Attacks on Memory Buffers

= AV & ot [~ L AV S B AN S NS e W

¢ Buffer is a data storage area inside computer
memory (stack or heap)

e Intended to hold pre-defined amount of data
— If more data is stuffed into it, it spills into adjacent memory

o If executable code is supplied as “data”, victim’s machine
may be fooled into executing it — we'll see how

— Code will self-propagate or give attacker control over machine
@ First generation exploits: stack smashing
® Second gen: heaps, function pointers, off-by-one

¢ Third generation: format strings and heap
management structures

Stack Buffers

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

buf

¢ Suppose Web server contains this function

void func (char *str) {

char buf[126];
strcpy (buf,str) ;

}
4 No bounds checking on strcpy()

¢ If str is longer than 126 bytes
e Program may crash
o Attacker may change program behavior

Stack Buffers

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

buf

¢ Suppose Web server contains this function

void func (char *str) {

char buf[126];
strcpy (buf,str) ;

}
4 No bounds checking on strcpy()

¢ If str is longer than 126 bytes
e Program may crash
o Attacker may change program behavior

Stack Buffers

O NG D e N T NG O e O T T G L B e N T TN L B e N T TN D)

buf uh oh!

¢ Suppose Web server contains this function

void func (char *str) {

char buf[126];
strcpy (buf,str) ;

}
4 No bounds checking on strcpy()

¢ If str is longer than 126 bytes
e Program may crash
o Attacker may change program behavior

Changlng Flags

LSS 5 N S ARSI 6 RO S AR

WA ENE s NN S NS WA b2 BN B NN S AN R 2 NG o NN S A B b

buf

i NS

¢ Suppose Web server contains this function

void func (char *str) {

int authenticated = 0;
char buf[126];

strcpy (buf,str) ;

}
¢ Authenticated variable non-zero when user has
extra privileges

€ Morris worm also overflowed a buffer to overwrite
an authenticated flag in in.fingerd

Changing Flags

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

buf

¢ Suppose Web server contains this function

void func (char *str) {

int authenticated = 0;
char buf[126];

strcpy (buf,str) ;

}
¢ Authenticated variable non-zero when user has
extra privileges

€ Morris worm also overflowed a buffer to overwrite
an authenticated flag in in.fingerd

Changlng Flags

TR T AR P O NN T TN AR SR NN TS IR O),

L2 NS i N S AR B b INGS e R S A B b AN

buf |

¢ Suppose Web server contains this function

void func (char *str) {

int authenticated = 0;
char buf[126];

strcpy (buf,str) ;

}
¢ Authenticated variable non-zero when user has
extra privileges

€ Morris worm also overflowed a buffer to overwrite
an authenticated flag in in.fingerd

Changlng Flags

TR T AR P O NN T TN AR SR NN TS IR O),

L2 NS i N S AR B b INGS e R S A B b AN

buf | (yeah!)
¢ Suppose Web server contains this function

void func (char *str) {

int authenticated = 0;
char buf[126];

strcpy (buf,str) ;

}
¢ Authenticated variable non-zero when user has
extra privileges

€ Morris worm also overflowed a buffer to overwrite
an authenticated flag in in.fingerd

Memory Layout

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

® Text region: Executable code of the program
¢ Heap: Dynamically allocated data

¢ Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Addr 0x00...0 Addr OxFF..F

Memory Layout

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

® Text region: Executable code of the program
¢ Heap: Dynamically allocated data

¢ Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Top Bottom
<

Addr 0x00...0 Addr OxFF..F

Stack Buffers

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

¢ Suppose Web server contains this function

void func (char *str) { Allocate local buffer

(126 bytes reserved on stack)
char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

Caller’s frame

Addr OxFF..F

Stack Buffers

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

¢ Suppose Web server contains this function

void func (char *str) { Allocate local buffer
(126 bytes reserved on stack)

char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

Jigr Caller’s frame

Args Addr OxFF..F

Stack Buffers

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

¢ Suppose Web server contains this function

void func (char *str) { Allocate local buffer
(126 bytes reserved on stack)

char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

Args Addr OxFF..F

Stack Buffers

NS 5 TR S A S i o Lt NG 5 N S A B b ENE 8 RS A B b SN s RO S ARG b SN Y

¢ Suppose Web server contains this function

void func (char *str) { Allocate local buffer
(126 bytes reserved on stack)

char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

A ST | Caller’s frame
Args Addr OxFF...F

Execute code at this address after func() finishes

NS 6 T3 J A R b INE s BN S ARG R b SN

T R B o e N T T R P S NN TR T R TR TN

¢ Suppose Web server contains this function

void func (char *str) { Allocate local buffer
(126 bytes reserved on stack)

char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

Saved SP | ret/IP| str H@ENIHaN il
Args Addr OxFF..F

Execute code at this address after func() finishes

BNE 6~ S X NS B S SN i AN S NS S S N

b A NN S ARG B A SNG A NN S NG B A SNE A RN S RS B b SN

¢ Suppose Web server contains this function

void func (char *str) { Allocate local buffer
(126 bytes reserved on stack)

char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

buf Saved SP | ret/IP| str H@ENIHaN il
kLocaI %riablesJ Args Addr OxFF..F

Execute code at this address after func() finishes

What If Buffer is Overstuffed?

