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Strategic Formation of Credit Networks
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Credit networks are an abstraction for modeling trust among agents in a network. Agents who do not directly
trust each other can transact through exchange of IOUs (obligations) along a chain of trust in the network.
Credit networks are robust to intrusion, can enable transactions between strangers in exchange economies,
and have the liquidity to support a high rate of transactions. We study the formation of such networks
when agents strategically decide how much credit to extend each other. We find strong positive network
formation results for the simplest theoretical model. When each agent trusts a fixed set of other agents and
transacts directly only with those it trusts, all pure-strategy Nash equilibria are social optima. However,
when we allow transactions over longer paths, the price of anarchy may be unbounded. On the positive
side, when agents have a shared belief about the trustworthiness of each agent, simple greedy dynamics
quickly converge to a star-shaped network, which is a social optimum. Similar star-like structures are found
in equilibria of heuristic strategies found via simulation studies. In addition, we simulate environments
where agents may have varying information about each others’ trustworthiness based on their distance in
a social network. Empirical game analysis of these scenarios suggests that star structures arise only when
defaults are relatively rare, and otherwise, credit tends to be issued over short social distances conforming
to the locality of information. Overall, we find that networks formed by self-interested agents achieve a high
fraction of available value, as long as this potential value is large enough to enable any network to form.
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1. INTRODUCTION

The study of strategic network formation seeks to understand the emergent behavior
and properties of a network when self-interested agents establish connections to one
another based on their local information. In general, establishing a connection incurs
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Fig. 1. Updating credit to process a transaction between u and w worth p units.

a cost but also yields some benefit to connected agents. The agents are deemed to
be utility maximizing, that is, they make decisions in order to maximize the difference
between their total benefit and their total cost. This problem has been studied in many
different settings [Anshelevich and Hoefer 2012; Bala and Goyal 2000; Corbo et al.
2006; Fabrikant et al. 2003; Jackson and Wolinsky 1996]. One can ask interesting
questions about the emergent properties of the networks formed in each setting: What
network topologies are feasible in equilibrium? How do equilibrium networks differ
from socially optimal ones? How does this depend upon the cost of forming an edge and
the benefit derived from having a connection? If there are multiple equilibria, how can
agents select among them? This article is an investigation into some of these questions
in the context of credit networks, an abstraction for modeling trust among agents.

1.1. Credit Networks

Credit networks model trust in terms of one agent’s willingness to perform services
for another without immediate compensation. We interpret services broadly as any
activity, for example, completing a task or delivering a product, that is costly for the
provider and beneficial for the recipient. Performing a service incurs a reciprocal obli-
gation which may get discharged directly or indirectly in subsequent interactions. The
general idea is that the agents keep track of levels of trust as credit balances, and
update these balances as services are provided and obligations discharged.

A credit network represents these credit relationships through a directed graph with
edge capacities. Nodes in this graph correspond to agents, and edges correspond to
credit relationships between them. An edge of capacity c from node u to node v indi-
cates that agent u extends c units of credit to agent v, or equivalently, u is committed
to accept IOUs issued by v up to value c. These IOUs can be thought of as obligations,
denominated in the issuer’s private currency. It is possible that in the future v will
refuse to honor its outstanding obligations, in which case v’s currency becomes worth-
less and u gets stuck with irredeemable IOUs. The capacity c bounds u’s loss in this
eventuality, and therefore can be viewed as a measure of u’s trust in v.

Credit commitments between trusting nodes also enable remote transactions, as il-
lustrated in Figure 1. Say node w wants p units of service from node u. Nodes u and w
can transact—even though u does not directly trust w—via the trusted intermediary
v. Assuming p ≤ min{c1, c2}, the payment proceeds by w issuing an IOU to v worth p
units, and v issuing an IOU to u worth p units. If, however, p > min{c1, c2}, the trans-
action fails. As a result of a successful transaction, the credit capacities cuv and cvw
decrease by p, representing the remaining credit commitments. In addition, the capac-
ities cvu and cwv both increase to p from zero, since v and w will accept the return of
their own IOUs as payment.

Thus arbitrary payments can be routed through a credit network by passing IOUs
along a chain of trusting agents. Observe that routing payments in credit networks is
identical to routing residual flows in single-commodity flow networks. Also note that
payment flows in the opposite direction of credit, so a payment merely results in a
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Strategic Formation of Credit Networks 3:3

redistribution of credit: buyers expend credit, sellers gain it, and intermediaries ex-
change credit between their neighbors, with the total credit in the network unchanged.

1.1.1. Origins of the Model. The credit network model was invented independently by
(at least) four distinct groups of researchers motivated by somewhat different issues
and applications, but arriving at the same essential elements.

— DeFigueiredo and Barr [2005] sought a reputation system with bounded loss from
coalitions of malicious users.

— Ghosh et al. [2007] aimed to support distributed payment and multi-user credit
checking for multi-item auctions.

— Karlan et al. [2009] wanted to construct an economic model of informal borrowing
networks.

— Mislove et al. [2008] were concerned with deterring spam.

A common thread in the objectives of these researchers was to capture a notion of
pairwise trust, representable in quantified terms. In each case, the trust measure is
grounded by interpreting the quantity as a capacity for transaction. That is, the degree
of trust in one agent for another is measured by how much it is willing to expose itself
to transactions with that counterpart. In other words, the model operationalizes trust
as an extension of credit, in a framework where a credit balance entitles an agent to
transact with the agent granting credit. The common underlying credit model of these
four proposals was first noticed by Dandekar et al. [2011], who introduced the unifying
term “credit network” and its formal definition. By introducing suitable definitions of
transaction, credit networks can support a wide variety of applications. For example,
the inventors enumerated before interpret transactions, respectively, as obtaining ref-
erences guaranteeing good behavior [DeFigueiredo and Barr 2005], paying for auction
winnings [Ghosh et al. 2007], borrowing an asset [Karlan et al. 2009], and communicat-
ing messages [Mislove et al. 2008]. Subsequent authors proposed using this framework
to support networked asynchronous bilateral trading [Liu et al. 2010], and bartering
of tutorial services [Limpens and Gillet 2011].

1.1.2. Properties. Routing payments along chains of trust ensures that agents hold
IOUs issued only by other agents that they directly trust. As a result, if an agent de-
faults on its outstanding obligations, the only agents that incur a loss are those that
extended credit to the defaulting agent. Thus losses from default are localized. More-
over, the total loss incurred is bounded by the total credit extended to the defaulting
agent. These properties make credit networks robust against two attacks to which cen-
tralized currency systems are vulnerable: whitewashing [Friedman and Resnick 2001],
and Sybil attacks [Friedman et al. 2007]. Viswanath et al. [2012] argue that, in fact,
all reputation schemes designed for Sybil tolerance have essentially been versions of
the credit network idea. They propose an approximation to the max-flow calculation
that enables scalability to very large networks.

The effectiveness of credit networks in supporting distributed transactions was most
powerfully demonstrated by Dandekar et al. [2011]. Their analysis posits that nodes
repeatedly transact with each other according to a known probability distribution. In
particular, they showed analytically and via simulations that, for several classes of
graphs and with symmetric transaction probabilities, the long-term transaction failure
probability in credit networks is comparable to that in equivalent centralized currency
systems. Thus, in addition to being robust against attacks by malicious agents, credit
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3:4 P. Dandekar et al.

networks also provide a high degree of liquidity: the ability to sustain long sequences
of transactions.

1.2. Formation of Credit Networks

Extending credit to other agents increases liquidity in the network, enabling more
profitable transactions to go through. However, it also entails risk, since a counterparty
might default on its outstanding obligations. This raises the natural question: if agents
rationally weigh these risks and benefits, what kinds of networks will they form? In
order to use credit networks for practical applications, it is critical to understand the
structural and economic properties of the credit networks formed by strategic agents.
We address this question in this article.

1.2.1. Our Setting. Agents play a one-shot game where they determine how much
credit to extend other agents, and then engage in repeated probabilistic transactions
over the formed credit network. They derive value from successful transactions. Ex-
tending credit to other agents increases transaction success probability, thus contribut-
ing to utility. On the other hand, when an agent defaults, it imposes losses on its
creditors up to the amount of the credit it received. Thus, an agent’s net utility is its
total value from successful transactions minus the utility loss from extending credit to
untrustworthy agents. We study several variants of this game with different models of
risk, both analytically and through simulations. Our simulations employ an approach
known as empirical game-theoretic analysis (EGTA) [Wellman 2006].

