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1. Introduction 

Applications are no longer monolithic programs 
writ

Grid 
[4] 

 the needs of this type of computing envi-
ronm

ctive Harmony is an infrastructure that allows 
appl

improve performance during a single execution based 

s the Active Harmony automated 
ru e tuning system. The Library Specification 
Lay

Harmony server. The Adap bility component manages 
the 

n this paper, we present the Active Harmony automated runtime tuning system.  We describe the interface used by 
rograms to make applications tunable.  We present the Library Specification Layer which helps program library de-
elopers expose multiple variations of the same API using different algorithms. The Library Specification Language 
elps to select the most appropriate program library to tune the overall performance. We also present the optimization 
lgorithm used to adjust parameters in the application and the libraries. Finally, we present results that show how the 
ystem is able to tune several real applications.  The automated tuning system is able to tune the application parame-
ers to within a few percent of the best value after evaluating only 11 out of over 1,700 possible configurations. 

ten for a specific purpose. Instead, most software 
today makes extensive use of libraries and re-usable 
components. This approach generally results in soft-
ware that is faster to build and more modular. How-
ever, one problem with this approach is that the various 
libraries used by an application are not tuned to the 
specific application’s need.  In addition, applications 
are frequently used in very different ways. For exam-
ple, different users may employ a single commercial 
simulation application for radically different types of 
simulations.  As a result of this reuse of software, ap-
plications may not run well in all configurations.   

The transient, rarely repeatable behavior of 
computing environment indicates the need to re-

place standard models of post-mortem performance 
optimization with a real-time model, one that optimizes 
application and runtime behavior during program exe-
cution. Automatic program library selection provides a 
framework to help with this goal; it helps to tune the 
application during runtime execution by monitoring the 
underlying library performance and switching underly-
ing program library as needed. This is an important 
step toward automated performance tuning in the Grid 
computing. 

To meet
ent, we have been developing the Active Har-

mony system that allows runtime switching of algo-
rithms and tuning of library and application parameters. 
We have also developed a set of runtime tuning algo-
rithms that help to intelligently set these parameters at 
runtime to tune the overall performance of an applica-
tion. 

A
ications to become tunable by applying very mini-

mal changes to the application and library source code. 
This adaptability provides applications with a way to 

on the observed performance. The types of things that 
can be tuned at runtime range from parameters such as 
the size of a read-ahead parameter to what algorithm is 
being used (e.g., heap sort vs. quick-sort). 
2.  System Design 

Figure 1 show
ntim

er provides uniform API to library users by inte-
grating different libraries with the same or similar func-
tionality. This layer uses the Harmony Controller to 
select among different implementations of the library. 
The library specification layer also monitors the per-
formance of the library to improve the decision for 
future usage of the program library. 

Figure 1: Activ ning system 
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for an easier interpretation of the information provided 
by applications and resources. 
3. Library Specification Layer 
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4. The Resource Specification Language (RSL) 
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The role of the library specificatio
application select the most appropriate underlying 

algorithm. To achieve this goal, the layer first charac-
terizes the request from the application and monitors 
the performance of underlying program libraries. Based 
on the collected information, it will redirect the func-
tion calls to the selected underlying program library. 

 Selection among the available libraries is done v
Adaptation Controller. During the execution, the 

library specification layer will send the characteristics 
of requests to the Adaptation Controller. The Adapta-
tion Controller returns the suggested underlying algo-
rithm to use according to the result of its decision proc-
ess. In the current implementation, when the Adapta-
tion Controller is selecting an algorithm, it tries to ex-
plore all possible algorithms for at least a brief period 
of time. Based on observed performance, an appropri-
ate algorithm is selected. 

The most common p
 or memory space used. Library developers can 

specify multiple program library performance metrics 
in the library specification language. The underlying 
program libraries have to provide function calls in their 
API to support the measurement as well as the estima-
tion of these performance metrics. Selecting an appro-
priate underlying program library is the role of the Ad-
aptation Controller. In the current implementation, the 
Adaptation Controller tries to minimize the value of the 
first performance metric when searching for appropri-
ate underlying program library. 

