
19

FPGA Acceleration of RankBoost
in Web Search Engines

NING-YI XU, XIONG-FEI CAI, RUI GAO, LEI ZHANG, and FENG-HSIUNG HSU
Microsoft Research Asia

Search relevance is a key measurement for the usefulness of search engines. Shift of search rele-
vance among search engines can easily change a search company’s market cap by tens of billions
of dollars. With the ever-increasing scale of the Web, machine learning technologies have become
important tools to improve search relevance ranking. RankBoost is a promising algorithm in this
area, but it is not widely used due to its long training time. To reduce the computation time for

RankBoost, we designed a FPGA-based accelerator system and its upgraded version. The acceler-
ator, plugged into a commodity PC, increased the training speed on MSN search engine data up
to 1800x compared to the original software implementation on a server. The proposed accelerator
has been successfully used by researchers in the search relevance ranking.

Categories and Subject Descriptors: B.7.1 [Integrated Circuits]: Types and Design Styles—
Algorithms implemented in hardware

General Terms: Algorithms, Performance, Design

Additional Key Words and Phrases: FPGA, hardware acceleration

ACM Reference Format:

Xu, N.-Y., Cai, X.-F., Gao, R., Zhang, L., and Hsu F.-H. 2009. FPGA acceleration of RankBoost in
Web search engines. ACM Trans. Reconfig. Techn. Syst. 1, 4, Article 19 (January 2009), 19 pages.
DOI = 10.1145/1462586.1462588. http://doi.acm.org/10.1145/1462586.1462588.

1. INTRODUCTION

Web search–based ad services have become a huge business in the last few
years with billions of annual earnings and more than a hundred billion dollars
of total generated market cap for search engine companies. For a search en-
gine, the key to attract more users and obtain larger market share is its search
relevance [Fan et al. 2004], which is determined by the ranking function that
ranks resultant documents according to their similarities to the input query.

Author’s address: N.-Y. Xu, Platforms and Devices Center, Microsoft Research Asia, Sigma Center,
No. 49 Zhichun Road, Haidian, Beijing, 100190, China.
Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, to redistribute to lists, or to use any component of this work in other works
requires prior specific permission and/or a fee. Permissions may be requested from Publications
Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2009 ACM 1936-7406/2009/01-ART19 $5.00 DOI: 10.1145/1462586.1462588.

http://doi.acm.org/10.1145/1462586.1462588.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

19: 2 · N.-Y. Xu et al.

Information retrieval (IR) researchers have studied search relevance prob-
lem for many decades. Representative methods include Boolean model, vector
space model, probabilistic model, and the language model [Baeza-Yates and
Ribeiro-Neto 1999]. Earlier search engines were mainly based on such IR al-
gorithms. When the internet bubble crashed in 2000, most observers believed
that the search business was a minor business and search relevance was not
an important problem. But just a year before, in 1999, Google proposed the
PageRank algorithm to measure the importance of Web pages [Brin and Page
1998] and created a quantum leap in search relevance for search engines. This
leap created a rapid decline of user populations for the then-existing search
engines and proved beyond any doubt the importance of search relevance.
Many factors affect the ranking function for search relevance, such as page
content, title, anchor, URL, spam, and page freshness. It is extremely difficult
to manually tune ranking function parameters to combine these factors in an
ever-growing Web-scale system. Alternatively, to solve this problem, machine
learning algorithms have been applied to automatically learn complex ranking
functions from large-scale training sets.

Earlier algorithms for ranking function learning include Polynomial-based
regression [Fuhr 1989], Genetic Programming [Fan et al. 2004], RankSVM
[Joachims 2002] and classification-based SVM [Nallapati 2004]. However, all
these algorithms have only been evaluated on small-scale datasets due to their
high computational cost. RankNet [Burges et al. 2005] was the first work that
was evaluated on a commercial search engine. Motivated by RankNet, we re-
visited more machine learning algorithms. RankBoost [Freund et al. 2003] was
identified to be a promising algorithm, because it has comparable relevance
performance with RankNet and a faster ranking function, even though it has
higher computation cost in the learning process. To learn a ranking function
for a real search engine, large-scale training sets are usually used for better
generalization, and numerous runs are required to exploit best results on fre-
quently updated datasets. Thus the computational performance, measured by
the time to obtain an acceptable model over a large dataset, is critical to the
ranking function learning algorithm. With an initial software implementation,
a typical run to obtain a model on MSN search engine data for RankBoost still
takes two days, which is too slow for training and tuning of the ranking func-
tion. To further reduce the computation time of RankBoost, we designed an
FPGA-based accelerator system.

As an alternative to multicore CPUs and GPUs, field-programmable gate-
arrays (FPGAs) can be used as customized computing engines for accelerating
a wide range of applications. High-end FPGAs can fully utilize bit-level par-
allelism and provide a very high memory access bandwidth. For example, an
Altera Stratix-II FPGA, which is utilized in our accelerator, contains millions
of gates, and provides Tbps accessing bandwidth to several megabytes of on-
chip memory.1 Due to its great design flexibility and its high performance

1http://www.altera.com

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

FPGA Acceleration of RankBoost in Web Search Engines · 19: 3

which is close to Application Specific Integrated Circuits (ASICs), FPGA has
been recognized to be highly competitive with general purpose CPUs for high
performance computing on a large number of applications [Underwood and
Hemmert 2004; El-Ghazawi et al. 2006].