We start with a model of dichotomous risk, where agents divide their counterparts
into fully trusted and untrusted categories. We assume the trust relation is symmet-
ric, and consider it as arising from a social network represented by an undirected
graph. Agents trust their neighbors in the social network and are willing to extend
them credit. They consider everyone else untrustworthy, and consequently never ex-
tend credit to non-neighbors. Though the strict dichotomy surely oversimplifies, it may
approximate reality for situations where dealing with strangers is particularly risky
(e.g., where identities are weak and norms of good behavior are poorly established). It
may also capture heuristic behavior of agents who are highly risk averse or especially
prize simplicity in social rules.

We also study a model of global risk, which represents an opposite extreme to the
dichotomous risk model. Under global risk, each agent has a publicly known proba-
bility of default. This model captures situations involving small, densely interacting
social groups, or where there are institutions such as credit-reporting agencies that
systematically gather and disseminate relevant risk information.

Finally, we study a model of graded risk that bridges the gap between global and
dichotomous risk. Under this model, agents are related on a social network, and each
agent has a private default probability. Agents receive noisy signals about each other’s
probability of defaulting, and these signals are more informative for neighbors in the
social network.

1.2.2. Our Results.

Dichotomous Risk. Under dichotomous risk, when we allow only bilateral transac-
tions (i.e., transactions only between adjacent nodes in the social network, and pay-
ments routed only along the direct edge between nodes), we show that the formation
game is a potential game (Theorem 3.2). This implies that best-response dynamics
always converge to a pure-strategy Nash equilibrium (PSNE). Moreover, for a large,
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Strategic Formation of Credit Networks 3:5

natural class of transaction size distributions, we show that agents’ utilities are con-
cave in their credit allocations. This allows us to prove that every Nash equilibrium of
the game maximizes social welfare (Theorem 3.3). We further show that the credit net-
works generated by any two PSNE are cycle reachable from each other (Theorem 3.5),
which means that they support the same sequences of transactions [Dandekar et al.
2011].

With non-bilateral transactions, the game becomes significantly less well behaved:
it may not admit a PSNE (Theorem 3.8), and even when it does, the price of anarchy
(PoA) can be unbounded (Theorem 3.9).

Global Risk. Under global risk, we analyze several scenarios. First, we investigate
PoA and the structure of equilibria when each agent is limited to extend credit to at
most one other agent. We prove that, if we disallow the empty network as an outcome,
the PoA of the formation game is unbounded (Theorem 4.4), even though all PSNE net-
works have a star-like structure (Theorem 4.3). Instead we focus on the structure of
equilibria under two simple dynamics: sequential arrival and greedy dynamics. When
nodes arrive sequentially and create a single link, we show that a node u always ex-
tends credit to either the node v that arrived immediately before u or to the node
to which v extends credit (Theorem 4.6). Thus the resulting network has a comb-like
structure. Under greedy dynamics, nodes extend their entire credit budget to the node
that has the lowest risk of default. If the default probabilities are all distinct, this re-
sults in a star-like network structure, which is also the optimal structure in terms of
social welfare (Theorem 4.5). Thus, even though the PoA can be unbounded, nodes can
easily find the optimal network using greedy dynamics.

We also use empirical game-theoretic simulations to investigate a richer model of
global risk in which agents are not constrained to a single link or a fixed budget, and
transaction probabilities and values may be asymmetric. Under global risk, we find
star-like equilibrium networks under all conditions, but settings with high default
rates or low transaction surpluses also have empty network equilibria. In addition,
when default rates are low, transaction-dependent credit-issuing strategies can appear
in equilibrium.

Graded Risk. We address graded risk exclusively through empirical game simula-
tions. In this setting, the star-like equilibria disappear, highlighting the importance
of ensuring that central nodes are unlikely to default. Empty network equilibria are
present for exactly the same settings as under global risk, indicating that the condi-
tions under which agents issue no credit may not depend as strongly on the informa-
tion structure. Transaction-dependent equilibria arise under the same conditions as
for global risk as well as those with high transaction surplus.

Summary and Key Insights. The theoretical analyses demonstrate generally how
network formation depends on environmental conditions. We get strong positive re-
sults for dichotomous risk and symmetric bilateral transactions but, once we allow
transactions on paths, the worst-case network formation performance becomes arbi-
trarily bad. Our simulation-based analysis therefore investigates how credit network
formation by self-interested agents might play out in representative, less technically
constrained environments. The results confirm that the worst case indeed cannot be
avoided in that networks may simply fail to form if the benefits are not sufficiently
large. On the other hand, we find that when the potential value of the network is large,
self-interested agents will pursue strategies that lead to networks that achieve the
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3:6 P. Dandekar et al.

lion’s share of this benefit. In other words, in complex environments it is too much to
expect perfect network formation or even guaranteed lower bounds on relative perfor-
mance, but when demand for profitable transactions is present, self-interested agents
will form viable credit networks.

1.2.3. Comparison to Other Network Formation Games. The various models of strategic
credit network formation that we analyze relate to an extensive literature on net-
work creation games. Our simplest model, with dichotomous risk and bilateral trans-
actions, can be viewed as a special case of a network contribution game as defined by
Anshelevich and Hoefer [2012]. In a network contribution game, agents allocate a
budget of effort among their neighbors and receive a reward for each link that is in-
creasing in the sum of their effort and their neighbor’s. The authors state a result
that generalizes Theorem 3.2 but otherwise focus on bilateral link creation models.
Because credit edges are by nature directed, our analysis of this game focuses on the
implications of equilibria under unilateral deviations.

When we lift the constraint of bilateral transactions, path lengths become a relevant
strategic consideration. Fabrikant et al. [2003] studied a model where agents benefit
from reducing their distance to others in the network. In their network creation games,
agents incur costs for creating edges and also for the sum of their distances to all other
nodes. In a credit network, agents care about the existence and the capacity of paths,
as well as the likelihood of neighbors defaulting. In both the global and graded risk
settings, our results depend more strongly on considerations of default risk than on
distance between nodes.

Network formation in the presence of risk was studied by Blume et al. [2011] in a
model motivated by financial contagion and epidemic diseases. In their setting, nodes
derive utility only from direct edges, whereas risk is contagious (i.e., failure of distant
nodes is also a source of risk). The credit network model flips this: nodes derive benefit
from transactions along direct as well as multihop paths, whereas only direct edges
are sources of risk.

2. MODEL AND DEFINITIONS

Let V denote the set of n agents, and equivalently, the n nodes of the formed credit
network.1

2.1. Game Model

Agents play a one-shot game where they choose credit allocations to form an initial
network G. An edge from node u to node v of capacity cuv(G) represents the credit
extended by agent u to agent v in the network G. Thus G is a directed graph with
edge capacities. Agents choose how much credit to extend to whom based on public
or private information about transactions (Section 2.2), as well as the default risk of
other agents (Section 2.4). The credit agent u offers may be constrained by a budget
Bu ≥ 0, representing the total credit that u can extend to other agents.

A strategy for agent u is a mapping of u’s public and private information to a feasible
credit allocation {cuv(G), v ∈ V : cuv(G) ≥ 0 and

∑
v∈V cuv(G) ≤ Bu}. The combination

of agent strategies applied to the given information induces the initial network G. The
payoff to agent u is determined by the transactions and defaults that play out on the
network starting from G, according to the models described next.

1These and other symbols employed in the article are summarized in the appendix, Table III.
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2.2. Transaction Model

Once a network G is formed, agents engage in a sequence of transactions with each
other. Following prior work [Dandekar et al. 2011], transactions are generated accord-
ing to a stochastic process. At each time step t = 1, 2, . . . , a pair of transacting agents
〈u, v〉, with u being the payer (buyer) and v the payee (seller), is chosen with proba-
bility λuv. The transaction rate matrix � = {λuv : u, v ∈ V} is public and satisfies the
following properties: (i) λuu = 0, (ii) λuv ≥ 0, and (iii)

∑
u,v λuv = 1.