The key idea of algorithm selectio
erns of a library may require different types of re-

quests to underlying algorithms or data structures. For 
example, in an implementation of a table abstraction, 
the data structure used and the workload pattern will 
both affect the performance. In a workload with high 
search rate and high data element location density, ar-
rays would outperform linked lists. However, if the 
data element density is sparse and memory space is 
critical, the linked data structure should be chosen. The 
characteristics of requests play an important role in 
selecting appropriate underlying program library. Re-
quests of specific characteristics (that can be defined by 
Library developers) may favor one implementation of 
the functionality over another, and can be either vari-
ables with primitive data types or expressed by basic 
Boolean operations on those variables.  

The Library Specification Language
s libraries written in both C and Fortran. It gener-

ates header files that interpose glue code to allow li-
braries (or algorithms) with slightly different calling 
conventions to be integrated into a uniform API for 

upper layer users.  It also provides the indirection to 
allow runtime switching among the different imple-
mentations.  The runtime switching code includes the 
ability for library writer to specify mapping functions 
that can change the underlying data structures (such as 
going from a dense to sparse matrix representation). 

 

In this section we will present the prototype 
 the shortcomings that came along with it, followed 

by the new version of the RSL which removes the limi-
tations that we encountered. 

The current Harmony R
on [8, 9] but provides more flexibility. The RSL is 

implemented on top of the Tcl scripting language [14]. 
Tcl was chosen because it provides support for arbi-
trary expression and function evaluation. Tcl also pro-
vides the ability to add specific functions in C or C++ 
and export them as Tcl commands. Another reason for 
choosing Tcl was that it permitted the creation of a 
graphic tuning interface through the use of the Tk tool-
kit.  

Th
urces they need and what options they have in the 

way they perform their function. Once the Active Har-
mony system has this information it processes the de-
scriptions by simply calling a Tcl interpreter. Figure 2 
shows the general form of an RSL specification for 
both an application and a resource. 

The harmonyApp keyword pre
of an application. The application description con-

tains tunable parameters, node descriptions and a 
“goodness” function (described below). A tunable pa-
rameter of the application, defined using the harmony-
Bundle tag, is characterized by type and range of val-
ues. The definition of applications and their options is 
one of the major changes that were made to the RSL. In 
the initial version the bundles defined mutually exclu-
sive configurations of the application, with static values 
of parameters and resources intrinsically defined. In the 
current version, a harmonyBundle represents a variable 
of the application. A bundle can be used to define the 
range of allowable values for other bundles as well. For 
example, consider a program that has two parameters 
one that describes the maximum number of items to be 
buffered and a second that describes the desired num-
ber of items. The RSL specification for the allowable 
range of the desired number of items buffered can be 
expressed as a range from 1 to the maximum number of 
items that can be buffered.  Thus when the maximum is 
changed by the tuning system, the upper bound of the 
desired number of items will also be adjusted. 

The resource requirements of the applica
ned using the node tag.  The characteristics of the 

nodes described by the application are matched against 
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the resource description received from different ma-
chines that are part of the system. This way the Adapta-
tion Controller can make decisions on where different 
applications will be run in the distributed system. The 
attributes of the node block are not restricted to those 
presented in Figure 2 below. Any attributes can be 
specified as long as they appear in both application and 
resource descriptions. 

 
HarmonyApp <Application Name> {

{

}

node <Name>
ost name> }

Mb> }

{replicate <value>}
}

let <variableName> <funct. of bundleNames> }

ink <Node1> <Node2> <Bandwidth>}

s>] [global]}

(a)

HarmonyNode <Name>
}

essors> }

}

(b)

Figure 2: The RSL l : (a) application 
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{ harmonyBundle <Parameter Name>
enum {<val1> <val2> … <valk>} |
int {<min> <max> <step>} |
real {<min> <max> <step>}
[global]
}

…
{

{hostname <H
{os <Operating System> }
{seconds <Time needed> }
{memory <Minimum memory in
…

}
…
{

…
{l
{communication <fct of bundles>}
{obsGoodness <min> <max> [<#value
{predGoodness <min> <max>}
}

{hostname <Host name>
{os <Operating System> }
{memory <Memory size> }
{cpu <cpu speed> }
{processors <# proc
…

anguage
description; (b) resource description. 

ables that are not associated with application vari-
ables. This allows for cleaner descriptions, permitting 
reuse of expressions without having to duplicate them 
in multiple bundle definitions. 

