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Abstract
Following the model of earlier studies of desktop software,
we perform a survey of thread-level parallelism in common
mobile applications. In particular, we study the Android and
iOS platforms, through a representative sample of 3rd-party
software in their respective app stores. Ultimately, we con-
clude that multiple cores may not be necessary for the ma-
jority of mobile experiences, observing that iOS apps tend to
have slightly greater average parallelism, with slightly lower
variance, than Android apps.
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1. Introduction
In chip engineering, there are two broad strategies for in-
creasing computational speed: design processors that can
sustain higher clock rates, and design systems that incorpo-
rate more processing cores. The former strategy has more or
less hit a plateau, as overheating and the limitations of mod-
ern cooling systems have come to present an inherent physi-
cal barrier. Therefore, in recent years, the majority of time
and energy has instead gone into developing more paral-
lel hardware: multiprocessors containing several cores each,
and computer systems that contain one or more of these
multprocessing chips. However, while this frontier contin-
ues to advance, its computational benefits remain limited by
the structure of the software that it serves: to take advantage
of parallel hardware, developers must practice good parallel
design patterns.

We suspect that many systems do not fully utilize their
parallel capacities, and, in this paper, we seek to extend the
existing body of research in this area into the realm of mobile
devices.

2. Background and related work
As a field of computer science, parallel design has a rela-
tively long history, dating back to the early days of servers
and networked computers. We draw our inspiration from a
couple of more recent studies.

2.1 Parallelism on desktop workstations
In 2010, Flautner et al. studied a range of desktop appli-
cations running on Microsoft Windows 7 and Apple’s OS
X Snow Leopard, analyzing for parallelism. [10] Using the
metric of Thread Level Parallelism, or TLP (see section
3.1), they concluded that 2-3 cores were more than sufficient
for most applications, and that current desktop applications
were not fully utilizing multi-core architectures.

Other studies in a similar vein date back to 2000, when
Flautner et al. first investigated the thread-level parallelism
and interactive response time of desktop applications. [9]
This study was done when multiprocessing was prevalent
mostly in servers and had only just begun to enter into desk-
top machines. While servers were considered to be a natural
fit for multiprocessing, due to the parallel nature of serving
multiple clients, the benefits of multiprocessing for desktop
applications were not obvious. Now, as multiprocessor sys-
tems are entering the smartphone market, we believe it is a
natural extension of these studies to ask whether the benefits
of multiprocessing are fully realized on mobile devices.

2.2 Multi-processing in Android phones
Since its initial release in May 2007, Android and the de-
vices that run Android OS have evolved rapidly. The first
commercially available phone to run Android was the HTC
Dream, released on October 22, 2008. [3] HTC Dream had
a Qualcomm MSM7201A chipset, including an ARM11 ap-
plication processor, ARM9 modem, and high-performance
digital signal processors. [12] In 2010, Google and several
handset manufacturers launched a line of smartphones and
tablets as their flagship Android devices under the name
Nexus. The Nexus One, manufactured by HTC in January
2010, was released with Android 2.1 and had a Qualcomm
QSD 8250 with a single core Qualcomm Scorpion CPU [5].
The world’s first Android device with a multi-core processor
was the LG Optimus 2X, which was equipped with NVIDIA
Tegra 2 system-on-a-chip and a 1 GHz dual-core processor.
[4]

The latest Samsung Galaxy S4 and Galaxy Note 3,
released respectively in March and September 2013, are
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equipped with multiple-core processors. All versions of
Galaxy S4 and Note 3 are equipped with quad-core pro-
cessors, and flagship models shipped to certain markets are
even equipped with octa-core processors. Both Galaxy S4
and Galaxy Note 3 can run the latest Android 4.3 Jelly Bean.
[1] [2]