Suppose agents 〈u, v〉 are chosen to transact at time t. Then the transaction size
xt

uv between u and v is drawn from a transaction size distribution over [ 0, ∞) with a
probability density function (pdf) Xuv(·) and a corresponding cumulative distribution
function (cdf) Xuv(·). We assume that the pdfs Xuv(·) are public. Let X := {Xuv(·) : u,
v ∈ V} be the pdf matrix.

In the general credit network framework, transaction payments may be routed as
a flow over multiple paths. For all the settings considered in this article (bilateral or
single-unit transactions, defined shortly), it is sufficient to route payment over a single
path. Given a transaction size x, a feasible path in the network G from node v to node
u is a set of directed edges P = {(v, u1), (u1, u2), . . . , (uk−1, uk), (uk, u)} such that for
all (w, y) ∈ P, cwy(G) ≥ x. We route payments along the shortest feasible path in the
network. Let P t

vu be the shortest feasible path in the credit network from v to u at
time t. A successful transaction of size xt

uv results in a change of credit capacities along
edges in P t

vu as follows. Let Gt denote the state of the network G at time t = 0, 1, 2, . . . ,
where G0 = G. Then, for w, y ∈ V and a successful transaction at time t > 0,

cwy(Gt) =
⎧⎨
⎩

cwy(Gt−1) − xt
uv, if (w, y) ∈ P t−1

vu
cwy(Gt−1) + xt

uv, if (y, w) ∈ P t−1
vu

cwy(Gt−1), otherwise
.

So, in order for a payment xt
uv from u to v to succeed, there must exist a feasible path

in the credit network from the payee v to the payer u. If no such path exists, the
transaction fails, in which case all credit capacities remain unchanged. Thus, for all
t > 0 and for all u, v ∈ V, cuv(Gt) + cvu(Gt) = cuv(G) + cvu(G).

The repeated probabilistic transactions induce a Markov chain over the states of the
network, which we denote by M(G, �,X). A transaction regime is defined as the tuple
〈�,X〉. We say a transaction regime 〈�,X〉 is symmetric if the transaction rate matrix
� is symmetric, that is, for all nodes u, v ∈ V, λuv = λvu, and that the transaction
size pdfs are symmetric, that is, for all u, v ∈ V, Xuv(·) = Xvu(·). For most of the analy-
sis, we consider symmetric transaction regimes where, additionally, the Markov chain
is ergodic.

2.3. Utility

Agents choose credit allocations to maximize their utility. Agents derive value from suc-
cessful transactions, but they risk loss of utility when they extend credit to potentially
untrustworthy agents. We model this risk in several ways, but can generally denote
the expected loss of utility to u associated with the prospect of default by v by �uv(G),
with the constraints that �uv(G) ≥ 0 and �uv(G) > 0 only if cuv(G) > 0.

In our analytical treatments (Sections 3 and 4), we assume that transaction val-
ues are uniform across (u, v) pairs. We can therefore define the value derived from
transactions as proportional to the steady-state success probability of all transactions
where the agent is a payer. Let puv(G) be the steady-state success probability of the
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3:8 P. Dandekar et al.

transactions from u to v (i.e., where u is the payer) when the initial network is G. Then,
the total utility of an agent u when the initial network is G is given by

Uu(G) = γ
∑
w∈V

puw(G) −
∑

v∈V:cuv(G)>0

�uv(G), (1)

where γ is a constant that converts transaction success probability into equivalent
utility units. The overall social welfare in network G is simply the sum of utilities of
all nodes in G: U(G) := ∑

u∈V Uu(G).
It is difficult to characterize the steady-state transaction success probabilities for

arbitrary networks and transaction regimes. However, for the settings we analyze, we
are able to exploit results established by Dandekar et al. [2011].

2.4. Risk Model

In order to model variation in �uv(G), we assume the agents are embedded in an
exogenously defined social network represented by a simple undirected graph H =
(V, E). The social network H influences how �uv(G) for an agent u varies across agents
v ∈ V. We consider three specific models of how risk changes as a function of distance
between u and v in H.

2.4.1. Dichotomous Risk. In this model, an agent u partitions the set of other agents
according to whether they are neighbors or non-neighbors in H. For network G, agent
u estimates risk exposure to be

�uv(G) =
{

0, if (u, v) ∈ E
∞, otherwise

. (2)

This model assumes agents are willing to interact only with their neighbors in H. For
any credit network G formed under this model, cuv(G) = 0 if (u, v) /∈ E.

2.4.2. Global Risk. In this model, we assume that each agent v has a default probability
δv ∈ (0, 1] which is public. If v defaults, a node u that extended credit cuv(G) to v loses
cuv(G) units. Thus �uv(G) = δvcuv(G).

2.4.3. Graded Risk. Here, as in the global risk model, each agent v has default prob-
ability δv, but this information is not publicly known. Instead, each agent u receives
a signal δuv about the default probability of each other agent v. These signals are
decreasingly informative with distance in H, so agents know much more about the de-
fault probabilities of their neighbors in the social network than about distant nodes.
In our simulations, we implement this by drawing agents’ default probabilities from a
beta distribution δv ∼ Beta(α, β). Agent u then receives a signal in the form of some
number of samples ∂uv drawn from the binomial distribution on δv, where ∂uv decreases
exponentially with social network distance. Given this form of evidence, the posterior
is also beta distributed. Specifically, if u’s sample for v includes d̂ defaults, then its
posterior default probability is (α + d̂)/(α + β + ∂uv).

3. NETWORK FORMATION UNDER DICHOTOMOUS RISK

Recall that under dichotomous risk, �uv(G) is defined by (2); as a result nodes extend
credit only to their neighbors in H.

ACM Transactions on Internet Technology, Vol. 15, No. 1, Article 3, Publication date: February 2015.
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3.1. Symmetric Bilateral Transactions

We call a transaction between nodes u and v bilateral if (u, v) ∈ E and the payment is
routed along the edge (u, v). Here we allow only bilateral transactions: if a payment
between adjacent nodes u and v cannot be routed along the direct edge (u, v), the trans-
action fails.

First we derive an expression for steady-state transaction success probability puv(G).
For edge e = (u, v) ∈ E, let ce(G) := cuv(G) + cvu(G).

LEMMA 3.1. Fix a credit network G. For nodes u, v ∈ V such that e = (u, v) ∈ E, the
steady-state transaction success probability puv(G) is given by

puv(G) = puv(ce(G)) =
{

λuv
ce(G)

∫ ce(G)

0 Xuv(y)dy, if ce(G) > 0
0, if ce(G) = 0

. (3)

See Appendix B.1 for a proof. Observe that puv(G) depends on only the total credit
capacity ce(G) along the edge e = (u, v). How the total capacity is divided initially
between the two directions does not affect the steady state, hence puv(G) = pvu(G).
For the rest of this section, we exploit the special form of (3) and cast puv directly as
a function of ce(G). That is, puv(x) is the steady-state transaction success probability
along edge e = (u, v) when the total credit allocated along it is x. We write puv(G) to
mean puv(ce(G)) when there is no ambiguity.

In a potential game [Monderer and Shapley 1996], there exists a global potential
function that captures the change in payoff with respect to changes in strategy.

THEOREM 3.2. The network formation game under a symmetric bilateral transac-
tion regime is a potential game.

PROOF. Consider the function 
(G) defined as


(G) := U(G)

2
= 1

2

∑
u∈V

Uu(G) = γ

2

∑
u∈V

∑
v∈V

puv(G).

As we are in a symmetric bilateral transaction regime, it follows from Lemma 3.1 that
puv(G) = pvu(G) for all (u, v) ∈ E, and puv(G) = 0 if (u, v) /∈ E. Therefore,∑

u∈V

∑
v∈V

puv(G) = 2
∑

(u,v)∈E

puv(G).

This implies 
(G) = γ
∑

(u,v)∈E puv(G). To show that 
(G) is a potential function, let
us fix a node u ∈ V. Consider a network G′ which differs from G only in the credit
allocation of u. Formally, for all w, y ∈ V,

cwy(G′) =
{

cwy(G), if w �= u
c′

wy, if w = u and (u, y) ∈ E
,

where {c′
uy : (u, y) ∈ E} is any feasible allocation of u’s credit. Let Eu ⊆ E be the set of

edges incident upon u in E. Note that for all e′ = (u′, v′) /∈ Eu, cu′v′(G) = cu′v′(G′). As a
result, pu′v′(G) = pu′v′(G′). It follows that


(G) − 
(G′) = γ
∑

(u,v)∈Eu

(
puv(G) − puv(G′)

) = Uu(G) − Uu(G′).