In this article, we propose FAR: FPGA-based Accelerator for RankBoost. We
first develop an approximation to the RankBoost algorithm, which reduces the
scale of computation and storage from O(N2) to O(N) and speeds up the soft-
ware by 3.4 times. We then map the algorithm and related data structures to
our customized FPGA-based accelerator platform. An SIMD (Single Instruc-
tion Multiple Data) architecture with multiple processing engines (PEs) is im-
plemented in the FPGA. In a typical experimental run on the MSN search
engine data, training time is reduced from 46 hours to 16 minutes on a com-
modity PC equipped with the first implementation of FAR (called FAR1). This
is an achievement of 170.6x improvement in performance [Xu et al. 2007]. Sev-
eral FAR1 systems are then successfully used in research work in Microsoft
Research Asia. Per request from the users, one year later, we implement the
second version of FAR (called FAR2) on a much powerful FPGA accelerator
board, and achieve an acceleration rate of up to 1800x.

The main contribution of this work includes (i) extension of the RankBoost
algorithm to improve Web search relevance ranking (ii) efficient computation
method for RankBoost, (iii) the mapping of the algorithm to two generations
of efficient hardware accelerator architecture, and (iv) demonstration of its
superior performance and its usage.

The remainder of this article is organized as follows. Section 2 describes
the RankBoost algorithm for search relevance and discusses the bottleneck in
the software implementation. Section 3 presents the design of FAR. Section 4
describes the performance model and discusses experimental results. Section 5
concludes the article and discusses future work.

2. APPLICATION: RANKBOOST FOR WEB SEARCH RELEVANCE

To better understand the application, in this section we give a brief introduc-
tion to RankBoost and describe how RankBoost is used to learn ranking func-
tions in a Web search engine. In addition, the computational complexity is also
discussed.

RankBoost is a variant of AdaBoost, which was proposed by Freund and
Schapire 1995. For a typical classification problem, the AdaBoost training
process tries to build a strong classifier by combining a set of weak classi-
fiers, each of which is only moderately accurate. AdaBoost has been success-
fully applied to many practical problems (including image classification [Liu
et al. 2004], face detection [Viola and Jones 2001], and object detection [Laptev
2006]) and demonstrated effective and efficient performance. The proposed
FPGA-based RankBoost accelerator could be easily extended to support such
applications to achieve similar performance improvement.

For detailed background and theoretical analysis of boosting algorithms,
please refer to Schapire [1999, 2001], Freund et al. [2003], and Iyer et al.
[2000].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

19: 4 · N.-Y. Xu et al.

Fig. 1. The original RankBoost algorithm.

2.1 RankBoost for Standard Ranking Problem

In a standard ranking problem, the goal is to find a ranking function to order
the given set of objects. Such an object is denoted as an instance x in a domain
(or instance space) χ . As a form of feedback, information about which instance
should be ranked above (or below) one another is provided for every pair of in-
stances. This feedback is denoted as a function 8 : χ×χ→R, where (x0, x1) > 0
means x1 should be ranked above x0 and vice versa. The learner then attempts
to find a ranking function H : χ→R which is as consistent as possible to the
given , by asserting that x1 is preferred than x0 if H(x1) > H(x0).

The RankBoost algorithm is proposed to learn the ranking function H by
combining a given collection of ranking functions. The pseudo code is given
in Figure 1. RankBoost operates in an iterative manner. In each round, the
procedure WeakLearn is called to select the best weak ranker from a large set
of candidate weak rankers. The weak ranker has the form ht : χ→R, and
ht(x1) > ht(x0) means that instance x1 is ranked higher than x0 in round t. A
distribution Dt over χ×χ (i.e., document pairs) is maintained during the train-
ing process to reflect the importance of ranking the pair correctly. The weight
Dt(x0, x1) will be decreased if ht ranks x0 and x1 correctly (ht(x1) > ht(x0)), and
increased otherwise. Thus, Dt will tend to concentrate on the pairs that are
hard to rank. The final strong ranker H is a weighted sum of the selected weak
rankers in each round.

2.2 Extending RankBoost to Web Relevance Ranking

To extend RankBoost to Web relevance ranking, two issues need to be ad-
dressed. The first issue is how to generate training pairs. The instance space
for search engines does not consist of a single set of instances to be ranked
amongst each other, but is instead partitioned by queries issued by users. For
each query q, some of the returned documents are manually rated using a
relevance score, from 1 (means poor match) to 5 (means excellent match). Un-
labeled documents are given a relevance score 0. Based on the rating scores
(ground truth), the training pairs for RankBoost are generated from the re-
turned documents for each query. The second issue is how to define weak
rankers. In this work, each weak ranker is defined as a transformation of a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

FPGA Acceleration of RankBoost in Web Search Engines · 19: 5

Fig. 2. The pseudo-code for weak ranker selection in M3.int ((2) and (3) of Appendix B).

document feature, which is a one-dimensional real-valued number. Document
features can be classified as query-dependent features (such as query term fre-
quencies in a document and term proximity) or query-independent features
(such as PageRank [Brin and Page 1998]). Thus, the same document may be
represented by different feature vectors for different queries due to the ex-
istence of query-dependent features. The extended RankBoost algorithm for
Web relevance ranking is shown in Appendix A.

2.3 WeakLearn Design for Performance and Computation Complexity Analysis

In both the original and extended RankBoost (Figure 2 and Appendix A),
WeakLearn is the main routine in each round of the algorithm. Clearly, its
design is critical to the quality and speed of RankBoost. This subsection will
discuss the design of WeakLearn, and its hardware implementation are ad-
dressed in the next section.