The final component of th
tion. The performance function represents a metric 

of the performance of the application. The performance 
function was required to evaluate the behavior of appli-
cations based on different objective functions. 

The performance function is described us
rent components. The obsGoodness tag describes 

an application-defined metric that is used by the tuning 
algorithm. For example, scientific simulation might be 

described by a metric that indicates the time required to 
process a time step of data.  Since a single value of the 
obsGoodness might not be indicative of the overall 
performance of the application, an optional numValues 
attribute can be defined that indicates the number of 
values to be collected, aggregated, and reported to the 
optimization algorithm. The need for collecting and 
aggregating different values of the performance func-
tion arose because some applications may require mul-
tiple samples (i.e. time steps) to react to a change in a 
harmony parameter. The values are aggregated using 
an aggregation function written in Tcl. 

Another important feature of the R
 This tag is used for bundles and for the perform-

ance function (obsGoodness). The significance of the 
global tag is as follows: different instances of the same 
application (i.e. processes of a SPMD program) can 
define a global bundle, which is used to simultaneously 
tune the values of the local bundles. 

Application programmers can de
ation function if the default one (average) is not 

appropriate for that application. The functions, written 
in Tcl, include: aggregation_local which combines 
multiple samples for a single process and 
global_aggregation which combines values from dif-
ferent processes or threads of a parallel program. 

The predGoodness tag describes the second 
ent of the performance function. This component is 

also characterized by a range, which specifies the ex-
pected range of values for the performance function. 
The obsGoodness tag is used to specify how to meas-
ure an application’s performance, whereas the 
predGoodness is a mathematical expression of the ex-
pected performance based on an analytical model. 

The Active Harmony system also include
hic console that plots the performance function and 

allows users to manually tune their application.  Figure 
3 shows a screen shot of the user interface.  The box in 
the middle has three sliding controls that allow the user 
to adjust the values of the three parameters this applica-
tion is exporting (tileSize, maxReads, and lowW).  The 
graph at the bottom of the picture shows the recent 
values for the “goodness” function and permits the user 
to browse the history of values as well as to change the 
thresholds that trigger the adaptation mechanism. 
5.   The Harmony Parameter API 

In order to allow the Harmony s
y or application parameters, we have developed a 

library of functions that register tunable parameters and 
provide ways for the code to get the new parameters 
from the Harmony Adaptation Controller. The changes 
required to make a program tunable using this interface 
is relatively small. For many programs we have “har-
monized” the change amounted to less than 50 lines of 
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Figure 3: Harmony User Interface. 

 
Figure 4 shows the changes made in the main pro-

ram of the application. First the application has to 
regi

a per 
time

g
ster with the harmony server using the har-

mony_startup function. Next, it sends to the server the 
description of the application, which in this case is read 
from a file. This file contains the RSL specification for 
the application. This action is performed by the har-
mony_application_setup_file function. Next, the pa-
rameters specified by the application in its description 
have to be bound with variables in the main program. 
The harmony_add_variable function takes care of this. 
This function binds a harmony variable to an applica-
tion variable. The application can then use this bound 
variable, which will be updated periodically by the 
Harmony system. Finally, the application calls the har-
mony_end function to un-register with the sever.  

One more change needs to be applied to the main 
loop of the program. Periodically (typically on 

 step or per query basis) the application sends a 
value of the performance function to the harmony 
server by calling harmony_performance_update. The 
application then requests new values for the bound 
variables from the Harmony server invoking har-
mony_request_all.  

6. Parameter Tuning Algorithm 

In an earlier version of the Harmony system [8], 
we had a simple greedy algorithm to handle automatic 
selection of the appropriate parameters.  However, for 
larger applications a more sophisticated algorithm is 
needed. 

The problem of selecting good parameters requires 
finding a k-tuple in the value space determined by the 
values of the tuning parameters specified by the appli-
cation, such that the application performs best. If we 
consider that better performance is represented by a 
smaller value of the performance function, then the 
goal is to minimize this function.  