Thus the network formation game is a potential game with 
(G) as the potential
function.

ACM Transactions on Internet Technology, Vol. 15, No. 1, Article 3, Publication date: February 2015.
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3:10 P. Dandekar et al.

From well-established properties of potential games [Monderer and Shapley 1996],
Theorem 3.2 implies that, in this setting, a pure-strategy Nash equilibrium always
exists, and best-response dynamics always converge to a PSNE. Moreover, because the
potential function is given by 
(G) = U(G)/2, the price of stability is 1.

3.1.1. Nash Equilibria Maximize Social Welfare. Next we show that, under certain techni-
cal conditions on the transaction size distributions, every Nash equilibrium under a
symmetric bilateral transaction regime maximizes social welfare.

THEOREM 3.3. Assume that for every edge (u, v) ∈ E: (i) Xuv(·) is nonincreasing,
(ii) Xuv(·) has support over [ 0, ∞), and (iii) Xuv(·) is twice differentiable. Let G be an
arbitrary Nash equilibrium of the network formation game under a symmetric bilateral
transaction regime 〈�,X〉. Then G maximizes social welfare U(G).

In order to establish this theorem, we prove some properties of the functions puv(·).
LEMMA 3.4. For an edge (u, v) ∈ E, the steady-state transaction success probability

puv(·) is continuously differentiable, strictly increasing, and concave.

See Appendix B.2 for a proof. As a corollary, if Xuv(·) is strictly decreasing instead
of nonincreasing, puv(·) is strictly concave. Recall from Theorem 3.2 that the forma-
tion game under a symmetric bilateral transaction regime is a potential game and

(G) = U(G)/2 = γ

∑
e∈E puv(G) is a potential function. From Lemma 3.4, we know

that puv(·), (u, v) ∈ E, are concave and continuously differentiable, which implies 
(·)
is concave and continuously differentiable. It was shown by Neyman [1997] that any
Nash equilibrium of a potential game with a concave and continuously differentiable
potential is also a potential maximizer. Therefore, G maximizes 
(G) or, equivalently,
U(G). This completes the proof of Theorem 3.3.

Note that the conditions imposed upon the transaction size distributions Xuv(·) in
the theorem are satisfied by many natural distributions, including exponential, mean-
zero normal, and power-law distributions.

3.1.2. Nash Equilibria are Cycle Reachable. Theorem 3.3 implies an equivalence in social
welfare among Nash equilibria. Next we show that if the transaction size distributions
Xuv(·) are strictly decreasing instead of nonincreasing as in Theorem 3.3, the pure-
strategy Nash equilibria of this game are equivalent in a much stronger sense.

Definition 3.1 [Dandekar et al. 2011]. Let G and G′ be two credit networks. We say
that G′ is cycle reachable from G if G can transformed into G′ by routing a sequence of
payments along feasible cycles (i.e., from a node to itself along a feasible path).

The significance of this property, established by Dandekar et al. [2011], is that the
sequences of transactions that succeed starting from G and starting from G′ are
identical.

THEOREM 3.5. Assume that for every edge (u, v) ∈ E: (a) Xuv(·) is strictly decreas-
ing, (b) Xuv(·) has support over [ 0, ∞), and (c) Xuv(·) is twice differentiable. Let G and
G′ be networks generated by two PSNE of the network formation game under the sym-
metric bilateral transaction regime 〈�,X〉. Then G and G′ are cycle reachable from
each other.

ACM Transactions on Internet Technology, Vol. 15, No. 1, Article 3, Publication date: February 2015.
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Strategic Formation of Credit Networks 3:11

In order to prove this theorem, we first show that the total credit capacity of any
edge in E is identical in any PSNE.

LEMMA 3.6. For all edges e = (u, v) ∈ E, ce(G) = ce(G′).

PROOF. We state here the propositions that prove this lemma; proofs can be found
in Appendix B.3. First, observe that, for an edge (u, v) ∈ E, the steady-state transac-
tion success probability puv(·) is strictly concave, strictly increasing, and continuously
differentiable (by Lemma 3.4). Let us define the marginal utility of an edge.

Definition 3.2. The marginal utility of an edge (u, v) ∈ E is the function ruv : R+ →
R+ given by

ruv(x) = p′
uv(x) = dpuv(x)

dx
.

We first show that for any edge (u, v) ∈ E, ruv(G) = ruv(G′).
Since puv(·) is strictly concave, strictly increasing, and continuously differentiable,

ruv(·) is continuous, strictly decreasing, and strictly positive. In network G, the
marginal utility on an edge e = (u, v) ∈ E is given by ruv(ce(G)). We denote it by
ruv(G) when there is no ambiguity.

Definition 3.3. For a node u ∈ V and a network G, we define r∗
u(G) :=

max(u,w)∈Eu ruw(G) and E∗
u(G) ⊆ Eu as the set of edges (u, w) ∈ Eu such that ruw(G) =

r∗
u(G).

In words, E∗
u(G) is the set of edges incident on node u that have the highest marginal

utility in network G among all edges in Eu. We show that in any PSNE network G,
each node u exhausts its entire budget and allocates nonzero credit only along edges
in E∗

u(G).

PROPOSITION 3.1. Let G be a PSNE network. Then, for all nodes u ∈ V:

(1)
∑

v:(u,v)∈E cuv(G) = Bu; and
(2) for each (u, v) ∈ E, if (u, v) /∈ E∗

u(G), then cuv(G) = 0.

Next we define a slack edge.

Definition 3.4. Let G be a PSNE network. We call an edge e = (u, v) ∈ E a slack
edge in G if e /∈ E∗

u(G) or e /∈ E∗
v(G).

Note that by Proposition 3.1, if (u, v) is a slack edge in PSNE network G, it must be
that cuv(G) = 0 or cvu(G) = 0.

Definition 3.5. Let G be a credit network. We define:

(1) rmin
G := min(u,v)∈E ruv(G) to be the minimum marginal utility of any edge;

(2) the set Emin
G := {(u, v) ∈ E | ruv(G) = rmin

G };
(3) the set Vmin

G := {u ∈ V | u is incident on some edge in Emin
G }; and

(4) the set V+
G ⊆ Vmin

G as

V+
G := {u∈V | u is incident upon some edge in Emin

G and upon some edge inE\Emin
G }.

The minimum marginal utility in any two Nash equilibria is identical.

ACM Transactions on Internet Technology, Vol. 15, No. 1, Article 3, Publication date: February 2015.
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3:12 P. Dandekar et al.

PROPOSITION 3.2. Let G and G′ be two PSNE networks. Then rmin
G = rmin

G′ .

Moreover, in any two PSNE networks G and G′, the set of edges with the minimum
marginal utility in G is identical to that in G′.

PROPOSITION 3.3. Let G and G′ be two PSNE networks. Then Emin
G = Emin

G′ .

COROLLARY 3.1. Let G and G′ be two PSNE networks. Then Vmin
G = Vmin

G′ and
V+

G = V+
G′ .

Thus we have established that, for any two PSNE networks G and G′, ruv(G) =
ruv(G′) for all edges (u, v) ∈ Emin

G . We show using an inductive argument that this is
true of all edges in E.

Definition 3.6. Given an instance I : H = (V, E); puv, (u, v) ∈ E; Bu, u ∈ V defining
a network formation game under a symmetric bilateral transaction regime, a credit
network G, and an arbitrary set of edges F ⊆ E, we define the (G, F)-restriction of I,
denoted I(G,F), as H(F) := (V, E \ F), p(F)

uv := puv, (u, v) ∈ E \ F, and

B(G,F)
u :=

{
0 if Eu ⊆ F
Bu − ∑

(u,w)∈F cuw(G) otherwise
.

Note that for a node u, if Eu ⊆ F, then the value of B(G,F)
u is immaterial since u has no

incident edges in I(G,F) along which to allocate its budget.

Definition 3.7. Given a credit network G and an arbitrary set of edges F ⊆ E, we de-
fine an F-restriction of G, denoted G(F), as follows: for all edges (u, v) ∈ E\F, cuv(G(F)) =
cuv(G) and cvu(G(F)) = cvu(G).