WeakLearn chooses from among N f document features (as weak rankers),
the one that yields minimum pair-wise disagreement relative to distribution D

over Npair document pairs. Here, we first need to determine the form of weak
rankers. We tried out several forms of weak ranker proposed in Freund et al.
[2003] to decide on the best form. For low complexity and good ranking quality,
we define the weak ranker in the form:

h(d) =

{

1, if fi(d) > θ

0, if fi(d) ≤ θorfi(d) is undefined ,
(1)

where fi(d) denotes the value of feature fi for document d, and θ is a thresh-
old value. There are totally Nθ threshold values for a feature. To find the
best h(d), WeakLearn needs to check all possible combinations of feature fi

and threshold θs (refer to equation (3) for the definition of θs). Freund et al.
[2003] present three methods for this task. The first method (noted as M1) is a
numerical search, which is not recommended due to its complexity [Iyer et al.
2000]. The second method (M2) needs to accumulate the distribution D(d0, d1)
for each document pair to check each (fi, θ) combination, and thus has a com-
plexity of O(NpairN f Ntheta) per round. Our initial software (M2.2Dint) reduces

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

19: 6 · N.-Y. Xu et al.

Table I. Computational Complexity of Main Routines in Each Training Round of RankBoost

Main routines in each round
Pair-wise algorithm Document-wise algorithm

Naive M2 M2.2Dint Naive M3 M3.int

Weak learner
πcalculation - - O(Npair) O(Npair)
Best ranker O(NpairN f Nθ) O(NpairN f) O(Ndoc N f Nθ) O(NdocN f)

search

Weight update O(Npair)

the computational complexity to O(NpairN f) using 2-D integral histograms,2

and a complete run still needs about 150 hours.
For speedup, we implement the third method (M3) (as shown in Appen-

dix B), which tries to find the optimal r(f, θ) by generating a temporary
variable π(d) for each document. WeakLearn only needs to access π in a
document-wise manner for each feature and each threshold, that is,
O(Ndoc N f Nθ) in a straightforward implementation (noted as Naive M3). We
further reduce the computational complexity to O(Ndoc N f) using integral
histograms, and the new algorithm is noted as M3.int. The computational
complexities of these routines are listed in Table I for comparison. Substitut-
ing Npair, N f and Nθ with the benchmark values given in Section 4.1, it is clear
that M3.int has the smallest computational complexity among all algorithms.
Therefore, we focus on M3.int in this paper. Both software and hardware im-
plementations of M3.int are presented in the following section.

3. RANKBOOST ACCELERATOR DESIGN

In this section, we describe M3.int algorithm and its accelerator design.
Devising an efficient algorithm and mapping the algorithm to efficient hard-
ware architecture are the key challenges addressed in this work.

3.1 M3.int: Document-Wise WeakLearn Based on Integral Histograms

Weak learner M3 (as shown in Appendix B) tries to find the weak ranker with
optimal r(f, θ), by generating a temporary variable π(d) for each document. r

is defined as:

r(fk, θ
k
s) =

∑

d: fk(d)>θk
s

π(d) . (2)

A straightforward implementation calculates r in O(NdocN f Nθ) time per
round, and it is apparent that the calculation of r is the bottleneck for the
whole RankBoost algorithm. The first reason is that the number of r values
is huge. Assuming we take 400 rounds and 256 levels of threshold on the
dataset described in Section 4.1, there will be tens of millions |r(fk, θ

k
s)| values.

The second reason is that during r calculation, WeakLearn needs to iteratively
access a large amount of data, including all of the training feature values that
may occupy several gigabytes of memory.

2This algorithm accumulates D(d0, d1) to a 2-D integral histogram with (fi(d0), fi(d1)) as coordi-
nates in O(Npair), then selects the best threshold of fi in O(Nθ).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

FPGA Acceleration of RankBoost in Web Search Engines · 19: 7

M3.int efficiently calculates r with integral histograms in O(NdocN f) time.
This gives close to 2 orders of magnitude reduction in computational com-
plexity compared to Naive M3 in normal cases. The algorithm is described as
follows.

For each feature fk, k : 1...N f , the feature values { fk(d)|d : 1...Ndoc} for all
documents can be classified into Nbin bins. The boundaries of these bins are

θk
s =

f k
max − f k

min

Nbin

s + f k
min, s = 0, 1, ..., Nbin, (3)

where f k
max (resp. f k

min) is the maximum (resp. minimum) value over all fk in
the training dataset. Then each document d can be mapped to one of the bins
according to the value of fk(d):

Bink(d) = f loor(
fk(d) − f k

min

f k
max − f k

min

− 1) . (4)

The histogram of π(d) over feature fk is then built using:

Histk(i) =
∑

d:Bink (d)=i

π(d), i = 0, ..., (Nbin − 1) . (5)

Then, we can build an integral histogram by summing elements in the his-
togram from the right (i = Nbin − 1) to the left (i = 0). That is,

Integralk(i) =
∑

a>i

Histk(a), i = 0, ..., (Nbin − 1) . (6)

Based on Equations (2) to (5), it can be deduced that the value Integralk(i)
equals to r(fk, θ

k
i). The pseudo code of r calculation algorithm is summarized

in Figure 2. With this algorithm, we obtain more than 3 times acceleration over
M2.2Dint. However, runtime profiling (Section 4.3) reveals that r calculation
still occupies almost 99% of the CPU time. Thus, our attention is next focused
on this task. We observe that integral histograms for different features can be
built independently of each other. This feature-level parallelism makes it pos-
sible to accelerate the algorithm using various techniques, such as distributed
computing and FPGA-based accelerator, as described in the next subsection.