However, the problem is more complex due to the 
nature of the value space and that of the performance 
function. For example, a simple performance function 
could be the time spent by an application to complete a 
certain task. However, the value of this performance 
function depends not only on declared application pa-
rameters, but also on a number of external factors over 
which we have no real control. These external factors 
include, but are not restricted to, the current load of the 
machine and the operating system. Because of this, for 
fixed values of the tuning parameters we might get 
different values of the performance function even when 
performing the same task.  

Even if we were able to fully isolate performance 
variation due to external factors, trying to find a mini-
mum point in an arbitrary (and unknown) curve would 
require an exhaustive search of the entire space of val-
ues evaluating performance at each point. If the num-
ber of different values of each bundle is big this brute 
force approach is not feasible. Hence, we had to come 
up with heuristics to solve the problem. While the goal 
is to get the best performance possible, we were mostly 
interested in avoiding those k-tuples for which the per-
formance was particularly bad. We have set this goal 
based on our experience in using the interface with a 
few test applications (including a database engine and 
parallel search algorithm).  We found that there are 
frequently many points near the optimal point and that 
there is also often another region where the application 
performance is abysmal. Thus, trying to get into the 
good region even if we don’t find the absolute best 
point achieves most of the benefit of finding the opti-
mal solution. 

We had several other goals for our minimization 
algorithm: 1) it should not require too many evalua-
tions of the performance function and 2) it should 
avoid first and second order derivatives. The algorithm 
that we developed is based on the simplex method for 
finding a function's minimization [12].  
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/* initialize */

harmony_startup(0);

harmony_application_setup_file("adr.tcl");

/* register tunable parameters */

low_watermark = (int*) harmony_add_variable("ADR", "lowW",VAR_INT);

max_nreads = (int*) harmony_add_variable("ADR","maxReads",VAR_INT);

tile_size = (int*) harmony_add_variable("ADR","tileSize",VAR_INT);

/* program main loop */

/* update tunable parameters’ value */

harmony_request_all();

...

/* report performance result */

harmony_performance_update(performace_result);

/* end of program main loop */

/* finalize */

harmony_end();

Figure 4: Changes required for a typical application. 

 
The algorithm makes use of a simplex, which is a 

geometrical figure defined by k+1 connected points in 
a k-dimensions space. In 2-dimensions, the simplex is a 
triangle, and for the 3-d space the simplex is a non-
degenerated tetrahedron. The Nelder-Mead simplex 
method [12] approximates the extreme of a function by 
considering the worst point of the simplex and forming 
its symmetrical image through the center of the oppo-
site (hyper) face. At each step a better point replaces 
the worst point, making the simplex move towards the 
extreme. In our case the algorithm slips down the val-
ley towards the minimum.   

The algorithm described above assumes a well-
defined function and works in a continuous space.  
However, neither of these assumptions holds in our 
situation. Thus we had to come up with a method to 
adapt the algorithm to deal with this. Rather than modi-
fying the algorithm to deal with this problem, we sim-
ply used the resulting values from the nearest integer 
point in the space to approximate the performance at 
the selected point in the continuous space. 
7. Experimental Results 

We conducted a series of experiments to evaluate 
the design and its performance. We first present results 
for the library specification layer. Then we use the 
Harmony server to tune the selected library through 
iterations to improve the overall performance. 

7.1 Algorithm Tuning Experiments 
We evaluated the library specification layer by 

first applying it to a simple data structure abstraction, 
then applied it two commonly used math libraries. All 
of our tests were run on Redhat Linux with kernel 2.4.0 

on a Pentium-III 667MHz with 384 MB main memory. 
The metric used for all four test cases are the time to 
complete the requests. 