PROPOSITION 3.4. If G is a PSNE network for instance I of the network formation
game in the symmetric bilateral transaction setting, then G(F) is a PSNE network for
I(G,F) for any set F ⊆ E.

PROPOSITION 3.5. Let G and G′ be two PSNE networks for instance I of the network
formation game under a symmetric bilateral transaction regime. Then for all edges
(u, v) ∈ E, ruv(G) = ruv(G′).

Observe that, since puv(·) is strictly concave, ruv(·) is strictly decreasing. Therefore,
Proposition 3.5 implies that for all e = (u, v) ∈ E, ce(G) = ce(G′), completing the proof
of Lemma 3.6.

Lemma 3.6 allows us to show that any two PSNE networks are cycle reachable. First
we define the generalized score of a node as the total credit issued to it in network G.

Definition 3.8 [Dandekar et al. 2011]. The generalized score of node u in G is
du(G) := ∑

v∈V cvu(G).

Next we show that any two PSNE networks have identical generalized scores for all
nodes.

ACM Transactions on Internet Technology, Vol. 15, No. 1, Article 3, Publication date: February 2015.
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PROPOSITION 3.6. Let G and G′ be two PSNE networks. Then, for all u ∈ V,
du(G) = du(G′).

PROOF. Fix a node u ∈ V. Recall from Proposition 3.1 that∑
v:(u,v)∈E

cuv(G) =
∑

v:(u,v)∈E

cuv(G′) = Bu. (4)

Also, from Lemma 3.6, we know that for all edges e ∈ E,

ce(G) = ce(G′). (5)

It follows from (4) and (5) that

du(G) =
∑
v∈V

cvu(G) =
∑

v:(u,v)∈E

cvu(G) =
∑
e∈Eu

(ce(G) − cuv(G)),

=
∑
e∈Eu

ce(G) − Bu =
∑
e∈Eu

ce(G′) −
∑
e∈Eu

cuv(G′) = du(G′).

PROPOSITION 3.7 [DANDEKAR ET AL. 2011]. Two credit networks G and G′ are
cycle reachable if and only if, for all u ∈ V, du(G) = du(G′).

From Propositions 3.6 and 3.7, it follows that G and G′ are cycle reachable. This com-
pletes the proof of Theorem 3.5.

3.2. Long-Distance Transactions

Here we lift the restriction that transactions be bilateral, allowing transactions be-
tween nodes that are not neighbors in H. We also allow payments between neighboring
nodes to be routed along paths other than the direct edge between them. The analytical
results we prove in this section and the next employ instances where all transactions
are for a single unit.

Definition 3.9. A unit transaction regime over credit network G is a transaction
regime 〈�,X〉 where, for all u, v ∈ V and for all t > 0, the transaction size xt

uv = 1, the
transaction rate matrix � is symmetric, and the Markov chain M(G, �,X) is ergodic.

When the network G is acyclic (ignoring directionality), there is a single path Puv
between any pair of nodes u and v. For this case, Dandekar et al. [2011] characterize
the steady-state success probabilities under a unit transaction regime.

LEMMA 3.7 [DANDEKAR ET AL. 2011]. Consider a credit network G. Assume that
G is acyclic if we ignore the directions of the edges in G. Then, in a unit transaction
regime over G, the steady-state transaction success probability puv(G) from node u ∈ V
to node v ∈ V is given by

puv(G) = λuv
∏

e=(w,y)∈Puv

�cwy(G)� + �cyw(G)�
�cwy(G)� + �cyw(G)� + 1

.

Using this characterization, we show that the network formation game in this set-
ting is not a potential game.

ACM Transactions on Internet Technology, Vol. 15, No. 1, Article 3, Publication date: February 2015.
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a b d e h j

1 1 1

1

x

1 − x

y

1 − y

Fig. 2. Example of a formation game that does not admit a PSNE.

a b d e

1

1

1

1 a b d e

1

1 1 1

(a) an equilibrium network G (b) an optimal network G∗

Fig. 3. Example of a game with an unbounded price of anarchy.

THEOREM 3.8. There exists an instance of the network formation game under a
symmetric transaction regime that does not admit a pure-strategy Nash equilibrium.

PROOF. Consider a game with six agents: V = {a, b, d, e, h, j}. The graph H is a line
graph over nodes in V with edges (a, b), (b, d), (d, e) and so on. For each node u ∈ V,
Bu = 1. The nonzero transaction rates are given by λab = λba = λde = λed = λhj =
λjh = 0.001, λae = λea = λbj = λjb = 0.2435, λej = λje = 0.01. All other entries in the
transaction rate matrix � are zero. All transactions are of size one. Observe that this
is a unit transaction regime, so we can use Lemma 3.7 to compute the steady-state
transaction success probabilities between nodes.

Let G be a PSNE network. Then, it must be that cab(G) = cde(G) = chj(G) =
cjh(G) = 1. Let cbd(G) = x and cba(G) = 1−x. Similarly, let ceh(G) = y and ced(G) = 1−y.
Observe that, since all transactions are of size one and G is a Nash equilibrium, it must
be that x, y ∈ {0, 1} (i.e., x and y cannot be strictly between 0 and 1). We can easily ver-
ify that for each of the four combinations of (x, y), namely, (0, 0), (0, 1), (1, 0), and (1, 1),
either b or e has an improving unilateral deviation. In fact, the four combinations form
a best-response cycle. Hence, there is no assignment of x, y ∈ [ 0, 1] that renders G a
Nash equilibrium (see Figure 2).

Next we show that, even if agents reach a Nash equilibrium, it may be arbitrarily
bad in terms of social welfare compared to a social optimum.

THEOREM 3.9. The price of anarchy of the network formation game under a sym-
metric transaction regime is unbounded.

PROOF. Consider a game with four agents: V = {a, b, d, e}. The graph H is a line
graph over nodes in V with edges (a, b), (b, d), and (d, e). For each node u ∈ V, Bu = 1.
The nonzero transaction rates are given by λab = λba = λde = λed = λ1 > 0, λae = λea =
λ2 � λ1. All other entries in the transaction rate matrix � are zero. All transactions
are of size one.

Consider the network G shown in Figure 3(a). Observe that we can use Lemma 3.7
to compute the steady-state transaction success probabilities between nodes and verify
that G is a Nash equilibrium. The overall social welfare U(G) in network G is given by

U(G) =
∑
u∈V

Uu(G) =
∑
u∈V

∑
v∈V

puv(G) = 2pab(G) + 2pde(G) = 2λ1
2
3

+ 2λ1
2
3

= λ1
8
3

.
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Strategic Formation of Credit Networks 3:15

Now consider the socially optimal network G∗ in Figure 3(b). The social welfare U(G∗)
is given by

U(G∗) =
∑
u∈V

Uu(G∗) = 2
(

λ1
2
3

+ λ1
1
2

+ λ2
1
6

)
.

In the limit as λ1 → 0, the ratio U(G∗)/U(G) = ∞.

4. NETWORK FORMATION UNDER GLOBAL RISK: SINGLE-MINDED AGENTS

Recall that in the global risk model, each agent v has a public default probability
δv ∈ (0, 1]. If v defaults, a node u that extended credit cuv(G) to v loses cuv(G) units.
Thus �uv(G) = δvcuv(G).

We analyze the setting where agents may issue credit to at most one counterpart.

Definition 4.1. We say that agent u ∈ V is single minded if, in any credit network
G, either cuv(G) = 0 for all v ∈ V or there exists a single agent w ∈ V such that
cuw(G) = Bu.

Further, we assume that: (i) the transaction rate matrix � is uniform, that is, for all
u, v ∈ V, λuv = λ = 1/(n(n−1)); (ii) all transactions are size one, that is, for all u, v ∈ V
and for all t > 0, xt

uv = 1; and (iii) for all agents u ∈ V, the credit budget Bu = c > 0,
where c is an integer.

First we illustrate using a simple example that if the default probabilities are in a
certain range, the empty network is a Nash equilibrium and the PoA is ∞.