2.3 Multi-processing in iPhones
Historically, Apple has been very tight-lipped about the in-
ternal components of its products – iPhone processors in-
cluded. However, with a little bit of investigative work, var-
ious third parties have determined that the first two iPhone
models, released in 2007 and 2008 respectively, both had
single-core processors clocked at around 412 MHz. In 2009,
with the release of the purportedly fast 3GS model (the ”S”
stood for ”speed”), the iPhone got a boost to 600 MHz. Em-
pirical data shows that subsequent iPhone models have had
variable speed processors, ranging from 750 MHz at the low
end (of the iPhone 4) to 1.3 GHz at the high end (of the
iPhone 5S). Speculation has it that these models use their
variable clock rates to conserve energy whenever possible,
an important consideration on mobile devices. [8]

It wasn’t until the iPhone 4S that Apple first began using
dual-core processors, with the introduction of their A5 chip
in 2011. They threw in an improved version of this chip,
along with a three-core graphical processor, in the iPhone 5.

Interestingly, it had been a year earlier, in 2010, that Ap-
ple released the first version of iOS to support multi-tasking,
iOS 4. This release was further notable for including Grand
Central Dispatch, a new technology that offered developers
a simple, high-level interface for efficient thread manage-
ment. The operating system first shipped on the iPhone 4,
which, with its single-core A4 processor, could not support
genuine parallelism. Nevertheless, the A4 was sufficiently
fast to achieve an illusion of concurrency, and the new op-
erating system and multi-threading technology helped pave
the way for the advent of the 4S the following year.

3. Methodology
In the interests of consistency, we have tried to model our
methodology on the aforementioned work by Flautner et al.
In this section, we will summarize that approach, then go on
to discuss the particularities of working with Android and
iOS systems. It is important to note that we carried out all
of our research using actual, physical phones. This hardware
allowed a far higher degree of accuracy and transparency in
our data collection than any kind of emulation would have
offered.

3.1 Metrics
There are several different common metrics for quantifying
parallelism in computer systems.[9][10] One simple and in-
tuitive metric is Machine Utilization, which is a measure of
the percentage of total processing resources that gets used

during execution. The formula for Machine Utilization is
shown in Equation 1:

Machine Utilization =

∑n
i=1 cii

n
(1)

In this equation, n is the number of thread contexts in
the subject machine, and ci is the fraction of time that i =
0, ..., n number of threads were executed concurrently. If
all processors in the machine were fully utilized during the
execution of the benchmark, Machine Utilization would be
1. This intuitive metric is, however, not suitiable for the type
of study we conducted. Applications on mobile devices tend
to incur a significant amount of idle time, when no threads
are being executed in any of the processors, due to a high
degree of user interactivity and I/O activity.

We therefore decided to use Thread Level Parallelism
(TLP), the same metric that Flautner et al. used in their pio-
neering research. TLP is a variation of Machine Utilization
that factors out idle time. The formula for TLP is given in
Equation 2:

TLP =

∑n
i=1 cii

1− c0
(2)

As in Equation 1, n is the number of thread contexts in
the subject machine, and ci is the fraction of time that i
threads were executed concurrently. TLP output values will
fall between 1 and n.

One last caveat we had to consider was how exactly to
measure c0, the idle time of the system. While this measure-
ment might be straightforward on a relatively simple operat-
ing system, both Android and iOS are constantly running a
host of background processes. Some of these processes are
indispensible to the active app, while others may serve en-
tirely unrelated functions of the system; (for example, they
might monitor cellular connectivity). Our goal was to mea-
sure each app in as much isolation as possible, but, since
we had no sure way of determining which background pro-
cesses were a part of the app and which weren’t, we ran all
of our TLP calculations twice. The first time, we assumed
that all background processes constituted ”idle” time for the
foreground app, while the second time we assumed that they
were ”active.” The reality is most likely somewhere in the
middle (see section 5 for further discussion).