Matrix Inversion: The first set of program libraries 
consists of two matrix inversion routines from LA-
PACK [3]. The major characteristic of the matrix is a 
Boolean indicating if the matrix is triangular. If the 
matrix is triangular, the specialized triangular matrix 
inversion library will have better performance. Other-
wise, a general matrix inversion library must be used. 
The result is shown in Figure 5; the library compares 
the triangular matrix by applying it to both the dedi-
cated triangular inversion matrix library and the 
general matrix inversion matrix at the beginning. Later 
for each request, the library specification layer detects 
whether the request matrix is triangular and if so, the 
library specification layer will invoke the matrix inver-
sion library optimized for triangular matrices. Other-
wise, the library specification layer will just apply it to 
the general matrix inversion library. 
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Figure 5: Matrix Inversion Test Case 

 5



 

Table Abstraction: The second set of libraries consists 
of two libraries. Each of them implements a two di-
mensional array. The two dimensional array is used to 
store data elements similar to a table. The focus of this 
test case is the ability to select different data structure 
based on API usage patterns. Two program libraries are 
implemented using linked lists and arrays. Each data 
structure has its advantages: linked lists take less mem-
ory space for storage but longer for insert, delete, and 
search operations; arrays take more memory for storage 
but are more efficient for insert, delete, and search op-
erations.  

The first test uses the time to complete each opera-
tion as the performance metric. The result is shown in 
the  Figure 6. The version using the library specifica-
tion layer spends some time using the linked list li-
brary. Once it found that the performance of the array 
library is better than the linked list library, it will use 
the array library as the underlying supporting library. 
The second test uses memory utilization as the main 
metric. The result is shown in Figure 7. As expected, 
the performance of the program with the library speci-
fication layer is close to the performance of the pro-
gram with linked list library. Another difference be-
tween this test case and other test cases is the switch 
between underlying program libraries. In this test case, 
the library specification layer has to perform data struc-
ture transformation from linked list to array or vice 
versa. This data structure transformation has to be sup-
ported by both underlying program libraries. 

This experiment shows that proper selection can re-
duce runtime by a factor of 20 or more and space by 
two-orders of magnitude for a set of randomly gener-
ated requests to store and lookup items in a table.  By 
Harmonizing the table, we can optimize the compres-
sion algorithms for either space or time. 
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 Figure 6: 2-D Table with Time metric 
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Figure 7: 2-D Table with Memory Space metric 

 

7.2 Parameter Tuning Experiments 
Once the library specification layer selects the un-

derlying program library, the Harmony server tunes 
both the application and the library to improve the per-
formance. Due to the complexity of measuring real 
applications and possible anomalies due to execution, 
we initially evaluated our search heuristic using several 
well-defined functions. We then proceeded to evaluate 
the search process using a real application. 

We tested the effectiveness of our search algorithm 
on three benchmark functions. The three functions 
were: a sombrero hat function, a quadratic function, 
and Rosenbrock's parabolic valley.  

Sombrero hat function:  We used the following 
variant of the sombrero hat function: defined for inte-
ger values of x and y from –20 to 20, which has a 
global minimum in (0,0). Figure 8(a) illustrates the 
path followed by the algorithm to reach the minimum. 
The minimum was found after only 8 function evalua-
tions. The sombrero function is interesting because it 
has a series of local minima, which makes it quite dif-
ficult to optimize, but our algorithm was able to avoid 
getting stuck in any of them. The search performed by 
our algorithm found the global minimum. The solid 
surface shows the function, and the line shows the evo-
lution of the search algorithm as it tries different points. 

Quadratic Function: Another function that we 
analyzed was: Z . The function, defined 
on the range from –20 to 20, with integer values for x 
and y, has a minimum in (0,0). The path followed by 
the algorithm towards the minimum is presented in 
Figure 8(b). The number of iterations needed to reach 
the minimum was 15. 

10*)( 22 yx +=
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Rosenbrock's parabolic valley1: The only function 
that caused a problem was the Rosebrock's function 
defined by: Z , in the integer sub-
space for x and y between –20 and 20. The function has 
a minimum of 0 in (x,y)=(1,-1). Our algorithm termi-
nated its search at (x,y)=(4,19), where the function has 
a value of 909. This happened because of the rounding 
scheme that we used, and possibly because of the initial 
simplex as well. However, taking into account that the 
values of the function in the above range were of the 
order of  1.7 x 10

22 )1()(*100 xxy −+−=

6, the value of 909, which was found 
after only 27 iterations, is a very good approximation, 
within 0.05% of the minimum. This was considered an 
acceptable result for the algorithm because, as we al-
ready mentioned above, the main goal was to avoid bad 
performance while aiming for the optimum. The search 
is illustrated in Figure 8(c). 