3.2 Mapping M3.int to FPGA-Based Accelerator

To further improve the performance of RankBoost, we investigate an im-
plementation of M3.int using FPGA. This section introduces the accelerator
system, describes the SIMD architecture for building the integral histograms,
and discusses the implementation issues.

3.2.1 STAR-III: FPGA acceleration board with PCI interface and large

on-board memory. The accelerator is a PCI card with FPGA and memories
(SDRAM, SRAM), as shown in Figure 3. On the board, an Altera Stratix-II
FPGA (EP2S60) is used as the core computation component. The on-board
memories include DDR SDRAM (1 GB, the maximum possible is 2 GB) and
32MB SRAM (not used in this work). The board is designed by the authors

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

19: 8 · N.-Y. Xu et al.

Fig. 3. STAR-III accelerator: FPGA-based PCI card with on-board memories.

Fig. 4. The SIMD architecture and PE micro-architecture for RankBoost accelerator.

of this paper, and several Chinese universities have got STAR-III boards for
various research projects.

3.2.2 Building Integral Histograms with an SIMD Architecture. The most
time-consuming part of the RankBoost algorithm is building the integral his-
tograms. We propose an SIMD architecture to separately build several integral
histograms with multiple PEs at the same time, as shown in Figure 4.

At the initialization step, the software on host computer sends the quan-
tized feature values to DDR memory through the PCI bus, PCI controller and
FPGA. Note that the data are organized in such a way as to enable stream-
ing memory access, making full use of the DDR memory bandwidth. In each
training round, the software calls WeakLearn to compute π(d) for every doc-
ument, and sends π(d) to the FIFO in FPGA. The control unit (CU) in FPGA
then instructs the PE arrays to build histograms and integral histograms, and
sends the results r(f, θ) to the output FIFO. CU is implemented as a finite-
state machine (FSM), which halts or resumes the pipeline in PEs depending
on the status of each FIFO. When CU indicates that the calculation of r has
completed, the software reads back these r values and selects the maximum.
The software then updates the distribution D(d0, d1) over all pairs and begins
the next round.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

FPGA Acceleration of RankBoost in Web Search Engines · 19: 9

To build the histogram for a single feature as described in Equation (4),
it needs to accumulate π values that has the same feature value. That is,
normalized feature value Bink(d) of the document d will select a ”bin” to
accumulate the π(d). In a naive implementation of PE, direct computation of
Equation (2) processes π(d) values for a single feature sequentially. When the
adjacent feature values Bink(di) and Bink(di+1) are the same, π(di) and π(di+1)
will be added to the same position in the histogram. The floating point adder
will then have to add bubbles to its pipeline to avoid read-after-write hazard.
The design shown in Figure 4 avoids such data hazard by building multiple (we
select 16) histograms in the pipeline and the dual port RAM in an interleaved
manner. That is, the feature values f k(dj) are organized in the sequence of
{ f0(d0), f1(d0), f2(d0), . . . , f15(d0), f0(d1), f1(d1), f2(d1), . . . , f15(d1), . . . , f0(dNdoc),
f1(dNdoc), . . . , f15(dNdoc)}. PE uses k, fk(dj) as address to read out value stored
in bin fk(dj) of histogram k, and adds it to current π(dj). The result of floating
point adder will be written back to the RAM with delayed read address
from shift registers. Histograms are built after all the feature values are
processed. Then CU (control unit) will send read/write address and control
signals to PE to build integral histograms in a similar interleaved manner.
This microarchitecture of PE (Figure 4) could support full-pipelined operation,
which is important for the hardware performance.

3.2.3 Efficient Mapping to STAR-III Board. The next challenging task is
to select the parameters for PE and PE array, such as input data precision,
and the number of pipeline stages, and the number of PEs. These parameters
should be selected to achieve the performance goal of the accelerator while
meeting multiple conflicting constraints such as area, frequency, memory
bandwidth limit, precision, scalability, etc. For example, increasing the num-
ber of PEs may not increase the system performance when the DDR memory
cannot send enough data to PE arrays due to limited bandwidth. After several
trial implementations and experiments, we made the following conclusions:

(1) Increasing the threshold levels to more than 256 will not optimize the gen-
eralization ability of the final strong ranker. Thus, each feature can be
quantized to 8 bit or less.

(2) The DDR memory on STAR-III can provide feature data in a bandwidth of
about 1GBps in streaming access mode.

(3) When features are quantized to 8 bit, PE arrays will get 1 G feature values
per second, that is, 1G/N f documents per second. Thus the bandwidth for
accessing π(d) values (single precision) is about 4Bytes × 1G/N f , which is
much lower than the bandwidth of PCI bus.

(4) After optimization with aggressive pipelining (16 stages) and high effort
place-and-route in Quartus-II software, the maximum frequency of PEs is
180MHz.

(5) Double precision floating point arithmetic doesn’t show better quality and
will slow down the training speed.

Following the above arguments, a PE array with 8 PEs will consume feature
values in the bandwidth of 1.44GBps, which is beyond the upper bound of the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

19: 10 · N.-Y. Xu et al.

Fig. 5. AJAW FPGA acceleration board.

DDR memory bandwidth on STAR-III. Thus, increasing the number of PEs to
more than 8 will not shorten the computation time further. So the final FAR1
configuration is selected as 8 PEs with a 16-stage pipeline, and its implemen-
tation in EP2S60 costs 11,357 (23%) ALUTs and 2,102K (83%) memory bits.