3.2 Benchmarks
We conducted two separate sets of experiments. The first
was intended to encompass a broad and representative cross-
section of applications currently available on the Android
Market and iTunes app stores. Our sampling policy involved
selecting three applications from each of seven popular cat-
egories:
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1. Business

2. Entertainment

3. Games (Action)

4. Games (Puzzle)

5. Media

6. News

7. Social Networking

To ensure that these applications accounted for a substan-
tial amount of user experience, we pseudorandomly selected
them out of the 50 most popular free apps for each category.1

For our second set, we handpicked 10 apps that had cross-
platform success on both Android and iOS. We found two
such apps in each of five popular categories:

1. Entertainment

2. Games

3. Media

4. Productivity

5. Social Networking

The goal here was to conduct a more focused study of
how each mobile operating system handles parallelism dif-
ferently, by controlling for the particular software being run.

We collected data on each of these benchmarks in a three-
pass process. The first pass involved exploring basic func-
tionality without our debugging software running. This pass
enabled us to gain familiarity with each app; observe its
baseline behavior; and take care of setting up any accounts,
granting any permissions, completing any tutorials, etc. that
would be required on an initial run. During our second and
third passes, we recorded data while manually engaging the
central features of each app, as we had previously deter-
mined them. The purpose of recording in two passes was to
help control for noise associated with background processes
that we did not have control over. As much as possible, we
tried to reproduce the behavior of the second pass during the
third pass, based on careful notes of the input we had pro-
vided.

On Android, each of the second and third passes spanned
a duration of 90 seconds, while they spanned 45 seconds on
iOS (see section 3.4.1). This duration always included the
opening and start-up time for each app.

3.3 Android setup
3.3.1 Systrace
Systrace helps analyze the performance of an application
by capturing that application and other Android system pro-
cesses, then representing them in a graphical format.[6] The
tool comes with the Android Software Development Kit
(SDK), available for free at the official Android developer
website. In order for an application’s activity to be traced,
the application must be run on a physical device connected

1 We used the Python random library to generate pseudorandom values. We
had to reject a couple of apps on the basis of requiring preexisting accounts
or coroporate affiliations.

to a developing system via USB. Systrace, which runs as a
Python script on the developing machine, then establishes
a debugging connection via the Android Debugging Bridge
(ADB). Systrace calls ATrace, a native Android binary, via
ADB, and then ATrace in turn uses FTrace to capture ker-
nel events. FTrace is a Linux kernel tool for tracing function
execution in the Linux kernel. FTrace operates through in-
strumenting kernel functions; when the kernel is configured
to support function tracing, the compiler adds code to the
prologue of each function.[7] This routine does cause some
overhead to the application that is being traced, but quanti-
fying the exact amount of overhead is outside the scope of
this paper.

Systrace outputs combined data from the Android kernel
and generates an HTML report that gives an overview of ev-
ery activity that was processed on the device for a given pe-
riod of time. The output trace file shows a detailed overview
of CPU activity, including process name, start time, process
and thread id, and the CPU on which the process was exe-
cuted. We built a Python script of our own to parse the string
output data and compute the duration and TLP for all cores
in the subject system.

The version of Systrace that we used came included in
the Android SDK 4.2 (API 17).

3.3.2 Hardware
Our Android device was a Samsung Galaxy S3 I747, which
has a Qualcomm MSM8960 Snapdragon chipset with 1.5
GHz Advanced Dual-core. The operating system on the de-
vice was upgraded to version 4.1.2.

3.4 iOS setup
3.4.1 Instruments
Apple restricts most low-level access to system information
on iOS, but it does provide Instruments – a free, first-party
debugging package, bundled with every download of Ap-
ple’s Xcode IDE. Instruments incorporates a wide variety of
tools for measuring anything from backlight brightness and
battery usage to zombie processes and memory leaks. These
tools, which permit some degree of customization, are es-
sentially a front end to DTrace, a common dynamic instru-
mentation program for Unix-based systems. DTrace itself re-
lies on making modifications to the system kernel, but Apple
does not allow third-party developers that privilege directly.

