
Automating Functional Tests Using Selenium

Antawan Holmes and Marc Kellogg
Digital Focus

antawan.holmes@digitalfocus.com, marc.kellogg@digitalfocus.com

Abstract

Ever in search of a silver bullet for automated
functional testing for Web Applications, many folks
have turned to Selenium. Selenium is an open-source
project for in-browser testing, originally developed by
ThoughtWorks and now boasting an active community
of developers and users. One of Selenium’s stated
goals is to become the de facto open-source
replacement for proprietary tools such as WinRunner.
Of particular interest to the agile community is that it
offers the possibility of test-first design of web
applications, red-green signals for customer
acceptance tests, and an automated regression test bed
for the web tier.

This experience report describes the standard
environment for testing with Selenium, as well as
modifications we performed to incorporate our script
pages into a wiki. It includes lessons we learned about
continuous integration, script writing, and using the
Selenium Recorder (renamed IDE). We also discuss
how long it took to write and maintain the scripts in
the iterative development environment, how close we
came to covering all of the functional requirements
with tests, how often the tests should be (and were)
run, and whether additional automated functional
testing below the GUI layer was still necessary and/or
appropriate.

While no silver bullet, Selenium has become a
valuable addition to our agile testing toolkit, and is
used on the majority of our web application projects.
It promises to become even more valuable as it gains
widespread adoption and continues to be actively
developed.

1. Introduction

Automating functional tests is one of the traditional
problems facing software development projects.
Whereas automated unit testing has achieved deep
traction, in agile and non-agile projects alike,
functional testing frequently is still done manually. In

recent years, tools such as Fit and FitNesse [1] have
helped make it easier to automate functional testing of
software applications. However, web applications
have long remained difficult to test because of multi-
tiered architecture, multiple browsers, and web
technologies such as JavaScript. Some teams have
chosen expensive solutions such as Mercury
Interactive’s WinRunner or Rational Robot (with
mixed results). Recently the open-source tool
Selenium, originally developed by ThoughtWorks, has
gained attention as a possible silver bullet for the
problems of automated testing for Web Applications.

We have been using Selenium on five different web
application projects for about a year. Our teams
consisted of 4 to 12 developers and 1 to 2 business
analysts, with the latter role responsible for writing our
Selenium tests (along with other responsibilities). One
of the projects used a .NET architecture, while the four
others were J2EE applications.

1.1. Background

Since our teams practice an agile methodology, we
are committed to writing acceptance tests before
beginning development on stories. Passing these tests
signals completion of a story, so we write functional
tests that capture these acceptance criteria. For a web
application, a functional test could be simply that a
user manually navigates through the application to
verify the application behaves as expected.

But since automating a test is the best way to make
sure it is run often, we try to automate our functional
acceptance tests whenever we can. And our holy grail
is to be able to write the tests before development, so
that the development team can have a runnable
verification that the story is complete.

Our team came to Selenium after using several
other tools to automate web testing. We tried the open-
source tools Canoo WebTest and HttpUnit, but found
them to be insufficient, as they could not handle most
instances of in-page JavaScript. The JavaScript
problem is solved by the proprietary tool QuickTest
Professional (from Mercury Interactive), which offers

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

record-and-play of test scripts and also runs tests
directly in a browser. However, we found that most of
our recorded scripts in QTPro would break after small
page changes, so a significant amount of script
maintenance was necessary. In addition, it was not
obvious that we would be able to write QTPro scripts
before development. As a result, we turned to
Selenium – it showed the promise of easy-to-write
scripts that were relatively easy to maintain and which
could be written before the code.

1.2. Selenium

Selenium is a web testing tool which uses simple
scripts to run tests directly within a browser. It uses
JavaScript and iframes to embed the test automation
engine into the browser. [2] This allows the same test
scripts to be used to test multiple browsers on multiple
platforms.

Figure 1: Selenium inside Internet Explorer

Selenium gives the user a standard set of commands
such as open (a URL), click (on an element), or type
(into an input box); it also provides a set of verification
commands to allow the user to specify expected values
or behavior. The tests are written as HTML tables and
run directly in the browser, with passing tests turning
green and failing tests turning red as the user watches
the tests run.

Because Selenium is JavaScript-based and runs
directly in the browser (the user can see the test
running), it overcomes some of the problems
encountered by users of HttpUnit or Canoo WebTest,
particularly problems related to testing JavaScript
functionality.