3.3 FAR2: Upgrade of FAR1 with New Accelerator Board

After FAR1 [Xu et al. 2007] is used by researchers in Microsoft Research Asia
for almost one year, users request us to upgrade the accelerator to support
even larger data set. The reason is that training data size has been doubled in
the past year, and it will continue growing in the future. Because the training
data are loaded into the on-board memory, we will have to increase the size of
on-board memory in the new implementation. This subsection describes how
we upgrade FAR1 with our new accelerator board, which is called AJAW.

3.3.1 AJAW: FPGA Acceleration Board with PCI Express Interface and

Large On-Board Memory. AJAW board is the second generation of FPGA
acceleration boards designed in Platforms and Devices Center, Microsoft Re-
search ASIA. Several Chinese universities are developing applications on
AJAW boards. It is designed to utilize the state-of-art technologies to provide
a much more powerful acceleration platform than STAR-III (Section 3.2.1).
AJAW board has two DDR2 modules, which support up to 16GB capacity and
6.25GBps bandwidth. A Xilinx Virtex-5 LXT FPGA3 is used to provide PCI
Express interface with host computer. The FPGA has an embedded PCI Ex-
press endpoint hard core, which could support up to 8 lanes access. This host
interface solution can support up to 4GB/s bidirectional throughput in theory.
AJAW board continues to use Altera Stratix-II family FPGAs as the main com-
putation engine. The AJAW board is shown in Figure 5.

3.3.2 FAR2: Extending the SIMD Architecture to AJAW. AJAW board has
similar architecture with STAR-III board, so it is possible to reuse the FPGA
logic of FAR1 by extending the 8-way SIMD architecture proposed in sec-
tion 3.2.2. It is straightforward to increase the number of PEs in FPGA to
increase the throughput of processing the training data from SRAMs. The

3http://www.xilinx.com

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

FPGA Acceleration of RankBoost in Web Search Engines · 19: 11

Fig. 6. FAR2 FPGA architecture.

number of PEs is then doubled to 16, which simplifies the data path redesign
and achieves efficient resource usage. So, we accept 16-way SIMD architecture
for the RankBoost FPGA logic on AJAW board (called FAR2 logic).

One challenge of FAR2 logic is how to fully utilize the throughput provided
by the two DDR2 modules. That is, we need to efficiently combine the two
asynchronous data streams from two individual DDR2 modules into one syn-
chronous data stream. To achieve this, we design a MMU that connects PCI
Express interface, DDR2 modules and PEs, as shown in Figure 6. The MMU
handles storing data from PCIe interface to DDR2 modules, fetching data out
and feeding to PE arrays.

To write data to DDR2 memory, the major problem is how to dispatch syn-
chronous data from PCIe to two asynchronous DDR2 modules. PCIe and two
DDR2 modules are in three different clock domains, so we insert two asynchro-
nous FIFOs to separate them, and data from PCIe are alternately dispatched
to the two FIFOs. To read data from DDR2 memory, synchronizing different
datasteams is the major problem. We insert two read queues between DDR2
memory data port and PE arrays to smooth the synchronization variants. The
queues are written individually and read simultaneously.

4. RESULTS

This section presents the RankBoost accelerator performance models and the
performance experiments results.

4.1 Experiment Setup and Training Time Results

To compare the performance of different implementations, we use a benchmark
dataset whose parameters are shown in Table II.

The performance of each implementation is shown in Table III. We run the
RankBoost algorithm for 300 rounds, which is a typical length of training to
obtain a model with good ranking accuracy. The initial Naive M3 algorithm
(run on a Quad-Core Intel Xeon 2.33 GHz processor with 7.99 GB RAM) took
about 46 hours to complete the training rounds. The M3.int version took only
4.4 hours. The distributed version (refer to 4.4) with 4 computation threads

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

19: 12 · N.-Y. Xu et al.

Table II. Benchmark Dataset Parameters

Number of queries (Nq) 25,724

Number of documents (Ndoc) 1,196,711

Number of pairs (Npair) 15,146,236

Number of features (N f) 646

Original data size (MB) 2,992

Compressed data size (MB) 748

Table III. Time for a Complete Run of 300 Rounds

Implementation Time(hour) Speedup

SW(Naive M3) 46.06 1.00

SW(M3.int) 4.43 10.40

4-thread distributed SW(M3.int) 0.78 59.05

HW accelerator (FAR) 0.27 170.59

HW accelerator (FAR2) 0.17 270.94

further reduced the time to slightly below one hour. All these software im-
plementations are compiled using Microsoft Visual Studio 2005, optimized
for speed with SSE2 option. The first version hardware accelerator (FAR1)
plugged into a commodity PC (Dell GX620 3.00 GHz Intel Pentium 4 sys-
tem with 2GB RAM) took only 16 minutes, giving a speedup of around 171
times over the original software. With FAR2, the acceleration rate is further
improved to 271 times.

4.2 Performance Model

In this section, the performance models are deduced for software Naive M3,
software M3.int, hardware M3.int and the distributed M3.int. According to
the running process of RankBoost (Figure 2), all these implementations share
the same high level performance model:

ttotal = tini + Nround ∗ tround , (7)

where initialization time tini and per training round time tround are dependent
on the implementation. As the program initialization time tini for both single-
threaded software and hardware implementations are relatively small, we
model only the executing time of each training round (tround), which includes
3 main routines according to the computational complexities listed in Table I.
It can be concluded that implementations are different in the routine of best
ranker search.

