. This approach generally results in soft-
ware that is faster to build and more modular. How-
ever, one problem with this approach is that the various
libraries used by an application are not tuned to the
specific application’s need. In addition, applications
are frequently used in very different ways. For exam-
ple, different users may employ a single commercial
simulation application for radically different types of
simulations. As a result of this reuse of software, ap-
plications may not run well in all configurations.

The transient, rarely repeatable behavior of
computing environment indicates the need to re-

place standard models of post-mortem performance
optimization with a real-time model, one that optimizes
application and runtime behavior during program exe-
cution. Automatic program library selection provides a
framework to help with this goal; it helps to tune the
application during runtime execution by monitoring the
underlying library performance and switching underly-
ing program library as needed. This is an important
step toward automated performance tuning in the Grid
computing.

To meet
ent, we have been developing the Active Har-

mony system that allows runtime switching of algo-
rithms and tuning of library and application parameters.
We have also developed a set of runtime tuning algo-
rithms that help to intelligently set these parameters at
runtime to tune the overall performance of an applica-
tion.

A
ications to become tunable by applying very mini-

mal changes to the application and library source code.
This adaptability provides applications with a way to

on the observed performance. The types of things that
can be tuned at runtime range from parameters such as
the size of a read-ahead parameter to what algorithm is
being used (e.g., heap sort vs. quick-sort).
2. System Design

Figure 1 show
ntim

er provides uniform API to library users by inte-
grating different libraries with the same or similar func-
tionality. This layer uses the Harmony Controller to
select among different implementations of the library.
The library specification layer also monitors the per-
formance of the library to improve the decision for
future usage of the program library.

Figure 1: Activ ning system

The Adaptation Controller is the main part of the

…

Specification
er

Application Interface

Component

Library 1 Library n

 Harmony Server

 (Execution En ent)

Library 2

Adaptation
Controller

Parame- Parame- Parame-

 Programming

Library

Monitoring
Lay

ter(s) ter(s) ter(s)

System vironm

e Harmony automated tu

ta
values of the different tunable parameters provided

by the applications and changes them for better per-
formance. The Adaptation Controller is written in Tcl

0-7695-1524-X/02 $17.00 (c) 2002 IEEE

Application

for an easier interpretation of the information provided
by applications and resources.
3. Library Specification Layer

n layer is to help
the

ia
the

erformance metrics are CPU
time

n is that usage
patt

 currently sup-
port

4. The Resource Specification Language (RSL)

RSL
and

SL is based on the initial
versi

e new RSL allows applications to describe what
reso

cedes the descrip-
tion

tion are
defi

The role of the library specificatio
application select the most appropriate underlying

algorithm. To achieve this goal, the layer first charac-
terizes the request from the application and monitors
the performance of underlying program libraries. Based
on the collected information, it will redirect the func-
tion calls to the selected underlying program library.

 Selection among the available libraries is done v
Adaptation Controller. During the execution, the

library specification layer will send the characteristics
of requests to the Adaptation Controller. The Adapta-
tion Controller returns the suggested underlying algo-
rithm to use according to the result of its decision proc-
ess. In the current implementation, when the Adapta-
tion Controller is selecting an algorithm, it tries to ex-
plore all possible algorithms for at least a brief period
of time. Based on observed performance, an appropri-
ate algorithm is selected.

The most common p
 or memory space used. Library developers can

specify multiple program library performance metrics
in the library specification language. The underlying
program libraries have to provide function calls in their
API to support the measurement as well as the estima-
tion of these performance metrics. Selecting an appro-
priate underlying program library is the role of the Ad-
aptation Controller. In the current implementation, the
Adaptation Controller tries to minimize the value of the
first performance metric when searching for appropri-
ate underlying program library.

The key idea of algorithm selectio
erns of a library may require different types of re-

quests to underlying algorithms or data structures. For
example, in an implementation of a table abstraction,
the data structure used and the workload pattern will
both affect the performance. In a workload with high
search rate and high data element location density, ar-
rays would outperform linked lists. However, if the
data element density is sparse and memory space is
critical, the linked data structure should be chosen. The
characteristics of requests play an important role in
selecting appropriate underlying program library. Re-
quests of specific characteristics (that can be defined by
Library developers) may favor one implementation of
the functionality over another, and can be either vari-
ables with primitive data types or expressed by basic
Boolean operations on those variables.

The Library Specification Language
s libraries written in both C and Fortran. It gener-

ates header files that interpose glue code to allow li-
braries (or algorithms) with slightly different calling
conventions to be integrated into a uniform API for

upper layer users. It also provides the indirection to
allow runtime switching among the different imple-
mentations. The runtime switching code includes the
ability for library writer to specify mapping functions
that can change the underlying data structures (such as
going from a dense to sparse matrix representation).

In this section we will present the prototype
 the shortcomings that came along with it, followed

by the new version of the RSL which removes the limi-
tations that we encountered.