Two additional useful tools are also available for
use with Selenium:

1. the Selenium IDE (originally called the
Recorder), which allows users to navigate

their applications in Firefox and record their
actions, forming tests; and,

2. a “Remote Control” server which allows users
to write tests directly within the programming
language of their choice -- thus enabling
conditional logic within tests, try/catch
blocks, and other powerful functionality
available only in programming languages.

1.3. Getting started

Setting up Selenium is easy, although there is a
catch. The basic installation of Selenium must be
hosted by the same web server as the Application
Under Test (AUT). This restriction is due to the fact
that JavaScript has built-in security against cross-site
scripting. [3] After installation, the user simply needs
to begin writing and running tests.

2. Writing good tests

Selenium tests are not difficult to write. Because
Selenium allows the identification of elements using
the browser’s DOM object, the test can be written
using specific identifiers of the necessary element,
such as name, id, or xpath:

Table 1: Input data for a Selenium Test

type name=theField Text to submit
clickAndWait id=SubmitButton
assertText xpath=//h1/span Success!

This test might be written for an HTML page as simple
as:

<html>
<input name="theField">
<input id="SubmitButton" type="submit">
<h1>Success!</h1>
</html>

When the test is run, each command is highlighted
as it executed, and the assert steps turn red or green to
indicate success or failure. After the whole test is
complete, the test is marked as red or green in the
Suite.

2.1. Keeping tests self-contained

Selenium naturally supports a Suite of tests, and
tests for a certain story or iteration can be grouped
together in a Suite and run sequentially. But for

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

flexibility and maintainability, we strove to keep our
tests as independent and self-contained as possible.
This allowed us to move tests around and delete them,
as well as refactor tests mercilessly. We frequently
included one test inside many others to reduce code
duplication, and we used SetUp and TearDown tests
throughout our suites in order to get the application to
the desired state for testing one piece of functionality.
In fact, we found that our test-writing style became:

1. Write the tests before development;
2. After development, get them to green; then,
3. Refactor as mercilessly as possible.

By refactoring our tests, we reduce duplication of test
code and increase the maintainability of the test suite.

2.2. Writing our own extensions

Some would argue that the top benefit of an open
source project is that it can be licensed for free; cost is
undoubtedly a top reason, but it is the availability of
source code that makes open source what it is. [4] As
an open source project, Selenium allows end users to
write and share extensions or other code modifications,
even ones that are project-specific.

We took advantage of this freedom by writing some
custom functions to make some of our tests easier to
write. We created a special Selenium command that
selected a value from a JavaScript-based tree after
storing the parent element into a reusable variable.
Selenium is built to handle such user extensions, as it
merely requires adding the JavaScript code to one
Selenium file.

Using such custom functions also allowed us to
have more readable tests.

3. Putting Selenium tests into the wiki

After writing enough tests to have a successful
implementation for our projects, we found that there
were a few recurring pain points:

1. Keeping the tests organized was a nuisance;
2. Writing the tests in HTML was unnatural;

and,
3. Using variables across multiple tests was

tricky. We realized early on that using
variables would prevent us from having to
change every test when a field ID would
change, but it was tricky enough that we
weren’t doing it.

We decided that we could address all of these issues
by leveraging the power of our project wiki. A wiki is
a collaborative web environment where any user can
change the pages. It is our company’s standard project
center – where we capture all of our meeting notes,

requirements, stories, and tests. A wiki page can be
changed by any user and is open to the whole team,
including the stakeholders.

By including our Selenium tests in our wiki, we
gave them the highest possible profile (everyone can
see them, track them, and run them) and also were able
to integrate them with our other automated functional
tests – a byproduct of using FitNesse as our wiki.

3.1. FitNesse

FitNesse is an automated test tool, wiki, and web
server all rolled into one application. Its stated goal is
to enable customers, testers, and programmers to
collaboratively learn what their software should do,
and to automatically compare that to what it actually
does do. [5] Because any user can modify a page and
FitNesse keeps past versions of pages, all of the
members of the team, including the customers, use it as
a communication tool and everyone is an owner of the
content.

Figure 2: FitNesse Wiki

3.2. Integrating Selenium and FitNesse

Selenium’s built-in functionality is to read the tests
from a designated URL, so we pointed it to our wiki
suite. There were a couple of technical challenges,
such as authenticating with the wiki, but in the end we
were able to run our wiki suite and tests from
Selenium’s TestRunner.