7.3 Real Application Tuning 
Compress Library: In this experiment, we apply the 
Active Harmony automated runtime tuning system to a 
real compression library.  The compression application 
uses two possible underlying compression libraries: 
zlib[5] and LHa[13]. Both of these libraries are gen-
eral-purpose, lossless data-compression libraries.  The 
deflation algorithm used is a variation of LZ77[21]. 
They both use hash table and binary trees, plus Huff-
man encoding to compress the data strings. 

There are two performance metrics used in the ex-
periment: time and size ratio. The time is the process 
time used to compress the data file. The size ratio is to 
compare the file size before and after the compression. 
Each library has its own tunable variables. The BU-
FLEN in the zlib adjusts the buffer used in reading the 
data strings. It will affect the time to compress a file. 
The MAXMATCH in the LHa changes the buffer used 
but also affects the compression ratio. In the original 
code, those two variables were set to be compile time 
constants. We made slight modifications so those two 
variables are tunable during the application execution. 
The files being compressed are composed of randomly 
selected UNIX files system with a predefined file size.  

                                                      
1 Although we tried to understand the behavior of the Nelder-Mead 
algorithm in the context of the three benchmark functions that we 
presented above, we were unable to locate the real problem with 
Rosenbrock’s function. It appears that by changing the starting sim-
plex the convergence would change too. We could see improvement 
in the results but the data we presented above is based on the auto-
mated simplex generation we implemented in Harmony.  It was only 
after we ran these tests that we found out that the analysis of the 
Nelder-Mead algorithm for the quadratic function is an open problem 
and that there is ongoing research on why this algorithm tends to 
work very well in practice [11]. 

(a) 

 
(b) 

(c) 
Figure 8: The search algorithm applied to 

three known functions. 

 
In the experiment, we focus on automatic tuning 

using a specific library. We set the library selection to 
be manual in the library specification layer. Instead of 
optimizing an individual performance metric, we select 
an objective function that combines both space and 
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time as metrics to show the tuning ability for the Har-
mony system.  The results show the tradeoff between 
the buffer size and the performance metric. 

Figure 9 shows the tuning process for LHa com-
pression library. The buffer size (compared to the de-
fault value) converges quickly a few iterations. Figure 
10 shows the tuning results. The buffer size used is 
between 3% to 5% of the default one. The file size of 
the compressed file with tuning is 5% to 8.5% larger 
than that of the compressed file without tuning.  
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Figure 9: LHa: Changes of Buffer Size 

 
Figure 11 and Figure 12 shows the results when 

the library specification layer chooses to use the zlib 
compression library. Figure 11 shows the size of the 
buffer used by the zlib compression library through the 
iterations. The buffer size converges after 15 iterations. 
Figure 12 shows the tuning results. The buffer size is 
more than 100 times smaller than the original one 
while the process time increased about 15%. 

There are two major factors that influenced the 
tuning ability of the Harmony server. The first is the 
selection of objective function. The objective function 
should have its minimum value at the desired operation 
point. A function that is “smooth” and with few “local 
minima” is preferred to help speed up tuning. The sec-
ond is the “step” d used for search algorithm; that is, 
the minimum distance between current value and the 
next value of the tunable variable.  

Figure 13 shows the tuning process with different d. 
If the d is too small, the Harmony server is affected by 
the “noise” of the performance data since the tuning 
server is too sensitive to the performance result. There-
fore in some cases, the value of the tunable variable 
may never converge. On the other hand, if d is too 
large, the result of the tuning may not be precise 
enough and the value of the tunable variable will keep 
oscillating. 