The current Harmony R
on [8, 9] but provides more flexibility. The RSL is

implemented on top of the Tcl scripting language [14].
Tcl was chosen because it provides support for arbi-
trary expression and function evaluation. Tcl also pro-
vides the ability to add specific functions in C or C++
and export them as Tcl commands. Another reason for
choosing Tcl was that it permitted the creation of a
graphic tuning interface through the use of the Tk tool-
kit.

Th
urces they need and what options they have in the

way they perform their function. Once the Active Har-
mony system has this information it processes the de-
scriptions by simply calling a Tcl interpreter. Figure 2
shows the general form of an RSL specification for
both an application and a resource.

The harmonyApp keyword pre
of an application. The application description con-

tains tunable parameters, node descriptions and a
“goodness” function (described below). A tunable pa-
rameter of the application, defined using the harmony-
Bundle tag, is characterized by type and range of val-
ues. The definition of applications and their options is
one of the major changes that were made to the RSL. In
the initial version the bundles defined mutually exclu-
sive configurations of the application, with static values
of parameters and resources intrinsically defined. In the
current version, a harmonyBundle represents a variable
of the application. A bundle can be used to define the
range of allowable values for other bundles as well. For
example, consider a program that has two parameters
one that describes the maximum number of items to be
buffered and a second that describes the desired num-
ber of items. The RSL specification for the allowable
range of the desired number of items buffered can be
expressed as a range from 1 to the maximum number of
items that can be buffered. Thus when the maximum is
changed by the tuning system, the upper bound of the
desired number of items will also be adjusted.

The resource requirements of the applica
ned using the node tag. The characteristics of the

nodes described by the application are matched against

 2

the resource description received from different ma-
chines that are part of the system. This way the Adapta-
tion Controller can make decisions on where different
applications will be run in the distributed system. The
attributes of the node block are not restricted to those
presented in Figure 2 below. Any attributes can be
specified as long as they appear in both application and
resource descriptions.

HarmonyApp <Application Name> {

{

}

node <Name>
ost name> }

Mb> }

{replicate <value>}
}

let <variableName> <funct. of bundleNames> }

ink <Node1> <Node2> <Bandwidth>}

s>] [global]}

(a)

HarmonyNode <Name>
}

essors> }

}

(b)

Figure 2: The RSL l : (a) application

We also allow the user to locally define harmony

vari

e RSL is a performance
func

ing two
diffe

SL is the global
tag.

fine their own ag-
greg

com-
pon

s a
grap

erver to change li-
brar

code.

{ harmonyBundle <Parameter Name>
enum {<val1> <val2> … <valk>} |
int {<min> <max> <step>} |
real {<min> <max> <step>}
[global]
}

…
{

{hostname <H
{os <Operating System> }
{seconds <Time needed> }
{memory <Minimum memory in
…

}
…
{

…
{l
{communication <fct of bundles>}
{obsGoodness <min> <max> [<#value
{predGoodness <min> <max>}
}

{hostname <Host name>
{os <Operating System> }
{memory <Memory size> }
{cpu <cpu speed> }
{processors <# proc
…

anguage
description; (b) resource description.

ables that are not associated with application vari-
ables. This allows for cleaner descriptions, permitting
reuse of expressions without having to duplicate them
in multiple bundle definitions.

The final component of th
tion. The performance function represents a metric

of the performance of the application. The performance
function was required to evaluate the behavior of appli-
cations based on different objective functions.

The performance function is described us
rent components. The obsGoodness tag describes

an application-defined metric that is used by the tuning
algorithm. For example, scientific simulation might be

described by a metric that indicates the time required to
process a time step of data. Since a single value of the
obsGoodness might not be indicative of the overall
performance of the application, an optional numValues
attribute can be defined that indicates the number of
values to be collected, aggregated, and reported to the
optimization algorithm. The need for collecting and
aggregating different values of the performance func-
tion arose because some applications may require mul-
tiple samples (i.e. time steps) to react to a change in a
harmony parameter. The values are aggregated using
an aggregation function written in Tcl.

Another important feature of the R
 This tag is used for bundles and for the perform-

ance function (obsGoodness). The significance of the
global tag is as follows: different instances of the same
application (i.e. processes of a SPMD program) can
define a global bundle, which is used to simultaneously
tune the values of the local bundles.

Application programmers can de
ation function if the default one (average) is not

appropriate for that application. The functions, written
in Tcl, include: aggregation_local which combines
multiple samples for a single process and
global_aggregation which combines values from dif-
ferent processes or threads of a parallel program.

The predGoodness tag describes the second
ent of the performance function. This component is

also characterized by a range, which specifies the ex-
pected range of values for the performance function.
The obsGoodness tag is used to specify how to meas-
ure an application’s performance, whereas the
predGoodness is a mathematical expression of the ex-
pected performance based on an analytical model.

The Active Harmony system also include
hic console that plots the performance function and

allows users to manually tune their application. Figure
3 shows a screen shot of the user interface. The box in
the middle has three sliding controls that allow the user
to adjust the values of the three parameters this applica-
tion is exporting (tileSize, maxReads, and lowW). The
graph at the bottom of the picture shows the recent
values for the “goodness” function and permits the user
to browse the history of values as well as to change the
thresholds that trigger the adaptation mechanism.
5. The Harmony Parameter API

In order to allow the Harmony s
y or application parameters, we have developed a

library of functions that register tunable parameters and
provide ways for the code to get the new parameters
from the Harmony Adaptation Controller. The changes
required to make a program tunable using this interface
is relatively small. For many programs we have “har-
monized” the change amounted to less than 50 lines of

 3

Figure 3: Harmony User Interface.