Through Instruments, we ran the Time Profiler tool,
which claims to perform “low-overhead time-based sam-
pling of processes running on the system’s CPUs.” This tool
does not have a visible impact on the operation of most apps,
but it does seem to incur a fair amount of overheard on the
computer system that runs it. Although our initial goal had
been to record over 90-second time windows, trial runs indi-
cated that this duration would consistently cause Time Pro-
filer to hang indefinitely, requiring a force quit. We therefore
chose to record over a less taxing 45-second range, which
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was still unreliable, but resulted in crashes only around 50%
of the time. 2

We used the latest version of Instruments at the time of
our research, v5.0.1, running on Mac OS 10.9.

3.4.2 System preparation
In order to further reduce noise in our data and enhance
the isolation of the foreground app, we deactivated several
of the automatic features of iOS 7. Among these features
were Background App Refresh, (which schedules apps to
run time-limited tasks in anticipation of their next use) and
the parallax effect, (which acceses accelerometer data to re-
render UI elements at high frequency). Both of these features
are easily controlled via the Settings menu. Finally, we made
sure to open the iOS 7 app switcher and kill all apps before
the start of each data collection pass.

3.4.3 Hardware
Our test device was a 16 GB iPhone 4S with a dual-core
A5 processor running at around 800 MHz. At the time of
data collection, it had just over 1 GB of free space and was
running iOS 7.0.4. We connected it via USB 2.0 to a 2011
iMac with a 3.1 GHz Intel Core i5 processor and 8 GB of
RAM.

4. Experimental results and analysis
In total, we collected data on 52 distinct apps – 21 for An-
droid, 21 for iOS, and 10 that ran on both platforms. The
arithmetic mean of all TLP values we calculated was around
1.28, indicating a low, yet non-negligible degree of paral-
lelism among mobile apps. Generally speaking, TLP values
were significantly higher when calculated with background
processes counted as a part of the active process than when
calculated with background processes as idle. Likewise, TLP
values for iOS tended to be higher than those for Android,
on the order of 1.33 to 1.22 for TLP w/background and 1.15
to 1.00 for TLP w/o background.

At the extreme ends of our TLP w/background ranges, we
had values as low as 1.02 (for Android) and as high as 1.70
(also for Android). In fact, the variance for our Android data
overall (0.028) was significantly higher than the variance for
our iOS data (0.008).

Beyond these broad comparisons, there were no obvious
patterns that emerged in our data. Category or genre of app
does not appear to be a strong determinant of TLP, although
it is true that, in our direct comparison of 10 apps, both
platforms had maximal TLP values for Entertainment and
Social Networking apps and minimal TLP values for Games.

For a complete listing of our data, please consult the
tables and figures on pages 6-9 of this paper.

2 We confirmed this crash rate on multiple systems, suggesting that it was
not an error in our setup. It remains unclear why Instruments could not
handle the full 90 seconds, even despite a large buffer size.

5. Discussion
Trying to suss out the primary culprit behind our low TLP
values is a difficult business, since actual parallelism is a
product of hardware, application, and operating system com-
bined.

On the hardware side, even a phone equipped with a
multi-core processor may redirect its most parallel compu-
tations to a designated GPU, for which we have no source
of data. (There’s a decent chance that this divison of labor is
precisely why our Games category had some of the lowest
TLP on the CPU.) The hardware may also shut down one
of its cores altogether to conserve energy, preempting any
potential for parallelism. (Although, given that our devices
were receiving continuous USB power throughout data col-
lection, this possibility seems unlikely.)

On the application side, even an app with many threads
may be designed to offload the bulk of its processing to
a remote server, then retrieve the results in a less parallel
fashion. (On iOS, the Pho.to Lab app functioned exactly like
this.)

And, lastly, the operating system needs to do the actual
scheduling of those threads, and it is anything but predictable
how the OS will balance the work of a single application
alongside other duties of the system.