0%

10%

20%

30%

40%

50%

5 10 20 50 100

File Size (MB)

S
iz

e 
R

at
io

with tuning

default

0%

1%

2%

3%

4%

5%

5 10 20 50 100

File Size (MB)
B

uf
fe

r 
S
iz

e 
R

at
io

Figure 10: LHa: Buffer size and performance after 
tuning 

 

1

10

100

1000

10000

100000

1000000

10000000

0 10 20 30 40 50

Iterations

B
uf

fe
r 

S
iz

e

Figure 11: zlib: Changes of Buffer size 

 8



 

1

10

100

1000

10000

100000

0 20 40 60 80 10

File Size (MB)

B
uf

fe
r 

S
iz

e

0

with tuning

default

0

5

10

15

20

25

30

35

0 20 40 60 80 100

File Size (MB)

T
im

e

with tuning

default

Figure 12: Buffer size and performance after tuning 
 

1

10

100

1000

10000

100000

1000000

10000000

0 5 10 15 20

Iterations

B
uf

fe
r 

S
iz

e

step=1
step=3
step=20
step=50
step=100
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I/O Intensive Application: To evaluate our optimi-
zation system using a real application, we selected a 3-
d volume reconstruction application [2] built on top of 
the Active Data Repository (ADR) middleware [10]. 
The 3-d volume reconstruction application uses digital 
images of a space to reconstruct the objects that are 
visible from the various camera angles. The ADR is an 
infrastructure that integrates storage, retrieval and 
processing of large multi-dimensional data sets. ADR 
provides the user with operations including index gen-
eration, data retrieval, scheduling across parallel ma-
chines, and memory management. The data is accessed 
through range queries (i.e., extract all data within a 

specified region of space). A range query is processed 
in two steps: query planning followed by query execu-
tion. As part of query execution, input and output items 
are mapped between coordinate systems and the data is 
aggregated to generate the final result. During the 
processing phase a temporary dataset, called the accu-
mulator, is created to hold the results of the query be-
ing processed. 

Because ADR is middleware used to build multi-
ple applications including the Harmony calls in the 
ADR code makes every application built on top of 
ADR tunable. The parameters we used were:  
tileSize represents the size of the memory tile that is 

used by the ADR back-end to store information 
before it is aggregated. It is the size of the tiles 
which the accumulator will be partitioned if it does 
not fit into memory. This parameter greatly influ-
ences query planning and execution since it is 
somewhat analogous to the block size in a compu-
tational code that has been blocked (tiled) to fit 
into a cache. 

lowWatermark is the upper bound of the number of 
pending reads and number of ready reads that were 
issued to the disk in order to resolve a certain 
query.  

maxReads is the maximum number of reads issued in 
order to resolve the current query if the number of 
pending read operations and the number of ready 
read operations are below the lowWatermark.  
The original version of the volume reconstruction 

application used values for the parameters provided by 
the ADR designers. To harmonize the application, we 
added calls to expose these parameters to the system. 
The environment in which we ran the experiments was 
a Linux cluster of 16 machines, each with two 450 
MHz processors connected by 100 Mbps Ethernet.  

To see how the Active Harmony infrastructure im-
proves the running time of the Volume Reconstruction 
application, we created a random set of queries that 
were submitted to the ADR back-end. First we ran 
them using the original version of the ADR; then, the 
harmonized version. Figure 14 below presents the im-
provement we obtained in the processing time of each 
of the queries. 

The Active Harmony system sped up query proc-
essing by up to 50% for the set of 70 random queries 
that we generated. However, the average improvement 
was about 10%. This is due to the fact that some of the 
queries that had the greatest speed-ups were very short, 
compared with others for which the improvement was 
less than 10%. The performance improvement for the 
longest query, which took about 10 minutes to be com-
pleted was about 18%. 

Since we did not know the shape of the perform-
ance curve and thus what the best value is, another set 
of experiments was conducted to compare the behavior 
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of the Active Harmony adaptation system to the brute 
force search for the best parameter values. For the pur-
pose of the exhaustive search we submitted to the ADR 
back-end the same query for each tuple of parameter 
values. We then recorded the value of the performance 
function for each of the 1680 tuples. To test the behav-
ior of the Active Harmony we submitted the same 
query 2000 times to the ADR back-end.  

Improvement in performance for 70 random queries
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Figure 14: Performance improvement for the vol-
ume reconstruction application. 