Thus, for software Naive M3 and M3.int, we can use linear models to esti-
mate tround(NaiveM3) and tround(M3.int) as:

tround(NaiveM3) = αNpair + β0 N f Ndoc Nθ (8)

tround(M3.int) = αNpair + β1 N f Ndoc . (9)

The first term αNpair represents the time for π calculation and weight update,
and these two routines are the same for all 4 implementations. The second
term reflects the best ranker search routines in software.

For tround(HW) , the time for best ranker search can be divided into commu-
nication time tcomm.HW and computation time tcomp.HW . Here, communication

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

FPGA Acceleration of RankBoost in Web Search Engines · 19: 13

refers to the transfer of integral histograms from FPGA to host computer
through PCI (or PCI Express) in DMA mode. These histograms occupy 4N f Nθ

bytes RAM space. Thus, the time to transfer this amount of data can be noted
as tcomm.HW = aN f Nθ +b , where b is the system overhead of a single DMA trans-
fer. The computation time involves going through all data in the SDRAMs in
a streaming manner, and it is constraint be the SDRAM memory bandwidth.
So hardware computation time can be represented as tcomp.HW = βHW N f Ndoc,
where βHW is the reciprocal of SDRAM bandwidth, and N f Ndoc is the size of
compressed features in it. In summary, we have:

tround(HW) = αNpair + βHW N f Ndoc + aN f Nθ + b . (10)

The ratio tround(NaiveM3)/tround(HW) and tround(M3.int)/tround(HW) is therefore the
speedup obtained through acceleration.

The time model for the distributed implementation has a slightly differ-
ent format, as it involves a significant initialization time component for the
host machine to distribute feature data (N f Ndoc) to client computers. The per-
round best ranker search is handled by the clients, whereas the π calculation
and weight update remains on the host. The time performance model for the
complete run can be represented as:

ttotal(Dist) = γ N f Ndoc + Nround(αNpair + tcomp(Dist) + tcomm(Dist)) . (11)

Here, tcomp refers to the best ranker search time, and tcomm consists of (1) the
time for the host to send updated pair weights to all clients, and (2) the time for
the host to collect the result of best ranker search from all clients. Each client
is responsible for a portion of feature data, thus the distributed best ranker
search time can be modeled as:

tcomp(Dist) = maxm∈[1...Nthread](⌈
N f

Nthread

⌉Ndocβm) (12)

and the communication time is

tcomm(Dist) =

Nthread
∑

m=1

(cmNdoc + dm) . (13)

The speedup obtained through hardware acceleration over the distributed
implementation is given by the ratio ttotal(Dist)/(Nround ∗ tround(HW)).

4.3 Parameter Estimation and FAR1/FAR2 Performance

In order to estimate the parameters in our performance model, we measured
the processing time of the main routines on the benchmark dataset, averaged
over 300 rounds, as shown in Table IV. The “best ranker search” routine is
obviously the bottleneck task for M3.int software implementation, because it
occupies 98.7% of the per-round computation time. FAR1 accelerates this task
by 67.01 times, giving per-round speedup of 17.28 times.

We measured the runtime on datasets with varying Nq, Npair, N f , Ndoc

and Nθ settings. Then we apply linear regression to infer parameters in the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

19: 14 · N.-Y. Xu et al.

Table IV. Time (Seconds) of Main Routines in Each Round. Machine Specifications are as
Listed in Subsection 4.1. Optimized SW is Described in Subsection 4.6

Routine SW(M3.int) Optimized SW FAR1 FAR2

π calculation 0.110 0.110 0.176 0.137

Best ranker search 52.068 26.157
tcomp 0.719 tcomp 0.362
tcomp 0.058 tcomp 0.049

Weight update 0.958 0.959 2.122 1.375

Total time per-round 53.136 27.226 3.075 1.923

Fig. 7. Speedup of FAR1 over the software M3.int for each round. Execution times for varying
Npair, Ndoc and N f values are estimated using the derived performance model.

performance model. With the parameters and the model, the accelerator per-
formance on a certain dataset could be estimated. Here we take the speedup
ratio of FAR1 over software M3.int as an example. The surface in Figure 7 rep-
resents the estimated speedup (tround(M3.int)/tround(FA R1)) on datasets with fixed
N = 256 and varying Npair, Ndoc and N f . The values on Ndoc ∗ N f axis also
represent the size of compressed feature data to be loaded to the DDR memory
of the accelerator. The value of Ndoc ∗ N f ranges within [0, 2 × 109], because
the STAR-III board supports up to 2GB memory. As the feature data size in-
creases, more speedup is achieved. On the other hand, as Npair increases, the
time portion of π calculation and weight update will increase, and the whole
speedup will decrease.

FAR2 is upgraded from FAR1 to handel dataset that is larger than 1GB,
which is the maximum capacity of the DDR module we installed on FAR1 board
(STAR-III). To illustrate the performance of FAR2, we measured the accelera-
tion rate of FAR2 over the software implementation (Naive M3) on several real
world datasets, as shown in Figure 8. It can be concluded that FAR1/FAR2 ac-
celerators increased the training speed by 2 ∼ 3 orders of magnitude on MSN
search engine data, compared to the original software implementation on a
server.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

FPGA Acceleration of RankBoost in Web Search Engines · 19: 15

Fig. 8. Speedup of FAR2 over the software Naive M3 for each round. Datasets are selected from
real application.

Fig. 9. Speedup of FAR1 over the optimized software M3.int for each round.