Figure 4 shows the changes made in the main pro-

ram of the application. First the application has to
regi

a per
time

g
ster with the harmony server using the har-

mony_startup function. Next, it sends to the server the
description of the application, which in this case is read
from a file. This file contains the RSL specification for
the application. This action is performed by the har-
mony_application_setup_file function. Next, the pa-
rameters specified by the application in its description
have to be bound with variables in the main program.
The harmony_add_variable function takes care of this.
This function binds a harmony variable to an applica-
tion variable. The application can then use this bound
variable, which will be updated periodically by the
Harmony system. Finally, the application calls the har-
mony_end function to un-register with the sever.

One more change needs to be applied to the main
loop of the program. Periodically (typically on

 step or per query basis) the application sends a
value of the performance function to the harmony
server by calling harmony_performance_update. The
application then requests new values for the bound
variables from the Harmony server invoking har-
mony_request_all.

6. Parameter Tuning Algorithm

In an earlier version of the Harmony system [8],
we had a simple greedy algorithm to handle automatic
selection of the appropriate parameters. However, for
larger applications a more sophisticated algorithm is
needed.

The problem of selecting good parameters requires
finding a k-tuple in the value space determined by the
values of the tuning parameters specified by the appli-
cation, such that the application performs best. If we
consider that better performance is represented by a
smaller value of the performance function, then the
goal is to minimize this function.

However, the problem is more complex due to the
nature of the value space and that of the performance
function. For example, a simple performance function
could be the time spent by an application to complete a
certain task. However, the value of this performance
function depends not only on declared application pa-
rameters, but also on a number of external factors over
which we have no real control. These external factors
include, but are not restricted to, the current load of the
machine and the operating system. Because of this, for
fixed values of the tuning parameters we might get
different values of the performance function even when
performing the same task.

Even if we were able to fully isolate performance
variation due to external factors, trying to find a mini-
mum point in an arbitrary (and unknown) curve would
require an exhaustive search of the entire space of val-
ues evaluating performance at each point. If the num-
ber of different values of each bundle is big this brute
force approach is not feasible. Hence, we had to come
up with heuristics to solve the problem. While the goal
is to get the best performance possible, we were mostly
interested in avoiding those k-tuples for which the per-
formance was particularly bad. We have set this goal
based on our experience in using the interface with a
few test applications (including a database engine and
parallel search algorithm). We found that there are
frequently many points near the optimal point and that
there is also often another region where the application
performance is abysmal. Thus, trying to get into the
good region even if we don’t find the absolute best
point achieves most of the benefit of finding the opti-
mal solution.

We had several other goals for our minimization
algorithm: 1) it should not require too many evalua-
tions of the performance function and 2) it should
avoid first and second order derivatives. The algorithm
that we developed is based on the simplex method for
finding a function's minimization [12].

 4

/* initialize */

harmony_startup(0);

harmony_application_setup_file("adr.tcl");

/* register tunable parameters */

low_watermark = (int*) harmony_add_variable("ADR", "lowW",VAR_INT);

max_nreads = (int*) harmony_add_variable("ADR","maxReads",VAR_INT);

tile_size = (int*) harmony_add_variable("ADR","tileSize",VAR_INT);

/* program main loop */

/* update tunable parameters’ value */

harmony_request_all();

...

/* report performance result */

harmony_performance_update(performace_result);

/* end of program main loop */

/* finalize */

harmony_end();

Figure 4: Changes required for a typical application.

The algorithm makes use of a simplex, which is a

geometrical figure defined by k+1 connected points in
a k-dimensions space. In 2-dimensions, the simplex is a
triangle, and for the 3-d space the simplex is a non-
degenerated tetrahedron. The Nelder-Mead simplex
method [12] approximates the extreme of a function by
considering the worst point of the simplex and forming
its symmetrical image through the center of the oppo-
site (hyper) face. At each step a better point replaces
the worst point, making the simplex move towards the
extreme. In our case the algorithm slips down the val-
ley towards the minimum.

The algorithm described above assumes a well-
defined function and works in a continuous space.
However, neither of these assumptions holds in our
situation. Thus we had to come up with a method to
adapt the algorithm to deal with this. Rather than modi-
fying the algorithm to deal with this problem, we sim-
ply used the resulting values from the nearest integer
point in the space to approximate the performance at
the selected point in the continuous space.
7. Experimental Results

We conducted a series of experiments to evaluate
the design and its performance. We first present results
for the library specification layer. Then we use the
Harmony server to tune the selected library through
iterations to improve the overall performance.

7.1 Algorithm Tuning Experiments
We evaluated the library specification layer by

first applying it to a simple data structure abstraction,
then applied it two commonly used math libraries. All
of our tests were run on Redhat Linux with kernel 2.4.0

on a Pentium-III 667MHz with 384 MB main memory.
The metric used for all four test cases are the time to
complete the requests.