& s NN L AT R NG

¢ Memory pointed to by str is copied onto stack...

void func (char *str) {

NOT i
char buf[126]; A strcpy does NOT check whether the string

at *str contains fewer than 126 characters
strcpy (buf,str) ;

}
¢ If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

buf Saved SP | ret/IP| str H@ENIHaN il
kLocaI %riablesJ Args Addr OxFF..F

What If Buffer is Overstuffed?

N T T R B e N T T R D e NN T T R P S NN T T T AR M S NN TR TN AR PSR N

¢ Memory pointed to by str is copied onto stack...

void func (char *str) {

. strcpy does NOT check whether the string
char buf [12 6] ! A at *str contains fewer than 126 characters
strcpy (buf,str) ;

}
¢ If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

\ . J

Local variables Args Addr OxFF..F

What If Buffer is Overstuffed?

N T T R B e N T T R D e NN T T R P S NN T T T AR M S NN TR TN AR PSR N

¢ Memory pointed to by str is copied onto stack...

void func (char *str) {

char buf [12 6] . A strcpy does NOT check whether the string

at *str contains fewer than 126 characters
strcpy (buf,str) ;

}
¢ If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

\ . J

Local variables Args Addr OxFF..F

Executlng Attack Code

N T T R B e N T T R D e NN T T R P S NN T T T AR M S NN TR TN AR PSR N

0 Suppose buffer contains attacker-created string

e For example, *str contains a string received from the
network as input to some network service daemon

iy Caller’s frame

| Addr OxFF..F

¢ When function exits, code in the buffer will be
executed, giving attacker a shell

e Root shell if the victim program is setuid root

Executing Attack Code

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

® Suppose buffer contains attacker-created string

e For example, *str contains a string received from the
network as input to some network service daemon

iy Caller’s frame

Addr OxFF..F

¢ When function exits, code in the buffer will be
executed, giving attacker a shell

e Root shell if the victim program is setuid root

Executing Attack Code

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

® Suppose buffer contains attacker-created string

e For example, *str contains a string received from the
network as input to some network service daemon

iy Caller’s frame

| Addr OxFF..F

In the overflow, a pointer back
into the buffer appears in
the location where the system
expects to find return address

¢ When function exits, code in the buffer will be
executed, giving attacker a shell

e Root shell if the victim program is setuid root

Executing Attack Code

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

® Suppose buffer contains attacker-created string

e For example, *str contains a string received from the
network as input to some network service daemon

iy Caller’s frame

| Addr OxFF..F

Attacker puts actual assembly
instructions into his input string, e.g.,
binary code of execve("/bin/sh”)

In the overflow, a pointer back
into the buffer appears in
the location where the system
expects to find return address

executed, giving attacker a shell

¢ When function exits, code in the buffer will be

e Root shell if the victim program is setuid root

Buffer Overflow Issues

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

® Executable attack code is stored on stack, inside
the buffer containing attacker’s string

e Stack memory is supposed to contain only data, but...

¢ Overflow portion of the buffer must contain correct
address of attack code in the RET position

e The value in the RET position must point to the
beginning of attack assembly code in the buffer

— Otherwise application will crash with segmentation violation

e Attacker must correctly guess in which stack position his
buffer will be when the function is called

Problem No Range Checking

N T T R B e N T T R D e NN T T R P S NN T T T AR M S NN TR TN AR PSR N

@ strcpy does not check input size

o strcpy(buf, str) simply copies memory contents into buf
starting from *str until "\0"” is encountered, ignoring
the size of area allocated to buf

¢ Many C library functions are unsafe
o strcpy(char *dest, const char *src)
o strcat(char *dest, const char *src)
e gets(char *s)
e scanf(const char *format, ...)
o printf(const char *format, ...)

Does Range Checking Help?