4.4 Software Optimization and Distributed Software Performance

The dataset size for the software version is only limited by the capacity of
the hard disk, because it loads feature data from hard disk to memory only
when the feature is used in each round. However, disk access slows down
the software, and it is possible to achieve faster speed by loading all fea-
ture data beforehand, provided that we have enough user memory space to
store the whole data. The performance of this version is listed in Table III,
and the new derived speedup estimation is shown in Figure 9. We note
that FAR is still superior to the optimized software version in terms of
speed. Certainly, a distributed version of the optimized software could have
to support a larger dataset with high performance that is comparable to
FAR1/FAR2. To investigate this, we compute the speedup of the distrib-
uted implementation with increasing number of threads over single threaded

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

19: 16 · N.-Y. Xu et al.

Fig. 10. Distributed SW speedup over software Naive M3.

Table V. Power and Energy Consumption for RankBoost on Different Implementations

Implementations Power Time (hours) Energy (kWh)

1 computer (1×CPU) 200W 1535.33 307.07

1 computer (1×FAR1) 220W 9 1.98

1 computer (1×FAR2) 240W 5.67 1.36

2 computers (Dual-core, 4 threads) 400W 26 10.40

26 computer (Dual-core, 52 threads) 5200W 9 46.80

M3.int. Figure 10 shows the trend of the speedup, as estimated using the time
performance model described in Section 4.2. We see that around 52 threads are
needed to achieve the same speedup (17.28x) as FAR1. This is a relatively high
resource/power demand, which strengthens the case for our hardware acceler-
ator. Furthermore, because of the high communication cost and long initial
time, acceleration rate of distributed software is saturated to 20.82x as thread
number increases, which will never catch up with the FAR2 acceleration rate
(27.63x) on the same dataset.

4.5 Power Consumption Comparison

Power recently becomes an essential concern for implementations of large scale
computing in datacenters. Here we compare the energy (power × time) con-
sumption for running RankBoost (10,000 rounds) on different implementa-
tions, as listed in Table V. It can be concluded that FAR2 has the best energy
efficiency. To have the same time performance with FAR1, we have to use dis-
tributed software on 26 servers, which requires 23.64 times more energy than
FAR1 in a computer.

4.6 Algorithm Quality Experiments and New Opportunities Enabled by FAR

To compare the relevance quality of generated ranking models, we run Rank-
Boost with the same settings as RankNet. Ranking accuracy was measured by
Normalized Discounted Cumulative Gain (NDCG) [Jarvelin and Kekalainen

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

FPGA Acceleration of RankBoost in Web Search Engines · 19: 17

Fig. 11. NDCG comparison between RankNet and RankBoost.

2002]. As shown in Figure 11, RankBoost yields comparable results to
RankNet. This baseline performance, as computed using the algorithm in
Appendix A, has since improved significantly as more research effort are put
into it [Tsai et al. 2007; Qin et al. 2006]. Several FAR systems have been
successfully used by the Web Search and Mining Group in Microsoft Research
Asia. The speedup enabled by FAR has rendered RankBoost more attractive
than other candidate algorithms (such as RankNet and RankSVM). An appli-
cation for a commercial search engine requires about 200,000 rounds to obtain
a meaningful model, which takes FAR1 less than 2.5 days to complete. While
the distributed software on four servers will need a week to get the same result.
It is fair to say that our accelerator opens up the opportunity to accomplish
such compute-heavy tasks in much less time and expense.

5. CONCLUSIONS

This article describes our efforts in the design of FPGA-based accelerators for
the RankBoost algorithm in Web search engines. To build efficient accelera-
tors, we first optimized the RankBoost algorithm to reduce the computation
complexity and to make it suitable for parallel implementation in hardware
logic. Then we designed an efficient SIMD architecture to fully utilize the hard-
ware resources on our two generations of customized accelerator board. This
SIMD architecture can be easily scaled up to fit future accelerator board with
bigger memory and higher host bandwidth. We are also combining several
FPGA boards with our distributed software to handle more data with better
scalability.

Empirical results show that FAR accelerators can accelerate the original
software by 2 ∼ 3 orders of magnitude in commercial Web search datasets.
Compared to the software implementations, the FPGA-based accelerators
show great advantage in performance, cost and power consumption. It has
been successfully used by researchers in search relevance ranking and in some
commercial applications. Several Chinese universities are also developing
their own applications on our accelerator cards. Future work will also focus
on extending the experience of designing this accelerator to other similar ma-
chine learning algorithms.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

19: 18 · N.-Y. Xu et al.

APPENDIX

A. RANKBOOST FOR RELEVANCE RANKING

Given:

Nq queries {qi|i = 1, ..., Nq}.

Ni
q documents {di

j| j = 1, ..., Ni
q} for each query qi, where

∑Ni
q

i=1 Ni = Ndoc.

N f features { fk(di
j)|k = 1, ..., N f } for each document di

j.

Npair pairs (di
j1, di

j2) generated by ground truth rating R(qi, di
j) or Ri

j.

Initialize: initial distribution D1(di
j1, di

j2) over χ×χ

Do for t = 1, ..., T:
(1) Train WeakLearn using distribution Dt.
(2) WeakLearn returns a weak hypothesis ht, weight αt.
(3) Update weights: for ∀(d0, d1),

Dt+1(d0, d1) = Dt(d0,d1)exp(−αt(ht(d0)−ht(d1)))
Z t

where Z t is the normalization factor:
Z t =

∑

d0,d1
Dt(d0, d1)exp(−αt(ht(d0) − ht(d1))).