Matrix Inversion: The first set of program libraries
consists of two matrix inversion routines from LA-
PACK [3]. The major characteristic of the matrix is a
Boolean indicating if the matrix is triangular. If the
matrix is triangular, the specialized triangular matrix
inversion library will have better performance. Other-
wise, a general matrix inversion library must be used.
The result is shown in Figure 5; the library compares
the triangular matrix by applying it to both the dedi-
cated triangular inversion matrix library and the
general matrix inversion matrix at the beginning. Later
for each request, the library specification layer detects
whether the request matrix is triangular and if so, the
library specification layer will invoke the matrix inver-
sion library optimized for triangular matrices. Other-
wise, the library specification layer will just apply it to
the general matrix inversion library.

0
1000
2000
3000
4000
5000

50
0
10
00
15
00
20
00
25
00
30
00
35
00
40
00
45
00
50
00

Matrix Size

Ti
m

e

LSL
General
Triangular

Figure 5: Matrix Inversion Test Case

 5

Table Abstraction: The second set of libraries consists
of two libraries. Each of them implements a two di-
mensional array. The two dimensional array is used to
store data elements similar to a table. The focus of this
test case is the ability to select different data structure
based on API usage patterns. Two program libraries are
implemented using linked lists and arrays. Each data
structure has its advantages: linked lists take less mem-
ory space for storage but longer for insert, delete, and
search operations; arrays take more memory for storage
but are more efficient for insert, delete, and search op-
erations.

The first test uses the time to complete each opera-
tion as the performance metric. The result is shown in
the Figure 6. The version using the library specifica-
tion layer spends some time using the linked list li-
brary. Once it found that the performance of the array
library is better than the linked list library, it will use
the array library as the underlying supporting library.
The second test uses memory utilization as the main
metric. The result is shown in Figure 7. As expected,
the performance of the program with the library speci-
fication layer is close to the performance of the pro-
gram with linked list library. Another difference be-
tween this test case and other test cases is the switch
between underlying program libraries. In this test case,
the library specification layer has to perform data struc-
ture transformation from linked list to array or vice
versa. This data structure transformation has to be sup-
ported by both underlying program libraries.

This experiment shows that proper selection can re-
duce runtime by a factor of 20 or more and space by
two-orders of magnitude for a set of randomly gener-
ated requests to store and lookup items in a table. By
Harmonizing the table, we can optimize the compres-
sion algorithms for either space or time.

0

20

40

60

80

100

50
,00
0

10
0,0
00

15
0,0
00

20
0,0
00

25
0,0
00

30
0,0
00

35
0,0
00

40
0,0
00

45
0,0
00

50
0,0
00

Operations

Ti
m

e

LSL
array
linklist

 Figure 6: 2-D Table with Time metric

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09

50
,00
0

10
0,0
00

15
0,0
00

20
0,0
00

25
0,0
00

30
0,0
00

35
0,0
00

40
0,0
00

45
0,0
00

50
0,0
00

Operations

M
em

or
y

Sp
ac

e

LSL
array
linklist

Figure 7: 2-D Table with Memory Space metric

7.2 Parameter Tuning Experiments
Once the library specification layer selects the un-

derlying program library, the Harmony server tunes
both the application and the library to improve the per-
formance. Due to the complexity of measuring real
applications and possible anomalies due to execution,
we initially evaluated our search heuristic using several
well-defined functions. We then proceeded to evaluate
the search process using a real application.

We tested the effectiveness of our search algorithm
on three benchmark functions. The three functions
were: a sombrero hat function, a quadratic function,
and Rosenbrock's parabolic valley.

Sombrero hat function: We used the following
variant of the sombrero hat function: defined for inte-
ger values of x and y from –20 to 20, which has a
global minimum in (0,0). Figure 8(a) illustrates the
path followed by the algorithm to reach the minimum.
The minimum was found after only 8 function evalua-
tions. The sombrero function is interesting because it
has a series of local minima, which makes it quite dif-
ficult to optimize, but our algorithm was able to avoid
getting stuck in any of them. The search performed by
our algorithm found the global minimum. The solid
surface shows the function, and the line shows the evo-
lution of the search algorithm as it tries different points.

Quadratic Function: Another function that we
analyzed was: Z . The function, defined
on the range from –20 to 20, with integer values for x
and y, has a minimum in (0,0). The path followed by
the algorithm towards the minimum is presented in
Figure 8(b). The number of iterations needed to reach
the minimum was 15.

10*)(22 yx +=

 6

Rosenbrock's parabolic valley1: The only function
that caused a problem was the Rosebrock's function
defined by: Z , in the integer sub-
space for x and y between –20 and 20. The function has
a minimum of 0 in (x,y)=(1,-1). Our algorithm termi-
nated its search at (x,y)=(4,19), where the function has
a value of 909. This happened because of the rounding
scheme that we used, and possibly because of the initial
simplex as well. However, taking into account that the
values of the function in the above range were of the
order of 1.7 x 10

22)1()(*100 xxy −+−=

6, the value of 909, which was found
after only 27 iterations, is a very good approximation,
within 0.05% of the minimum. This was considered an
acceptable result for the algorithm because, as we al-
ready mentioned above, the main goal was to avoid bad
performance while aiming for the optimum. The search
is illustrated in Figure 8(c).