Because the wiki was centrally located, a developer
or tester was also able to run their own instance of
Selenium and the application, using the central test
bed, and thus run the Selenium tests against their own
code at any time.

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

4. Continuous integration

After every developer checks in code, we run all of
our unit tests and integration tests to make sure that the
check-in did not break the build or the tests. Because
it’s important not to break the passing acceptance tests
as well, we wanted to add our Selenium tests to the
continuous integration build.

For our project’s integration builds, we used
CruiseControl. By setting up a deployment of our
application and Selenium on our integration machines,
we were able to include Selenium tests into integration
and nightly builds.

4.1. CruiseControl

CruiseControl is a framework a for continuous build
process. It incorporates Ant and source control tools to
allow immediate feedback on the build and test status
of a project’s checked-in code. [6]

Figure 3: A CruiseControl Build Result

Because our Selenium suites consisted of many
tests and involved many application-level transactions,
the entire suite tended to take a very long time to run
after several iterations (for one project, after 12
iterations – 24 weeks – the test suite took four hours to
run). As a result, it was impractical to include the
Selenium tests as part of our continuous integration
builds. However, we do run the tests as part of a
nightly build process, and we even run the tests against
instrumented code in order to report on test coverage
using Cobertura.

4.2. Cobertura

Cobertura is a code coverage tool for Java projects.
It calculates the percentage of code accessed by tests.
[7]

Figure 4: A sample Cobertura report

By including Selenium tests in the coverage
analysis for our projects, we had a very good sense of
which code in our projects was not being exercised by
the application’s various tests. For some of our
projects, developers were very interested in writing a
Selenium test in order to exercise code that they didn’t
feel was appropriate to test with JUnit tests. We ran
the Selenium tests against the nightly build, and
included the results in the coverage reports, tracking
the coverage analysis every morning.

By incorporating Selenium into our nightly builds,
with coverage included, they were a natural topic for
our stand-up meetings every day, and everyone on the
team saw value in them. On the other hand, because
our Selenium tests were only running nightly against
the newest builds, they didn’t provide the immediate
feedback that they otherwise might have. Below, we
discuss some ways that we’d like to leverage their
value even more.

5. Lessons learned

5.1. Selenium is open-source

We began using Selenium at version 0.5. Even
today, it is only at a 0.6 release, and is under active
development. Thus, certain stability and completeness
issues were to be expected. One of our team members
became an active contributor to the user forums, and
steady monitoring of the user and developer forums for
patches and usable extensions paid off. Our
recommendation is to remember that Selenium isn’t (or

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

at least doesn’t have to be) considered a black box. By
understanding, modifying, and extending its
functionality, we were able to make our tests more
readable and to handle multiple-step actions with one
command.

5.2. Value to the team and the end users

The greatest value to our teams was that Selenium
tests build up a regression test suite for the web layer
of the application through the iterations of the agile
process. This allowed developers to refactor the front-
end code without fear of breaking the previously
passing acceptance criteria for the application.

While our automated acceptance tests carried great
value, there were instances where a failing Selenium
test gave a false alarm. One of the most fundamental
problems of GUI testing is that the team can make a
change that keeps the application completely correct
(even “the same” to the end user), but break an
automated test. A simple example of such a situation
is renaming a button.

Because of this inherent fragility to front-end
testing, some team members tended to dismiss a
breaking Selenium test as “the test’s fault.” This
assessment was correct enough times to make these
tests less valuable as immediate feedback than, say, a
unit test. However, any given test did tend to stabilize
after an iteration, i.e. two weeks. The result was that
everyone did value the tests and the feedback, but we
would try to make sure that a failed test really was “the
code’s fault” before our 10:00 AM standup meeting.

In addition to having value throughout the
development lifecycle, Selenium tests were extremely
valuable artifacts to hand off to the client at the end of
iterations. Because our wiki directly linked stories
with Automated Acceptance tests, and because it was
very easy to demonstrate the Selenium tests really were
testing the application (by running and watching!), the
client was able to track the Selenium tests throughout
the project and see that they were all green at the end
of the iteration. And the fact that the tests carried so
much regression value gave the whole team comfort
that the rapidly-changing application was still stable.

5.3. Putting tests into suites

As mentioned above, our whole Suite of Selenium
Tests took, in some cases, many hours to run. We
found that keeping all of the tests in one Suite was the
easiest way to manage the tests, but that frequently we
wanted to group the tests in other ways (by story, by
iteration, by functionality set). FitNesse supports

Suites of Suites, but it was not clear how to get
Selenium to do the same.