Example 4.2. Suppose that, for all u ∈ V, γ λ(h + h2) > δuc > γλh, where h = c/
(c + 1). Let G be the empty network. Observe that, by Lemma 3.7, the utility to a node
u from extending credit to any node v in G is γ λh, which by assumption is less than
δvc. Thus G is a Nash equilibrium. On the other hand, since γ λ(h + h2) > δuc for all
u ∈ V, the social optimum is a star network where every node extends credit to the
root, while the root extends no credit. As a result, the PoA is ∞.

The empty-network equilibrium is only one of potentially many equilibria for a par-
ticular game instance. To focus on the more interesting equilibria and to simplify anal-
ysis, we assume for the rest of this section that extending zero credit is not part of
the agents’ strategy set. This assumption, coupled with the fact that agents are single
minded, implies that any credit network formed in this setting will have exactly n
directed edges, each of capacity c. Since an agent extends credit to exactly one other,
we introduce the function τs : V → V to denote this “trustee”: τG(u) = v implies
cuv(G) = c.

The following observation is a consequence of the analysis by Dandekar et al. [2011]
of the steady-state success probability in trees under a unit transaction regime.

LEMMA 4.1 [DANDEKAR ET AL. 2011]. Consider a network G. Let u ∈ V be a node
such that no node extends credit to u in G and let τs(G) = v. Assume the transaction
rate matrix � is uniform and G is under a unit transaction regime. Then, for any node
w ∈ V \ {u, v}, puw(G) = hpvw(G), where h = c/(c + 1).

ACM Transactions on Internet Technology, Vol. 15, No. 1, Article 3, Publication date: February 2015.
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u1

u2 u3 u4 un

c
c c c c

(a) socially optimal network G∗

u3

u1 u2 u4 un

c
c c c c

(b) Nash equilibrium G1 where node u3 is the root node

Fig. 4. Example of a game under the global risk model with an unbounded price of anarchy.

4.1. Price of Anarchy and Structure of Equilibria

It is easy to see that any socially optimal network will have a star-like structure where
the root is a node with the minimum default probability.

LEMMA 4.2. Let v∗ ∈ arg minv∈V δv be a node with the minimum default probability.
Consider a network G∗ such that, for all nodes u ∈ V \ {v∗}, τG∗(u) = v∗, and τG∗(v∗) =
arg minv∈V\{v∗} δv. Then, G∗ is a Nash equilibrium and maximizes social welfare.

THEOREM 4.3. For a sufficiently large n, in any PSNE network G there exists a
node u∗ such that for all nodes v ∈ V \ {u∗}, τG(v) = u∗.

Despite ruling out the empty network as a Nash equilibrium, PoA in this setting can
be unbounded.

THEOREM 4.4. The price of anarchy of the network formation game with single-
minded agents is unbounded.

PROOF. Assume, without loss of generality, that for nodes u1, . . . , un ∈ V, δu1 ≤ · · · ≤
δun . Let δu1c = γ λ(n − 3)h22c/(2c + 1), and δu2 = δu3 = γ λ(n − 3)h2, with h = c/(c + 1).
Consider the network G∗ in Figure 4(a). It follows from Lemma 4.2 that G∗ is a socially
optimal network. Consider the network G1 in Figure 4(b). Observe that Lemma 3.7 can
be used to compute the steady-state transaction success probabilities, and hence the
utilities, of all nodes in G1. Since c(δu3 − δu1) ≤ (n − 3)γ λ h2

2c+1 , nodes in G1 cannot
benefit from extending credit to u1 or u2 instead of u3. Thus G1 is a Nash equilibrium.
Note that, since G∗ and G1 are structurally identical∑

u,v
puv(G∗) =

∑
u,v

puv(G1),

= λ(n − 2)

(
(n − 3)h2 + 2h

2c
2c + 1

+ 2h
)

+ 2λ
2c

2c + 1
,

= λ(n − 2)(n − 3)h2 + �(n).
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Strategic Formation of Credit Networks 3:17

Thus, the total social welfare in G∗ is given by

U(G∗) = γ
∑
u,v

puv(G∗) − (n − 1)δu1c − δu2c,

= γ λ(n − 3)h2
(

(n − 2) − (n − 1)
2c

2c + 1

)
+ �(n) = �(n2).

On the other hand,

U(G1) = γ
∑
u,v

puv(G1) − (n − 1)δu3c − δu1c,

= γ
∑
u,v

puv(G1) − γ λ(n − 1)(n − 3)h2 − δu1c = �(n).

Since the price of anarchy is lower-bounded by U(G∗)/U(G1), we have that
PoA = 
(n).

4.2. Dynamics of Network Formation

Despite the arbitrarily high PoA, we demonstrate that greedy dynamics can quickly
converge to a socially optimal network.

4.2.1. Greedy Response. For network G and an agent u, we define greedy response by
u as follows: let v∗

u ∈ arg minv∈V\{u} δv be a node with the lowest default probability
among all nodes except u. Then, u’s greedy response is to extend credit to v∗

u, that is,
τG′(u) = v∗

u, where G′ is the network resulting from u’s greedy response in G. For nodes
w, y ∈ V,

cwy(G′) :=
⎧⎨
⎩

cwy(G), if w �= u
0, if w = u and y �= v∗

u
c, if w = u and y = v∗

u

.

THEOREM 4.5. Assume that the default probabilities δv, v ∈ V are all distinct. Let
G∗ be the network obtained after all agents have played greedy response, starting from
arbitrary G. Then G∗ maximizes social welfare.

PROOF. Since the default probabilities are all distinct, there exists a unique v∗ with
minimum default probability, and node v∗

v∗ with the second-lowest default probability.
Then, observe that for all u ∈ V \ {v∗}, τG∗(u) = v∗ and τG∗(v∗) = v∗

v∗ , and G∗ is exactly
the credit network established as optimal in Lemma 4.2.

4.2.2. Sequential Arrival. We consider a model where agents arrive sequentially, and
decide which among the agents already in the network to which to extend credit. Let
G0 be a network of two agents, say u0 and v0, such that τG0(u0) = v0 and τG0(v0) = u0.
At each time t = 1, 2, . . . , an agent ut arrives and extends credit to one of agents in
the network Gt−1 in order to maximize Uut(Gt), where Gt is the resulting network. We
denote by Vt the set of agents that have arrived up to and including time t. We show
that the agent ut arriving at time t always extends credit either to ut−1 or to τGt−1(ut−1).
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�

�

�

�

�

�

�

�

3:18 P. Dandekar et al.

Fig. 5. Iterative procedure for empirical game-theoretic analysis.

THEOREM 4.6. For all t ≥ 1, τGt(ut) ∈ {ut−1, τGt−1(ut−1)}.

Since the node ut arriving at time t always extends credit to either ut−1 or τGt−1(ut−1),
the resulting network has a comb-like structure, where a chain of nodes forms the spine
of the network and each node in this chain is trusted by a number of leaf nodes.

5. SIMULATION ANALYSIS OF CREDIT NETWORK FORMATION

Covering more relaxed scenarios such as those with more flexible �, unconstrained
budgets, multiple credit issuance, or graded risk has thus far proved elusive for an-
alytic treatments. Several factors contribute to the difficulty of game-theoretic analy-
sis of this problem. First, the strategy space is combinatorial and multidimensional.
Strategies for this game are mappings from all the information an agent has about
the environment (default probabilities for all other agents, probabilities, and values
of transactions with all other agents) to all possible credit assignments to the other
agents. Second, the expected value to an agent of a credit assignment is defined in
terms of the outcome of a stochastic transaction sequence, intermixed with adjust-
ments of credit balances that have important but indirect effects on the probabilities
of downstream transactions.

For this reason, we employ simulation to analyze environments that relax the condi-
tions for which we have theorems. Simulation handily deals with the complex stochas-
tic and dynamic factors bearing on the evaluation of credit-issuing strategies. Although
analysis of simulation-based games is inherently limited by the set of strategies consid-
ered, a systematic exploration of well-motivated heuristics can provide an illuminating
complement to theoretical analysis.

5.1. Empirical Game-Theoretic Analysis

Our investigation of the credit network formation game employs an approach called
empirical game-theoretic analysis (EGTA) [Wellman 2006]. In EGTA, techniques from
simulation, search, and statistics combine with game-theoretic concepts to character-
ize strategic properties of a domain.