 
The brute force algorithm recorded values for the 

performance function of up to 25% slower than the 
optimum, while the range of values explored by the 
Active Harmony system was within 5% of the mini-
mum. The minimum was reached by our system by 
exploring only 11 tuples (out of the almost 1,700 dif-
ferent possible tuples). Figure 15 below presents these 
results. The axes of the graph are as follows: the verti-
cal one represents the performance function, while the 
horizontal ones are the tileSize and the lowWatermark. 
The values obtained for different values of the third 
parameter: maxReads are stacked one on top of the 
other in the graph. The lighter points in the graph are 
from the exhaustive search and are spread on the entire 
value space. The darker points (lower left corner) trace 
the path followed by the tuning and they are concen-
trated near the minimum. 

 

Another approach is application level scheduling. 
AppLeS [1] allows applications to be informed of the 
variations in resources and presented with candidate 
lists of resources to use.  In this system, applications 
are informed of resource changes and provided with a 
list of available resource sets. Then, each application 
allocates the resources based upon a customized sched-
uling to maximize its own performance. The Network 
Weather Service [20] is used to forecast the network 
performance and available CPU percentage to AppLeS 
agents. Harmony differs from AppLes in that we try to 
optimize resource allocation between multiple libraries 
and applications, whereas AppLes lets each application 
or library adapt itself independently. In addition, by 
providing a structured interface for applications to dis-
close their specific preferences, Harmony will encour-
age programmers to think about their needs in terms of 
options and their characteristics rather than as selecting 

Figure 15: Performance curve (via exhaustive 
search) for the volume reconstruction application. 

8. Related Work 

There are several projects that seekin to develop 
techniques to allow applications to be responsive to 
their available resources or that allow them to be tuned 
at runtime. Computational Steering [6, 7, 15-18] pro-
vides a way for users to alter the behavior of an appli-
cation under execution. Harmony’s approach is similar 
since applications provide hooks to allow their execu-
tion to be changed. Many computational steering sys-
tems are designed to allow the application semantics to 
be altered; for example, adding a particle to a simula-
tion, as part of a problem-solving environment, rather 
than for performance tuning. Also, most computational 
steering systems are manual in that a user is expected 
to make the changes to the program.   

One exception is Autopilot [17, 18], which allows 
applications to be adapted in an automated way. Sen-
sors extract quantitative and qualitative performance 
data from executing applications, and provide requisite 
data for decision-making. Autopilot uses a fuzzy logic 
to automate the decision making process. Their actua-
tors execute the decision by changing parameter values 
of applications or resource management policies of 
underlying system. Harmony differs from Autopilot in 
that it tries to coordinate the use of resources by multi-
ple libraries and applications. 

The ATLAS [19] project has developed automati-
cally tuned linear algebra libraries. They develop a 
methodology for the automatic generation of high effi-
cient basic linear algebra routine for a given micro-
processor. By using a code generator that probes and 
searches the system for an optimal set of parameters, it 
can produce highly optimized matrix multiply for a 
wide range of architectures. The difference between 
our work and ATLAS is that our work focuses on gen-
eral applications that use program libraries rather than 
that of a specific library.  
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from specific resource alternatives described by the 
system. 

Prior work in the active Harmony project [8, 9] 
concentrated on the API to make applications tunable, 
and in defining an interface to express the different 
options via a Resource Specification Language.  This 
paper extends that work be providing an improved 
search algorithm (rather than a simple greedy ap-
proach). In addition, we describe the new Algorithm 
Adaptation layer that provides the glue code to allow 
existing (slightly) different APIs to be "harmonized." 
9. Conclusion 

This paper presented an infrastructure for tuning 
distributed applications for better performance and an 
optimization algorithm based on the simplex method 
for function minimization.  

Based on a simple architecture and with minimal 
changes to the source code of the applications, Active 
Harmony provides the user the ability to improve the 
performance of an application using an automatic 
search through algorithms or parameters at runtime. 
Another significant advantage provided by the Active 
Harmony system is the ability to make applications 
sensitive to the external factors and parameters that 
characterize the environment in which they are exe-
cuted. The results demonstrate that Active Harmony 
can bring significant improvement to distributed appli-
cations and permit new ways to adapt applications to 
dynamic environments.   
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