Output: the final hypothesis: H(x) =
∑T

t=1 αtht.

B. WEAKLEARN FOR RANKBOOST IN RELEVANCE RANKING (M3)

Given: Distribution D(d0, d1) over all pairs
Compute:

(1) For each document d, compute π(d) =
∑

d′(D(d′, d) − D(d, d′))
(2) For every feature fk and every threshold θk

s , compute r(fk, θ
k
s) =

∑

d: fk(d)>θk
s
π(d)

(3) Find the maximum |r∗(fk∗, θk∗

s∗)|
(4) Compute α = 1

2ln(1+r∗

1−r∗)

Output: weak ranking fk∗, θk∗

s∗ and α

ACKNOWLEDGMENTS

The authors would like to thank Qing Yu, Chao Zhang, Tao Qin, Vivy Suhendra
and Jian Ouyang for their support in this work, and Wei Lai, Jun-Yan Chen
and Tie-Yan Liu for their useful feedback. The authors would also thank our
editor Dwight Daniels for his wonderful work.

REFERENCES

BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. Addison Wesley.

BRIN, S. AND PAGE, L. 1998. The anatomy of a large-scale hypertextual web search engine.
Comput. Netwo. ISDN Syst. 30, 1-7, 107–117.

BURGES, C., SHAKED, T., RENSHAW, E., LAZIER, A., DEEDS, M., HAMILTON, N., AND

HULLENDER, G. 2005. Learning to rank using gradient descent. In Proceedings of the 22nd

International Conference on Machine Learning. ACM, New York, 88–96.

EL-GHAZAWI, T., BENNETT, D., POZNANOVIC, D., CANTLE, A., UNDERWOOD, K., PENNINGTON,
R., BUELL, D., GEORGE, A., AND KINDRATENKO, V. 2006. Is high-performance reconfigurable
computing the next supercomputing paradigm? In Proceedings of the ACM/IEEE Conference on

Supercomputing. ACM, New York, 219–228.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

FPGA Acceleration of RankBoost in Web Search Engines · 19: 19

FAN, W., GORDON, M. D., PATHAK, P., XI, W., AND FOX, E. A. 2004. Ranking function optimiza-
tion for effective Web search by genetic programming: An empirical study. In Proceedings of the

37th Hawaii International Conference on System Sciences. 8–16.

FREUND, Y., IYER, R., SCHAPIRE, R., AND SINGER, Y. 2003. An efficient boosting algorithm for
combining preferences. Mach. Learn. 4, 933–969.

FREUND, Y. AND SCHAPIRE, R. E. 1995. A decision-theoretic generalization of on-line learning
and an application to boosting. In Computational Learning, Lecture Notes in Computer Science,
vol. 904. Springer, Berlin, 23–37.

FUHR, N. 1989. Optimum polynomial retrieval functions based on the probability ranking
principle. ACM Trans. Inform. Syst. 7, 3, 183–204.

IYER, R. D., LEWIS, D. D., SCHAPIRE, R. E., SINGER, Y., AND SINGHAL, A. 2000. Boosting
for document routing. In Proceedings of the 9th International Conference on Information and

Knowledge Management. ACM, New York, 70–77.

JARVELIN, K. AND KEKALAINEN, J. 2002. Cumulated gain-based evaluation of ir techniques. ACM

Trans. Inform. Syst. 20, 4, 422–446.

JOACHIMS, T. 2002. Optimizing search engines using click through data. In Proceedings of the

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD). 133–142.

LAPTEV, I. 2006. Improvements of object detection using boosted histograms. In Proceedings of

British Machine Vision Conference.

LIU, X., ZHANG, L., LI, M., ZHANG, H., AND WANG, D. 2004. Boosting image classification with
lda-based feature combination for digital photograph management. Patt. Recogn. Special Issue
on Image Understanding for Digital Photos.

NALLAPATI, R. 2004. Discriminative models for information retrieval. In Proceedings of the 27th

Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval. ACM, New York, 1401–1406.

QIN, T., LIU, T.-Y., TSAI, M.-F., ZHANG, X.-D., AND LI, H. 2006. Learning to search Web pages
with query-level loss functions. In Microsoft Research Tech. rep.

SCHAPIRE, R. E. 1999. A brief introduction to boosting. In Proceedings of International Joint

Conference on Artificial Intelligence. 1401–1406.

SCHAPIRE, R. E. 2001. The boosting approach to machine learning: An overview. In Proceedings

of the MSRI Workshop on Nonlinear Estimation and Classification.

TSAI, M.-F., LIU, T.-Y., QIN, T., CHEN, H.-H., AND MA, W.-Y. 2007. Frank: a ranking method
with fidelity loss. In Proceedings of the 30th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval. ACM, New York, 383–390.

UNDERWOOD, K. AND HEMMERT, K. 2004. Closing the gap: Cpu and fpga trends in sustain-
able floating-point blas performance. In Proceedings of 12th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM’04). 219–228.

VIOLA, P. AND JONES, M. 2001. Robust real-time object detection. Tech. rep. in Compaq
Cambridge Research Lab.

XU, N.-Y., CAI, X.-F., GAO, R., ZHANG, L., AND HSU, F.-H. 2007. Fpga-based accelerator design
for rankboost in Web search engines. In Proceedings of the IEEE International Conference on

Field-Programmable Technology (FPT’07). 33–40.

Received June 2008; revised August 2008; accepted October 2008

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 4, Article 19, Pub. date: January 2009.

