Attacks on Memory Buffers
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¢ Buffer is a data storage area inside computer
memory (stack or heap)

e Intended to hold pre-defined amount of data
— If more data is stuffed into it, it spills into adjacent memory

o If executable code is supplied as “data”, victim’s machine
may be fooled into executing it — we'll see how

— Code will self-propagate or give attacker control over machine
@ First generation exploits: stack smashing
® Second gen: heaps, function pointers, off-by-one

¢ Third generation: format strings and heap
management structures




Stack Buffers
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buf

¢ Suppose Web server contains this function

void func (char *str) {

char buf[126];
strcpy (buf,str) ;

}
4 No bounds checking on strcpy()

¢ If str is longer than 126 bytes
e Program may crash
o Attacker may change program behavior
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Stack Buffers
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buf uh oh!

¢ Suppose Web server contains this function

void func (char *str) {

char buf[126];
strcpy (buf,str) ;

}
4 No bounds checking on strcpy()

¢ If str is longer than 126 bytes
e Program may crash
o Attacker may change program behavior
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¢ Suppose Web server contains this function

void func (char *str) {

int authenticated = 0;
char buf[126];

strcpy (buf,str) ;

}
¢ Authenticated variable non-zero when user has
extra privileges

€ Morris worm also overflowed a buffer to overwrite
an authenticated flag in in.fingerd
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¢ Suppose Web server contains this function

void func (char *str) {

int authenticated = 0;
char buf[126];

strcpy (buf,str) ;

}
¢ Authenticated variable non-zero when user has
extra privileges
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buf | (yeah!)
¢ Suppose Web server contains this function

void func (char *str) {

int authenticated = 0;
char buf[126];

strcpy (buf,str) ;

}
¢ Authenticated variable non-zero when user has
extra privileges

€ Morris worm also overflowed a buffer to overwrite
an authenticated flag in in.fingerd




Memory Layout
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® Text region: Executable code of the program
¢ Heap: Dynamically allocated data

¢ Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Addr 0x00...0 Addr OxFF..F
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® Text region: Executable code of the program
¢ Heap: Dynamically allocated data

¢ Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Top Bottom
<

Addr 0x00...0 Addr OxFF..F




Stack Buffers

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

¢ Suppose Web server contains this function

void func (char *str) { Allocate local buffer

(126 bytes reserved on stack)
char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

Caller’s frame

Addr OxFF..F
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¢ Suppose Web server contains this function

void func (char *str) { Allocate local buffer
(126 bytes reserved on stack)

char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

Jigr Caller’s frame

Args Addr OxFF..F
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¢ Suppose Web server contains this function

void func (char *str) { Allocate local buffer
(126 bytes reserved on stack)

char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

A ST | Caller’s frame
Args Addr OxFF...F

Execute code at this address after func() finishes
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¢ Suppose Web server contains this function

void func (char *str) { Allocate local buffer
(126 bytes reserved on stack)

char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

Saved SP | ret/IP| str H@ENIHaN il
Args Addr OxFF..F

Execute code at this address after func() finishes
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¢ Suppose Web server contains this function

void func (char *str) { Allocate local buffer
(126 bytes reserved on stack)

char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

buf Saved SP | ret/IP| str H@ENIHaN il
kLocaI %riablesJ Args  Addr OxFF..F

Execute code at this address after func() finishes




What If Buffer is Overstuffed?
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¢ Memory pointed to by str is copied onto stack...

void func (char *str) {

NOT i
char buf[126]; A strcpy does NOT check whether the string

at *str contains fewer than 126 characters
strcpy (buf,str) ;

}
¢ If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

buf Saved SP | ret/IP| str H@ENIHaN il
kLocaI %riablesJ Args  Addr OxFF..F
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¢ Memory pointed to by str is copied onto stack...

void func (char *str) {

. strcpy does NOT check whether the string
char buf [ 12 6] ! A at *str contains fewer than 126 characters
strcpy (buf,str) ;

}
¢ If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

\ . J

Local variables Args  Addr OxFF..F
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¢ Memory pointed to by str is copied onto stack...

void func (char *str) {
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at *str contains fewer than 126 characters
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\ . J

Local variables Args  Addr OxFF..F
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0 Suppose buffer contains attacker-created string

e For example, *str contains a string received from the
network as input to some network service daemon

iy Caller’s frame

| Addr OxFF..F

¢ When function exits, code in the buffer will be
executed, giving attacker a shell

e Root shell if the victim program is setuid root
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® Suppose buffer contains attacker-created string

e For example, *str contains a string received from the
network as input to some network service daemon

iy Caller’s frame

| Addr OxFF..F

In the overflow, a pointer back
into the buffer appears in
the location where the system
expects to find return address

¢ When function exits, code in the buffer will be
executed, giving attacker a shell

e Root shell if the victim program is setuid root




Executing Attack Code
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® Suppose buffer contains attacker-created string

e For example, *str contains a string received from the
network as input to some network service daemon

iy Caller’s frame

| Addr OxFF..F

Attacker puts actual assembly
instructions into his input string, e.g.,
binary code of execve("/bin/sh”)

In the overflow, a pointer back
into the buffer appears in
the location where the system
expects to find return address

executed, giving attacker a shell

¢ When function exits, code in the buffer will be

e Root shell if the victim program is setuid root




Buffer Overflow Issues
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® Executable attack code is stored on stack, inside
the buffer containing attacker’s string

e Stack memory is supposed to contain only data, but...