1 M2 NG G RS AT R b NG s RO S AT B b NG s IR S AT B b NG s RO S AR B b NS

® strncpy(char *dest, const char *src, size_t n)

o If strncpy is used instead of strcpy, no more than n
characters will be copied from *src to *dest

— Programmer has to supply the right value of n

@ Potential overflow in htpasswd.c (Apache 1.3):

® Published “fix"” (do you see problem?):

. strncg (record, user MAX STRING LEN-1);
strca %record

strncat (record, cpw MAX_STRING_LEN 1);

strcpy(record,user);

Copies username (“user”) into buffer (“record”),
Strcat(record et then appends “:” and hashed password (“cpw”)
strcat(record,cpw) o

10

Off-By-One Overflow

N T T B e N T T s e e N T T R P S NN T T R P S NN TS TR B

¢ Home-brewed range-checking string copy

char buffer[512]; int 1i;
for (1=0; i<=512; i++)

}

if (argc==2)

void notSoSafeCopy (char *input)

buffer[i] = input[i];
void main (int argc, char *argv|[]) {

notSoSafeCopy (argv[l]) ;

{

e
.

(N

11

Off-By-One Overflow

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

¢ Home-brewed range-checking string copy
void notSoSafeCopy (char *input) {

. . This will copy 513
char buffer [512] ; i1nt 1; characters into

for (i=0; 1@512 ;id+) buffer. Oops!
buffer[i] = input[i];

}
void main (int argc, char *argv|[]) {
if (argc==2)
notSoSafeCopy (argv[l]) ;

11

Off-By-One Overflow
NG TR TN O VS NN TR NG R VR NEN TR NN R VST O

o NS AT B b BN s NN L ARG 2 NS]

¢ Home-brewed range-checking string copy
void notSoSafeCopy (char *input) {

. . This will copy 513
char buffer [512] ; i1nt 1; characters into

for (i=0; 1@512 ;id+) buffer. Oops!
buffer[i] = input[i];

}
void main (int argc, char *argv|[]) {
if (argc==2)
notSoSafeCopy (argv[l]) ;

}

¢ 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame

e On little-endian architecture, make it point into buffer
o RET for previous function will be read from buffer!

11

Memory Layout

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

® Text region: Executable code of the program
¢ Heap: Dynamically allocated data

¢ Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Top Bottom
<

Addr 0x00...0 Addr OxFF..F

12

Function Pointer Overflow

® C uses for callbacks: if pointer to F
is stored in memory location P, then another
function G can call F as (*P)(...)

Buffer with attacker-supplied Callback

input string pointer

A A
’ NS A}

Heap

|

Legitimate function F

(elsewhere in memory)

13

Function Pointer Overflow

® C uses for callbacks: if pointer to F
is stored in memory location P, then another
function G can call F as (*P)(...)

Buffer with attacker-supplied Callback

input string pointer
— —"— ~ —A—
Heap attack code

|

Legitimate function F

(elsewhere in memory)

13

Function Pointer Overflow

® C uses for callbacks: if pointer to F
is stored in memory location P, then another
function G can call F as (*P)(...)

Buffer with attacker-supplied Callback

input string pointer
- — N7 A \
Heap attack code overflow
A

Legitimate function F

(elsewhere in memory)

13

Format Strings in C

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

@ Proper use of printf format string:
. int foo=1234;

printf (“"foo = $d in decimal, %X in hex”,foo,foo); ..

— This will print

foo = 1234 in decimal, 4D2 in hex

@ Sloppy use of printf format string:

. char buf[l4]=“Hello, world!'”;

printf (buf) ;
// should’ve used printf (“%s”, buf); ..

— If buffer contains format symbols starting with %, location
pointed to by printf’s internal stack pointer will be interpreted as
an argument of printf. This can be exploited to move printf’s
internal stack pointer.

14

Vlewmg Memory

NS 5 B S AT B b NS s RO S A B b NS L ARG A NG s RO S A S b NG e R S A b AN

¢ %x format symbol tells printf to output data on
stack

.. printf (“Here is an int: %x”,1i); ..

¢ What if printf does not have an argument?

.. char buf[l6]=“"Here is an int: %x”;

printf (buf); ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if crypto key, password, ...?)

¢ Or what about:

.. char buf[l6]=“Here is a string: %s”;

printf (buf),; ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

15

N T T B e N T T s B o e W T T T R B e W T T R P S W T T R BT WO

¢ %n format symbol tells printf to write the number
of characters that have been printed

.. printf (“Overflow this!%n”,6 &myVar) ; ..

— Argument of printf is interpeted as destination address
— This writes 14 into myVar (“Overflow this!” has 14 characters)

¢ What if printf does not have an argument?
.. char buf[l6]=“Overflow this!%n”;

printf (buf) ; ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as address into which the number of characters will
be written.

16

|
[| I l I n
INEN TR TN O WS NN TR NG RO WS NEN TR NS RO VR A NS S " SN 35 NN 2

L L =5 T BT - W s e Y “n"
AN TR X ST TN NER Y STA NI

¢ disassemble
® run
¢ continue
¢ break
e break main
e break *0x08048643
¢ step / stepi
¢ info register
¢ X
e X/200x buf
e Xx/200i buf

e X/200a buf
e Xx/200x $sp - 16

17