7.3 Real Application Tuning
Compress Library: In this experiment, we apply the
Active Harmony automated runtime tuning system to a
real compression library. The compression application
uses two possible underlying compression libraries:
zlib[5] and LHa[13]. Both of these libraries are gen-
eral-purpose, lossless data-compression libraries. The
deflation algorithm used is a variation of LZ77[21].
They both use hash table and binary trees, plus Huff-
man encoding to compress the data strings.

There are two performance metrics used in the ex-
periment: time and size ratio. The time is the process
time used to compress the data file. The size ratio is to
compare the file size before and after the compression.
Each library has its own tunable variables. The BU-
FLEN in the zlib adjusts the buffer used in reading the
data strings. It will affect the time to compress a file.
The MAXMATCH in the LHa changes the buffer used
but also affects the compression ratio. In the original
code, those two variables were set to be compile time
constants. We made slight modifications so those two
variables are tunable during the application execution.
The files being compressed are composed of randomly
selected UNIX files system with a predefined file size.

1 Although we tried to understand the behavior of the Nelder-Mead
algorithm in the context of the three benchmark functions that we
presented above, we were unable to locate the real problem with
Rosenbrock’s function. It appears that by changing the starting sim-
plex the convergence would change too. We could see improvement
in the results but the data we presented above is based on the auto-
mated simplex generation we implemented in Harmony. It was only
after we ran these tests that we found out that the analysis of the
Nelder-Mead algorithm for the quadratic function is an open problem
and that there is ongoing research on why this algorithm tends to
work very well in practice [11].

(a)

(b)

(c)
Figure 8: The search algorithm applied to

three known functions.

In the experiment, we focus on automatic tuning

using a specific library. We set the library selection to
be manual in the library specification layer. Instead of
optimizing an individual performance metric, we select
an objective function that combines both space and

 7

time as metrics to show the tuning ability for the Har-
mony system. The results show the tradeoff between
the buffer size and the performance metric.

Figure 9 shows the tuning process for LHa com-
pression library. The buffer size (compared to the de-
fault value) converges quickly a few iterations. Figure
10 shows the tuning results. The buffer size used is
between 3% to 5% of the default one. The file size of
the compressed file with tuning is 5% to 8.5% larger
than that of the compressed file without tuning.

1%

10%

100%

0 10 20 30 40 50

Iterations

B
uf

fe
r

S
iz

e
R

at
io

Figure 9: LHa: Changes of Buffer Size

Figure 11 and Figure 12 shows the results when

the library specification layer chooses to use the zlib
compression library. Figure 11 shows the size of the
buffer used by the zlib compression library through the
iterations. The buffer size converges after 15 iterations.
Figure 12 shows the tuning results. The buffer size is
more than 100 times smaller than the original one
while the process time increased about 15%.

There are two major factors that influenced the
tuning ability of the Harmony server. The first is the
selection of objective function. The objective function
should have its minimum value at the desired operation
point. A function that is “smooth” and with few “local
minima” is preferred to help speed up tuning. The sec-
ond is the “step” d used for search algorithm; that is,
the minimum distance between current value and the
next value of the tunable variable.

Figure 13 shows the tuning process with different d.
If the d is too small, the Harmony server is affected by
the “noise” of the performance data since the tuning
server is too sensitive to the performance result. There-
fore in some cases, the value of the tunable variable
may never converge. On the other hand, if d is too
large, the result of the tuning may not be precise
enough and the value of the tunable variable will keep
oscillating.

0%

10%

20%

30%

40%

50%

5 10 20 50 100

File Size (MB)

S
iz

e
R

at
io

with tuning

default

0%

1%

2%

3%

4%

5%

5 10 20 50 100

File Size (MB)
B

uf
fe

r
S
iz

e
R

at
io

Figure 10: LHa: Buffer size and performance after
tuning

1

10

100

1000

10000

100000

1000000

10000000

0 10 20 30 40 50

Iterations

B
uf

fe
r

S
iz

e

Figure 11: zlib: Changes of Buffer size

 8

1

10

100

1000

10000

100000

0 20 40 60 80 10

File Size (MB)

B
uf

fe
r

S
iz

e

0

with tuning

default

0

5

10

15

20

25

30

35

0 20 40 60 80 100

File Size (MB)

T
im

e

with tuning

default

Figure 12: Buffer size and performance after tuning

1

10

100

1000

10000

100000

1000000

10000000

0 5 10 15 20

Iterations

B
uf

fe
r

S
iz

e

step=1
step=3
step=20
step=50
step=100

Figure 13: Different step d

I/O Intensive Application: To evaluate our optimi-
zation system using a real application, we selected a 3-
d volume reconstruction application [2] built on top of
the Active Data Repository (ADR) middleware [10].
The 3-d volume reconstruction application uses digital
images of a space to reconstruct the objects that are
visible from the various camera angles. The ADR is an
infrastructure that integrates storage, retrieval and
processing of large multi-dimensional data sets. ADR
provides the user with operations including index gen-
eration, data retrieval, scheduling across parallel ma-
chines, and memory management. The data is accessed
through range queries (i.e., extract all data within a

specified region of space). A range query is processed
in two steps: query planning followed by query execu-
tion. As part of query execution, input and output items
are mapped between coordinate systems and the data is
aggregated to generate the final result. During the
processing phase a temporary dataset, called the accu-
mulator, is created to hold the results of the query be-
ing processed.