5.1.1. Iterative EGTA Process. A high-level view of the EGTA process is presented in
Figure 5. We start with an enumerated set of strategies, typically heuristics derived
from domain knowledge or experience, often parametrized by meaningful strategy fea-
tures. The basic EGTA step is simulation of a strategy profile, determining a payoff
observation (i.e., a sample drawn from the outcome distribution generated by the
simulation environment), which gets added to the database of payoffs. Based on the
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accumulated data, we induce an empirical game model. On this model we may perform
any of the standard computations applied to game forms (e.g., identifying dominated
strategies, finding equilibria). Based on the results, we may choose to refine the model
by considering more strategies or strategy profiles, or by obtaining more samples of
profiles already evaluated.

The most straightforward way to define the empirical game is simply to estimate
payoffs for evaluated profiles by their sample mean.2 We employ this method for the
baseline game model, but then produce an approximate reduced game model as well,
by the technique described in Section 5.1.2.

When games (such as our version of credit network formation) exhibit significant
symmetry, this can be exploited in representation and reasoning. Even for a fully sym-
metric game, however, the profile space grows exponentially with the lesser of number
of players n and number of strategies m. There are

(n+m−1
n

)
distinct profiles, to be pre-

cise. For even moderate n and m, therefore, we generally cannot afford to evaluate
every profile through simulation. We thus require analysis techniques that operate on
incompletely specified games. Within a game that is incomplete due to unevaluated
strategy profiles, it is often useful to work with complete subgames, defined by sets of
strategies over which we have evaluated all profiles.

The EGTA process we followed in this study can be described in terms of two key
procedures. The first, termed the EGTA inner loop, searches for an equilibrium within
a fixed strategy set S.3 The second, outer loop, extends the strategy set through local
search, implementing the selection of more strategies depicted in Figure 5.

The EGTA inner loop starts by performing an initial set of simulations covering all
profiles over a small subset S0 ⊂ S. It then iterates the following steps.

(1) Identify the maximal complete subgames, {S1, . . . }. A complete subgame is maximal
if adding any strategy would render it incomplete.

(2) For each maximal complete subgame Si, search for symmetric mixed-strategy Nash
equilibria (SMSNE). We employ replicator dynamics [Gintis 2000, Chapter 9] for
this purpose, from a diverse set of starting points. Let σ i

j denote the jth SMSNE

found for subgame Si. These subgame SMSNE are candidate equilibria for the full
game over S.

(3) For each σ i
j , check the strategies s′ ∈ S \Si such that we have evaluated all profiles

where one player plays s′ and the other n − 1 play strategies in the support of σ i
j .

For any pair (σ i
j , s′) where s′ is a beneficial deviation, the candidate σ i

j is refuted.

For instances σ i
j such that all possible deviating strategies have been evaluated

without refutation, we say that σ i
j is confirmed.

(4) If there remains an SMSNE candidate σ i
j that is neither refuted nor confirmed,

simulate the profiles necessary to check another strategy s′′ ∈ S \ Si not yet fully
evaluated in context σ i

j , and repeat from step 1.

2More sophisticated approaches may generalize from simulation data using regression or other machine
learning techniques [Jordan and Wellman 2009; Vorobeychik et al. 2007].
3Our description here assumes the game is symmetric, but the procedure can be straightforwardly extended
to general role-symmetric games [Wellman et al. 2013].
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3:20 P. Dandekar et al.

(5) If there exists a refuted SMSNE candidate σ i
j , such that the support of σ i

j plus its
best-response refuting strategy is not subsumed by any complete subgame, simu-
late the profiles necessary to complete this subgame and repeat from step 1.

(6) If there exists at least one confirmed SMSNE candidate σ i
j , return. Otherwise,

choose a subgame i, extend it with some strategy s′ ∈ S \ Si, and repeat from
step 1.

On termination, the empirical game is in a state where all SMSNE candidates are
confirmed and all maximal subgame best responses are themselves in a completed
subgame. As long as the operation of identifying subgame equilibria is complete, the
procedure is guaranteed to identify at least one confirmed SMSNE candidate.

The outer loop takes as input a confirmed SMSNE from the inner loop and attempts
to find a new strategy s′ �∈ S that refutes this SMSNE. It assumes a parametrically
structured strategy space and performs local search in this space from a given start-
ing point and subject to given constraints. We describe how this was implemented for
the credit network formation game next; the general procedure is presented in detail
elsewhere [Wellman et al. 2013].

5.1.2. Deviation-Preserving Reduction. One of the virtues of credit networks is their abil-
ity to support transactions among nodes only indirectly related by paths of credit. This
property is particularly advantageous for large populations, where directly connecting
all pairs that might transact would be too unwieldy. Our analysis of strategic network
formation therefore requires a sufficiently large number of agents to reap the benefits
of distributed credit allocation.

Increasing the number of agents, however, tends to blow up the profile space. For ex-
ample, with 61 players (the number of nodes considered in this study), even a subgame
of three strategies requires 1,953 profiles to complete, and four strategies requires
41,664. It would not be feasible to explore very many subgames at this population size.
We therefore seek to approximate the 61-player game by a smaller game. We call this
approach player reduction, and in prior work employed a hierarchical approach where
each player in the reduced game controls a proportional number of players in the full
game [Wellman et al. 2005].

In the present study, we employ a recently introduced technique called deviation-
preserving reduction (DPR) [Wiedenbeck and Wellman 2012]. DPR is motivated by
the assumption that an agent’s payoff is sensitive to its own choice of strategy and to
the strategies of its opponents in the aggregate, but that small numbers of opponents
changing strategy can be ignored. To calculate the payoff of a player i for a profile in
the reduced DPR game, we consider the full-game profile where one player plays i’s
designated strategy, and the remaining players are divided proportionally among the
other strategies in the reduced game profile.

Specifically, we focus analysis on a six-player reduced game derived from simula-
tions on 61-agent credit networks, depicted in Figure 6. For example, we construct
the six-player DPR profile 〈1 × s1, 3 × s2, 2 × s3〉 where one player plays strategy s1,
three play s2, and two play s3, by simulating three 61-agent profiles. The payoff to the
player playing s1 comes from the full-game profile 〈1 × s1, 36 × s2, 24 × s3〉, the pay-
off for s2 from 〈12 × s1, 25 × s2, 24 × s3〉, and for s3 from 〈12 × s1, 36 × s2, 13 × s3〉. In
effect, each reduced game player views itself as controlling one full-game agent, while
its reduced game opponents represent the fraction of full-game opponents playing
each strategy. By this description, we see that deviation-preserving reduction applies
most straightforwardly when the reduced game size divides n − 1 (hence our choice
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Fig. 6. Deviation-preserving reduction example. Each of the six reduced game players views itself as con-
trolling one of the 61 full-game agents while each opponent controls an equal fraction (12) of the remaining
full-game agents. The payoff to the player playing s1 in the reduced game profile comes from the payoff to
s1 in the full-game profile depicted in (a); s2 from (b); s3 from (c).

of n = 61 for this study). The DPR technique, however, is defined more generally for
nondivisible reduction factors, as well as for games that are symmetric only within
roles [Wiedenbeck and Wellman 2012].

5.2. Credit Network EGTA Study: Setup

As noted previously, we consider a population of 61 agents. We performed EGTA anal-
yses for 12 environments differing in risk model, default prevalence, and transaction
value. Each simulation run evaluates a profile of heuristic strategies for issuing credit.
The 61 agents apply their assigned strategies to issue credit based on their available
information, forming an initial credit network. The simulation processes probabilistic
defaults and a stochastic sequence of transactions to generate sample payoffs for the
strategy profile. Strategies are selected from a suite of heuristics which implement a
variety of criteria for issuing credit, parametrized by how many agents to issue credit
and how much. We drive the choice of profiles to simulate according to the EGTA pro-
cess described before (Section 5.1), producing empirical game models for each of the 12
environments.

Each run of the scenario comprises 10,000 transaction request events. The transac-
tion rate λuv for each pair of agents u �= v is drawn uniformly and then normalized. All
transaction requests from u the buyer to v the seller are for a single unit. The value
to u of a successful transaction with v is drawn uniformly, xuv ∼ U[ 1, x̄], with x̄ set to
either 1.2 (low value) or 2 (high value). The buyer pays a constant price of one to the
seller (i.e., expends one unit of credit), so the average buyer surplus per transaction is
thus either 0.1 or 0.5. We assume the seller makes no profit, but note that v benefits
by accruing credit it may subsequently use in transactions as a buyer.