¢ Overflow portion of the buffer must contain correct
address of attack code in the RET position

e The value in the RET position must point to the
beginning of attack assembly code in the buffer

— Otherwise application will crash with segmentation violation

e Attacker must correctly guess in which stack position his
buffer will be when the function is called




Problem No Range Checking
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@ strcpy does not check input size

o strcpy(buf, str) simply copies memory contents into buf
starting from *str until "\0"” is encountered, ignoring
the size of area allocated to buf

¢ Many C library functions are unsafe
o strcpy(char *dest, const char *src)
o strcat(char *dest, const char *src)
e gets(char *s)
e scanf(const char *format, ...)
o printf(const char *format, ...)




Does Range Checking Help?
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® strncpy(char *dest, const char *src, size_t n)

o If strncpy is used instead of strcpy, no more than n
characters will be copied from *src to *dest

— Programmer has to supply the right value of n

@ Potential overflow in htpasswd.c (Apache 1.3):

® Published “fix"” (do you see problem?):

. strncg (record, user MAX STRING LEN-1);
strca %record

strncat (record, cpw MAX_STRING_LEN 1);

strcpy(record,user);

Copies username (“user”) into buffer (“record”),
Strcat(record et then appends “:” and hashed password (“cpw”)
strcat(record,cpw) o
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Off-By-One Overflow
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¢ Home-brewed range-checking string copy

char buffer[512]; int 1i;
for (1=0; i<=512; i++)

}

if (argc==2)

void notSoSafeCopy (char *input)

buffer[i] = input[i];
void main (int argc, char *argv|[]) {

notSoSafeCopy (argv[l]) ;

{

e
.

(N
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Off-By-One Overflow
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¢ Home-brewed range-checking string copy
void notSoSafeCopy (char *input) {

. . This will copy 513
char buffer [512] ; i1nt 1; characters into

for (i=0; 1@512 ;id+) buffer. Oops!
buffer[i] = input[i];

}
void main (int argc, char *argv|[]) {
if (argc==2)
notSoSafeCopy (argv[l]) ;
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Off-By-One Overflow
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¢ Home-brewed range-checking string copy
void notSoSafeCopy (char *input) {

. . This will copy 513
char buffer [512] ; i1nt 1; characters into

for (i=0; 1@512 ;id+) buffer. Oops!
buffer[i] = input[i];

}
void main (int argc, char *argv|[]) {
if (argc==2)
notSoSafeCopy (argv[l]) ;

}

¢ 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame

e On little-endian architecture, make it point into buffer
o RET for previous function will be read from buffer!
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Memory Layout
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® Text region: Executable code of the program
¢ Heap: Dynamically allocated data

¢ Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Top Bottom
<

Addr 0x00...0 Addr OxFF..F
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Function Pointer Overflow

® C uses for callbacks: if pointer to F
is stored in memory location P, then another
function G can call F as (*P)(...)

Buffer with attacker-supplied Callback

input string pointer

A A
’ NS A}

Heap

|

Legitimate function F

(elsewhere in memory)
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Format Strings in C
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@ Proper use of printf format string:
. int foo=1234;

printf (“"foo = $d in decimal, %X in hex”,foo,foo); ..

— This will print

foo = 1234 in decimal, 4D2 in hex

@ Sloppy use of printf format string:

. char buf[l4]=“Hello, world!'”;

printf (buf) ;
// should’ve used printf (“%s”, buf); ..

— If buffer contains format symbols starting with %, location
pointed to by printf’s internal stack pointer will be interpreted as
an argument of printf. This can be exploited to move printf’s
internal stack pointer.
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Vlewmg Memory
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¢ %x format symbol tells printf to output data on
stack

.. printf (“Here is an int: %x”,1i); ..

¢ What if printf does not have an argument?

.. char buf[l6]=“"Here is an int: %x”;

printf (buf); ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if crypto key, password, ...?)

¢ Or what about:

.. char buf[l6]=“Here is a string: %s”;

printf (buf),; ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string
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¢ %n format symbol tells printf to write the number
of characters that have been printed

.. printf (“Overflow this!%n”,6 &myVar) ; ..

— Argument of printf is interpeted as destination address
— This writes 14 into myVar (“Overflow this!” has 14 characters)

¢ What if printf does not have an argument?
.. char buf[l6]=“Overflow this!%n”;

printf (buf) ; ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as address into which the number of characters will
be written.
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¢ disassemble
® run
¢ continue
¢ break
e break main
e break *0x08048643
¢ step / stepi
¢ info register
¢ X
e X/200x buf
e Xx/200i buf

e X/200a buf
e Xx/200x $sp - 16
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