Because ADR is middleware used to build multi-
ple applications including the Harmony calls in the
ADR code makes every application built on top of
ADR tunable. The parameters we used were:
tileSize represents the size of the memory tile that is

used by the ADR back-end to store information
before it is aggregated. It is the size of the tiles
which the accumulator will be partitioned if it does
not fit into memory. This parameter greatly influ-
ences query planning and execution since it is
somewhat analogous to the block size in a compu-
tational code that has been blocked (tiled) to fit
into a cache.

lowWatermark is the upper bound of the number of
pending reads and number of ready reads that were
issued to the disk in order to resolve a certain
query.

maxReads is the maximum number of reads issued in
order to resolve the current query if the number of
pending read operations and the number of ready
read operations are below the lowWatermark.
The original version of the volume reconstruction

application used values for the parameters provided by
the ADR designers. To harmonize the application, we
added calls to expose these parameters to the system.
The environment in which we ran the experiments was
a Linux cluster of 16 machines, each with two 450
MHz processors connected by 100 Mbps Ethernet.

To see how the Active Harmony infrastructure im-
proves the running time of the Volume Reconstruction
application, we created a random set of queries that
were submitted to the ADR back-end. First we ran
them using the original version of the ADR; then, the
harmonized version. Figure 14 below presents the im-
provement we obtained in the processing time of each
of the queries.

The Active Harmony system sped up query proc-
essing by up to 50% for the set of 70 random queries
that we generated. However, the average improvement
was about 10%. This is due to the fact that some of the
queries that had the greatest speed-ups were very short,
compared with others for which the improvement was
less than 10%. The performance improvement for the
longest query, which took about 10 minutes to be com-
pleted was about 18%.

Since we did not know the shape of the perform-
ance curve and thus what the best value is, another set
of experiments was conducted to compare the behavior

 9

of the Active Harmony adaptation system to the brute
force search for the best parameter values. For the pur-
pose of the exhaustive search we submitted to the ADR
back-end the same query for each tuple of parameter
values. We then recorded the value of the performance
function for each of the 1680 tuples. To test the behav-
ior of the Active Harmony we submitted the same
query 2000 times to the ADR back-end.

Improvement in performance for 70 random queries

0

10

20

30

40

50

60

Query No.

Im
pr

ov
em

en
t(

%
)

Figure 14: Performance improvement for the vol-
ume reconstruction application.

The brute force algorithm recorded values for the

performance function of up to 25% slower than the
optimum, while the range of values explored by the
Active Harmony system was within 5% of the mini-
mum. The minimum was reached by our system by
exploring only 11 tuples (out of the almost 1,700 dif-
ferent possible tuples). Figure 15 below presents these
results. The axes of the graph are as follows: the verti-
cal one represents the performance function, while the
horizontal ones are the tileSize and the lowWatermark.
The values obtained for different values of the third
parameter: maxReads are stacked one on top of the
other in the graph. The lighter points in the graph are
from the exhaustive search and are spread on the entire
value space. The darker points (lower left corner) trace
the path followed by the tuning and they are concen-
trated near the minimum.

Another approach is application level scheduling.
AppLeS [1] allows applications to be informed of the
variations in resources and presented with candidate
lists of resources to use. In this system, applications
are informed of resource changes and provided with a
list of available resource sets. Then, each application
allocates the resources based upon a customized sched-
uling to maximize its own performance. The Network
Weather Service [20] is used to forecast the network
performance and available CPU percentage to AppLeS
agents. Harmony differs from AppLes in that we try to
optimize resource allocation between multiple libraries
and applications, whereas AppLes lets each application
or library adapt itself independently. In addition, by
providing a structured interface for applications to dis-
close their specific preferences, Harmony will encour-
age programmers to think about their needs in terms of
options and their characteristics rather than as selecting

Figure 15: Performance curve (via exhaustive
search) for the volume reconstruction application.

8. Related Work

There are several projects that seekin to develop
techniques to allow applications to be responsive to
their available resources or that allow them to be tuned
at runtime. Computational Steering [6, 7, 15-18] pro-
vides a way for users to alter the behavior of an appli-
cation under execution. Harmony’s approach is similar
since applications provide hooks to allow their execu-
tion to be changed. Many computational steering sys-
tems are designed to allow the application semantics to
be altered; for example, adding a particle to a simula-
tion, as part of a problem-solving environment, rather
than for performance tuning. Also, most computational
steering systems are manual in that a user is expected
to make the changes to the program.