Amidst all this uncertainty, we can minimally conclude
that counting background processes as non-idle work, asso-
ciated with the foreground app, is the better metric to be us-
ing for TLP. On the Android side, parallelism was practically
nonexistent under the other metric, which runs contrary to
our intuition that at least a few apps should have good par-
allel design. Meanwhile, on the iOS side, the primary two
background processes we observed were SpringBoard and
backboardd, both of which handle crucial, UI-related ser-
vices for all apps, (such as processing taps and gestures on
the multi-touch display). The activity of these processes is
thus inherently tied to the activity of the foreground app, and
we would be remiss to count it as idle.

Further discussion of issues specific to one operating
system or the other follows below:

5.1 Android
The aforementioned high TLP value of 1.70 was a definite
anomaly, produced by an application called Drippler. Drip-
pler is a rather simple news and magazine app that pro-
vides daily tips and updates about the mobile devices with
which the user accesses it. We did not have access to the
source code, but, upon examining the trace data of the app,
we found out that it uses the thread pool function, which
is a built-in Java technology for generating and managing
threads. We suspect that thread pool was what enabled and
facilitated Drippler’s strongly parallel behavior.
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5.2 iOS
If there is one obvious reason why iOS apps would have con-
sistently higher TLP values than Android apps, it’s Grand
Central Dispatch (GCD). Managing pthreads and mutex
locks at a low level can be intimidating for many devel-
opers, resulting in a high barrier to entry for parallel design.
However, using GCD is a very straightforward process, for
which there exists a wealth of official documentation and
accessible tutorials. As a testament to the ubiquitousness of
this technology, it is an industry best practice for iOS devel-
opers to assign all heavy computation to background threads
via GCD, in order to avoid UI hangs. Thus it is logical to
assume both that GCD would increase the amount of paral-
lelism in an average iOS app and that it would yield fairly
consistent TLP values across the board, given that it is the
single go-to strategy for managing threads.

6. Future directions
For this paper, our goal was to study apps in isolation as
much as possible. This would allow us to determine whether
or not mobile developers were building good parallel struc-
ture into their own apps, on an individual basis. However,
these data alone cannot answer the broader question of
whether multiprocessors are right for smartphones. For in-
stance, it could be the case that typical usage of one of these
devices – which involves listening to music, checking e-
mail, tracking geolocation, and downloading software up-
dates all at once – actually yields far higher TLP, close to
2.00. In this case, multiprocessors would be an invaluable
component of mobile systems, even if individual app de-
velopers don’t know how to make good use of them. Thus,
future work might include recording data based on other
usage patterns.

Another obvious realm to explore would be the third
major mobile operating system: Windows Mobile. While
Windows-based phones currently hold less than 5% market
share, they are on the rise and already twice as prevalent as
the next closest runner-up (Blackberry).[11]

Finally, on all of these platforms, it would be worth col-
lecting additional data, both to increase the rigor of our ex-
isting conclusions and to look into related questions. These
questions might include: how consistent TLP results are
across many runs of the same app; what kinds of threading
behavior different apps exhibit; and how much parallelism is
handled by the GPU.

7. Conclusion
For the vast majority of mobile applications, having access
to two cores on a fast, modern multiprocessor seems to be
overkill. Either the current demand for software does not re-
quire it, or developers do not currently know how to meet a
demand that does. Nonetheless, there is reason to believe that
improved tools for handling multi-threading, such as Java
thread pools and Apple’s Grand Central Dispatch, may al-

ready be helping developers bridge the gap between physi-
cal capacity and realized potential. We believe that there re-
mains room for further progress on these sorts of high-level
technologies.
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Table 1: TLP data by category and operating system
(w/back. = counting background as part of the active process)

(w/o back. = counting background as idle)
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Figure 1

Table 2: Direct TLP comparison data
(calculated with background as part of the active process)
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Figure 2
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Figure 3
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