Another feature we found desirable is the ability to
“tag” a test with multiple tags (e.g. “Iteration 3”, “User
Story A”, “Functionality Set 7”) and then be able to
easily see a Suite made up of tests with a given tag. In
general, members of our team did not run single tests
in an ad hoc manner, but instead waited for the report
from the nightly build. However, if we were able to
more easily identify the appropriate tests, a developer
could run just a small subset of them and get feedback
more quickly than waiting for the nightly build.

5.4. Test first?

Because Selenium tests are easy to write, a tester or
analyst can write the shell of a Selenium test very
quickly without knowing what the implementation will
be. Although we hoped that we could code to these
tests, the test would seldom turn green after
development. The reasons for this were usually minor:
a field wasn’t naturally identified by the name the
tester chose, or the test command used needed to be
clickAndWait instead of just click, etc. As a result,
we did not usually require that the developer code to
the test, and our process of writing the test before
development (for its specification value), but getting
the test green immediately after development,
emerged.

5.5. IDs, xpath and performance

The first project we used Selenium for was an
ASP.NET project, which automatically assigns IDs for
every element on the page. However, when we
switched to JSP-based applications, the IDs were only
present when the code specified it.

Selenium supports several different techniques for
identifying page elements, including names, IDs, xpath
and more. For the most part it was not difficult to find
a unique identification for an element, but occasionally
parsing the HTML was tedious. Some tools we found
valuable for this purpose were the DOM inspector,
XPath checker, and the Selenium Recorder. The
Selenium IDE is even better at this task. However,
frequently these tools do not find the “easiest”
representation of an element (for example, it might find
an xpath expression for an element instead of an id).
This would frequently contribute to longer-running
tests, which was one of the most significant problems
we encountered using Selenium. In general, using
xpath expressions tends to make tests take much longer
to run, especially in Internet Explorer. So we used IDs

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

or names where they existed, and went out of our way
to add them into our JSP code when possible.

Due to the processing and memory needs of
browsers running Selenium, as our suites grew larger
and contained more tests, we needed to have a more
robust environment. For example, one suite running
on a P2 – 600 MHz machine with 512MB of RAM
took over 11 hours to run. Upgrading our test
environment to a P4 - 3 GHz machine with 1GB RAM
took the time required down under 3 hours.

5.6. Ability to test all the requirements

We have used a number of testing tools in the past
and Selenium is among the best, if not the best, at
being able to perform every browser action that a user
can perform, including such events as onMouseOver
and onKeyPress. In addition, because Selenium allows
users to write their own extensions, it is easy to create
custom actions that do sophisticated manipulations.
There are some JavaScript-restricted actions, such as
downloading or uploading files, that are not supported,
but even these actions have some workarounds for
testing in some browsers.

Selenium doesn’t perform database tests or other
back-end tests, so we do need to do such tests using
FitNesse or other techniques. One recent addition to
the Selenium world, Selenium Remote Control,
addresses some of these issues by allowing the user to
write Selenium tests in other programming languages,
thus leveraging the power of Selenium within more
traditional automated test beds.

6. Summary

While Selenium is no silver bullet for the problems
facing the web application tester, it handles many of
the problems very well and doesn’t add significant new
ones. The active and growing community of users and
developers indicates that it is filling a need for a
variety of different user types, and widespread
adoption seems imminent. Selenium is certainly worth
evaluating for anyone looking to add a powerful web
testing tool to their toolkit.

7. Acknowledgements

We would like to thank Jeff Patton for his valuable
feedback and support in reviewing this paper
throughout its evolution. Additional thanks to Jeff
Nielsen for his encouragement and advice.

8. References

[1] FitNesse (Web Site: http://www.fitnesse.org)
[2] Selenium, (Web Site: http://www.openqa.org/selenium)
[3] Selenium Frequently Asked Questions, (Web Site:
http://wiki.openqa.org/display/SEL/FAQ)
[4] David DeWolf, private correspondence.
[5] FitNesse One Minute Description, (Web Site:
http://www.fitnesse.org/FitNesse.OneMinuteDescription)
[6] CruiseControl Home Page, (Web Site:
http://cruisecontrol.sourceforge.net)
[7] Cobertura, (Web Site: http://cobertura.sourceforge.net)

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