One exception is Autopilot [17, 18], which allows
applications to be adapted in an automated way. Sen-
sors extract quantitative and qualitative performance
data from executing applications, and provide requisite
data for decision-making. Autopilot uses a fuzzy logic
to automate the decision making process. Their actua-
tors execute the decision by changing parameter values
of applications or resource management policies of
underlying system. Harmony differs from Autopilot in
that it tries to coordinate the use of resources by multi-
ple libraries and applications.

The ATLAS [19] project has developed automati-
cally tuned linear algebra libraries. They develop a
methodology for the automatic generation of high effi-
cient basic linear algebra routine for a given micro-
processor. By using a code generator that probes and
searches the system for an optimal set of parameters, it
can produce highly optimized matrix multiply for a
wide range of architectures. The difference between
our work and ATLAS is that our work focuses on gen-
eral applications that use program libraries rather than
that of a specific library.

 10

from specific resource alternatives described by the
system.

Prior work in the active Harmony project [8, 9]
concentrated on the API to make applications tunable,
and in defining an interface to express the different
options via a Resource Specification Language. This
paper extends that work be providing an improved
search algorithm (rather than a simple greedy ap-
proach). In addition, we describe the new Algorithm
Adaptation layer that provides the glue code to allow
existing (slightly) different APIs to be "harmonized."
9. Conclusion

This paper presented an infrastructure for tuning
distributed applications for better performance and an
optimization algorithm based on the simplex method
for function minimization.

Based on a simple architecture and with minimal
changes to the source code of the applications, Active
Harmony provides the user the ability to improve the
performance of an application using an automatic
search through algorithms or parameters at runtime.
Another significant advantage provided by the Active
Harmony system is the ability to make applications
sensitive to the external factors and parameters that
characterize the environment in which they are exe-
cuted. The results demonstrate that Active Harmony
can bring significant improvement to distributed appli-
cations and permit new ways to adapt applications to
dynamic environments.
References

1. Berman, F. and R. Wolski. Scheduling from the
perspective of the application. in Proceedings of 5th
IEEE International Symposium on High Perform-
ance Distributed Computing. 1996. Syracuse, NY,
USA 6-9 Aug. 1996.

2. Borovikov, E., A. Sussman, and L. Davis. An Effi-
cient System for Multi-Perspective Imaging and
Volumetric Shape Analysis. in Workshop on Paral-
lel and Distributed Computing in Image Processing,
Video Processing Multimedia (PDIVM'20001).
2001: IEEE Computer Society Press.

3. Dongarra, J. and e. al., LAPACK - Linear Algebra
PACKage.

4. Foster, I. and C. Kesselman, eds. The Grid: Blue-
print for a New Computing Infrastructure. 1998,
Morgan-Kaufmann: San Francisco.

5. Gailly, J.-l. and M. Adler, zlib - A Massively Spiffy
Yet Delicately Unobtrusive Compression Library.

6. Geist, A.G., J.A. Kohl, and P.M. Papadopoulos,
CUMULVS: Providing Fault tolerance, Visualiza-
tion, and Seering of Parallel Applications. Interna-
tional Journal of Supercomputer Applications and

High Performance Computing, 1997. 11(3): p. 224-
35.

7. Gu, W., et al. Falcon: On-line Monitoring and
Steering of Large-Scale Parallel Programs. in
Frontiers '95. 1995. McLean, VA: IEEE Press.

8. Hollingsworth, J.K. and P.J. Keleher. Prediction
and Adaptation in Active Harmony. in The 7th In-
ternational Symposium on High Performance Dis-
tributed Computing. 1998. Chicago.

9. Keleher, P.J., J.K. Hollingsworth, and D. Perkovic.
Exposing Application Alternatives. in ICDCS. 1999.
Austin, TX.

10. Kurc, T., et al. Querying Very Large Multi-
dimensional Datasets in ADR. in Proceedings of
SC99. 1999. Orlando, FL: ACM Press.

11. Lagarias, J.C., et al., Convergence properties of the
Nelder-Mead simplex method in low dimensions.
SIAM Journal for Optimizations. 9(1): p. 112-147.

12. Nelder, J.A. and R. Mead, A Simplex Methd for
Function Minimization. Comput. J., 1965. 7(4): p.
308--313.

13. Okamoto, T., LHa for UNIX 1.1.4i. 2000.
14. Osterhout, J.K. Tcl: An Embeddable Command

Language. in USENIX Winter Conf. 1990.
15. Parker, S.G. and C.R. Johnson. SCIRun: a scientific

programming environment for computational steer-
ing. in Supercomputing'95. 1995. San Diego.

16. Reed, D.A., et al. The next frontier: interactive and
closed loop performance steering. in ICPP Work-
shop on Challenges for Parallel Process. 1996.
Bloomingdale, Ill.

17. Ribler, R.L., H. Simitci, and D.A. Reed, The Auto-
pilot Performance-Directed Adaptive Control Sys-
tem. Future Generation Computer Systems, special
issue (Performance Data Mining), 2001. 18(1): p.
175-187.

18. Ribler, R.L., et al. Autopilot: Adaptive Control of
Distributed Applications. in High Performance Dis-
tributed Computing. 1998. Chicago, IL.

19. Whaley, R.C. and J.J. Dongarra. Automatically
tuned linear algebra software (ATLAS). in Super-
computing. 1998. Orlando, FL.

20. Wolski, R. Forecasting Network Performance to
Support Dynamic Scheduling Using the Network
Weather Service. in High Performance Distributed
Computing (HPDC). 1997. Portland, Oregon: IEEE
Press.

21. Ziv, J. and A. Lempel, A Universal Algorithm for
Sequential Data Compression. IEEE Transactions
on Information Theory. 23(3): p. 337-343.

 11

	Introduction
	System Design
	Library Specification Layer
	The Resource Specification Language (RSL)
	The Harmony Parameter API
	Parameter Tuning Algorithm
	Experimental Results
	Algorithm Tuning Experiments
	Matrix Inversion: The first set of program libraries consists of two matrix inversion routines from LAPACK [3]. The major characteristic of the matrix is a Boolean indicating if the matrix is triangular. If the matrix is triangular, the specialized trian
	Table Abstraction: The second set of libraries consists of two libraries. Each of them implements a two dimensional array. The two dimensional array is used to store data elements similar to a table. The focus of this test case is the ability to select d

	Parameter Tuning Experiments
	Real Application Tuning
	I/O Intensive Application: To evaluate our optimization system using a real application, we selected a 3-d volume reconstruction application [2] built on top of the Active Data Repository (ADR) middleware [10]. The 3-d volume reconstruction application

	Related Work
	Conclusion
	References
	1.Berman, F. and R. Wolski. Scheduling from the perspective of the application. in Proceedings of 5th IEEE International Symposium on High Performance Distributed Computing. 1996. Syracuse, NY, USA 6-9 Aug. 1996.
	2.Borovikov, E., A. Sussman, and L. Davis. An Efficient System for Multi-Perspective Imaging and Volumetric Shape Analysis. in Workshop on Parallel and Distributed Computing in Image Processing, Video Processing Multimedia (PDIVM'20001). 2001: IEEE Com
	3.Dongarra, J. and e. al., LAPACK - Linear Algebra PACKage.
	4.Foster, I. and C. Kesselman, eds. The Grid: Blueprint for a New Computing Infrastructure. 1998, Morgan-Kaufmann: San Francisco.
	5.Gailly, J.-l. and M. Adler, zlib - A Massively Spiffy Yet Delicately Unobtrusive Compression Library.
	6.Geist, A.G., J.A. Kohl, and P.M. Papadopoulos, CUMULVS: Providing Fault tolerance, Visualization, and Seering of Parallel Applications. International Journal of Supercomputer Applications and High Performance Computing, 1997. 11(3): p. 224-35.
	7.Gu, W., et al. Falcon: On-line Monitoring and Steering of Large-Scale Parallel Programs. in Frontiers '95. 1995. McLean, VA: IEEE Press.
	8.Hollingsworth, J.K. and P.J. Keleher. Prediction and Adaptation in Active Harmony. in The 7th International Symposium on High Performance Distributed Computing. 1998. Chicago.
	9.Keleher, P.J., J.K. Hollingsworth, and D. Perkovic. Exposing Application Alternatives. in ICDCS. 1999. Austin, TX.
	10.Kurc, T., et al. Querying Very Large Multi-dimensional Datasets in ADR. in Proceedings of SC99. 1999. Orlando, FL: ACM Press.
	11.Lagarias, J.C., et al., Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal for Optimizations. 9(1): p. 112-147.
	12.Nelder, J.A. and R. Mead, A Simplex Methd for Function Minimization. Comput. J., 1965. 7(4): p. 308--313.
	13.Okamoto, T., LHa for UNIX 1.1.4i. 2000.
	14.Osterhout, J.K. Tcl: An Embeddable Command Language. in USENIX Winter Conf. 1990.
	15.Parker, S.G. and C.R. Johnson. SCIRun: a scientific programming environment for computational steering. in Supercomputing'95. 1995. San Diego.
	16.Reed, D.A., et al. The next frontier: interactive and closed loop performance steering. in ICPP Workshop on Challenges for Parallel Process. 1996. Bloomingdale, Ill.
	17.Ribler, R.L., H. Simitci, and D.A. Reed, The Autopilot Performance-Directed Adaptive Control System. Future Generation Computer Systems, special issue (Performance Data Mining), 2001. 18(1): p. 175-187.
	18.Ribler, R.L., et al. Autopilot: Adaptive Control of Distributed Applications. in High Performance Distributed Computing. 1998. Chicago, IL.
	19.Whaley, R.C. and J.J. Dongarra. Automatically tuned linear algebra software (ATLAS). in Supercomputing. 1998. Orlando, FL.
	20.Wolski, R. Forecasting Network Performance to Support Dynamic Scheduling Using the Network Weather Service. in High Performance Distributed Computing (HPDC). 1997. Portland, Oregon: IEEE Press.