Default probabilities δv for each agent are drawn from a beta distribution: Beta(1, 9)

(average default probability 1
10 ) in the low-default setting, Beta(1, 2) (average 1

3 ) in the
medium-default setting, and Beta(1, 1) (average 1

2 ) in the high-default setting. In the
global risk environment these default probabilities are revealed to all, whereas in
the graded risk environment each agent gets sample data from the default distribution
of others, with the number of samples ∂uv determined by the social network distance
between u and v. The social network itself is an Erdös-Rényi graph. We take ∂uv = 100
if u and v are neighbors, ∂uv = 10 if they are linked through one other node, ∂uv = 1 if
they have a shortest path of length three, and ∂uv = 0 otherwise.

We explored environments with high, medium, or low default, and high or low
value, for each of global and graded risk. The 12 environments are listed in Table I,
along with the number of profiles and strategies we ended up simulating in both
the full and reduced games. Three-letter environment names are coded by risk
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Table I. Exploration Performed by the Iterative EGTA Process under Various Environment Settings

Strategies gives the number of strategies added by the outer loop. Full-game profiles gives
the number of 61-agent profiles sampled by the inner loop. DPR profiles gives the number of
6-player profiles in the empirical game model.

model (C[omplete information] for global risk, I[ncomplete] for graded risk), default
probability (L[ow]/M[edium]/H[igh]), and buyer value (L[ow]/H[igh]). These numbers
of profiles and strategies are broken down by two stages (I and II) of search, as
described next.

A heuristic strategy is defined by three parameters: (i) a criterion for ranking the
other agents, (ii) the number k of agents to issue credit (the best k according to the
ranking criterion), and (iii) the number of units q of credit to issue to each of these
chosen agents. The criteria we included in heuristics along with the (k, q) values we
considered in this study are enumerated as follows, defined from the perspective of
agent u’s evaluation of credit prospect v.

— Default probability. This is the lowest known default (δv) for global risk, or lowest
estimated default based on samples ∂uv for graded risk.

— Buy rate. This is the highest probability of transacting (λuv).
— Sell rate. It is the highest probability of serving a transaction (λvu).
— Trade value. This is the highest expected value of transaction per event (λuvxuv).
— Trade profit. It is the highest difference, expected value of transaction minus

expected value of served transaction (λuvxuv − λvu).
— Index. This is the lowest node number (arbitrary global labeling).
— Random. This is uniform choice.

In addition, we included the no-credit strategy, Zero, which issues no credit to anyone.
Observe that the Default strategies behave qualitatively differently in the global

and graded risk environments. Under global risk, all agents have the same informa-
tion about default probabilities. Therefore, when agents issue credit to the least-likely
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Fig. 7. A star-like credit network similar to one that would arise from the mutual application of default-
based strategies in the global risk model.

Table II. Strategies Included in the EGTA Study

Criterion Predefined (k, q) Automatically Generated (k, q)

Default (1, 1), (2, 2), (3, 2), (5, 2) (3, 1), (4, 1), (5, 1), (6, 1), (8, 1), (9, 1)

Buy rate (1, 1), (1, 2), (2, 2) (2, 1), (4, 1), (8, 1), (10, 1)

Sell rate (2, 2) (6, 1)

Trade value (2, 2), (5, 2) (2, 1), (3, 1)

Trade profit (2, 2), (6, 2), (8, 1) (3, 2), (5, 1)

Index (1, 1), (2, 2)

Random (2, 2)

Zero (0, 0)

These are predefined for Stage I, and automatically generated in the outer loop.

defaulters, they are creating edges to the same target agents. This leads to a central-
ized or star-like credit network as illustrated in Figure 7. Such coordination on credit
targets has potential advantages. If everyone including u offers credit to v, then once
v transacts with u, u enjoys credit paths to everyone in the network. This coordination
does not result, in contrast, from mutual application of Default in the graded risk model.
Under graded risk, agents have different information based on their positions in the
social network. The counterparts judged to have lowest default probably are invari-
ably those with whom the agent has had most positive experience. Since there is little
experience of any kind with social strangers, these are unlikely to be judged most
trustworthy (this happens only if one is unlucky enough to have only very untrustwor-
thy friends). Indeed, under graded risk we find that 95% of the top five least likely
defaulters are one or two hops away on the social network. Finally, note that the In-
dex strategies do coordinate on a star-like network, in either the global or graded risk
model. Since both Default and Index achieve coordination in the global risk model but
only the former minimizes default, by comparing the two strategies we can separate
the pure benefits of coordination from the benefits of avoiding defaulters.

In Stage I of the analysis, we considered a fixed set of 17 strategies and ran the
inner loop on eight of the twelve environments: those with high- or low- (not medium-)
default probabilities. The 17 predefined strategies were selected in an ad hoc manner
through exploration in a preliminary study and are enumerated in Table II.

For the four-medium default environments, we started with a smaller set of eight
predefined strategies (the first listed for each criterion) and employed the automated
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strategy generation procedure (EGTA outer loop) to extend the set. On each iteration,
we searched for refutations of an equilibrium σ confirmed for the existing strategy
set, employing local search from a particular existing strategy. The search algorithm
simply hill-climbs from the existing strategy, holding its credit criterion fixed but in-
crementing or decrementing its k and q parameters. The search halted upon reaching
a local maximum in payoff, assuming all other nodes in the network play according
to σ . If this local maximum exceeds the equilibrium payoff, the new strategy is added
to the set and we proceed with another round of the EGTA inner loop. If instead we
cycle through the strategy categories (in this case, defined by credit criterion) without
finding a beneficial deviation, the entire process concludes.

As indicated in Table I, the CML and IML environments found no new strategies,
whereas the CMH environment added seven strategies to the original eight, and IMH
added ten. Together, there were 15 automatically generated strategies not included
among the 17 predefined Stage-I strategies. These are listed in the final column of
Table II. For Stage II, we constructed the combined set of 32 strategies and ran the
EGTA inner loop for each environment with this set.

With 17 strategies, there are 1.4×1016 distinct strategy profiles for the full 61-player
game, and 74,613 for the six-player DPR game. These numbers grow to 3.0 × 1024

(61-player DPR) and 2,324,784 (six-player DPR) for the Stage-II set of 32 strategies.
As indicated in Table I, our EGTA process evaluated only a very small fraction of
these profiles at each stage. Nevertheless it was able to identify equilibria in each
environment.

Altogether we evaluated 165,536 full-game strategy profiles across the 12 credit net-
work environments, from which we estimated payoffs for 53,074 DPR profiles. Each
full-game profile evaluated was simulated at least 1,000 and usually upwards of 2,000
times. Our simulations were performed on a computing cluster operated by the Uni-
versity of Michigan, using an experiment management facility designed expressly for
EGTA studies [Cassell and Wellman 2013].

5.3. Results

Through the process described in Section 5.1.1, we successfully derived equilibria for
each of the 12 credit network games. Specifically, we identified between one and six
SMSNEs for the reduced six-player DPR games corresponding to each environment.
All candidate subgame equilibria were either confirmed or refuted by the process, and
the subgames covering best responses to all candidates were completed.

The strategies Sell rate, Index, and Random are not supported in any equilibria.
This confirms our intuitions: substantive criteria are better than random; coordination
based on default risk makes more sense than index coordination; and buyer transac-
tion rate is more directly reflected in value than seller rate.

To characterize the equilibria qualitatively, we partition the remaining strategies as
follows. Class D represents Default, Z represents Zero, and T groups together strategies
based on criteria related to transaction probability and value: Buy rate, Trade value, and
Trade profit. The SMSNEs identified are summarized in Figure 8. In the figure, there is
one cell for each environment, displaying class labels for strategies supported in some
equilibrium. A class letter circled means that a strategy in this class was confirmed as
a pure-strategy Nash equilibrium. Interestingly, whereas many of the equilibria found
were mixed and several environments had equilibria in multiple classes, in no case did
a single SMSNE mix across the class partitions defined earlier.

From the figure, we see that there is a no-credit equilibrium in eight of the twelve
environments: all but those with low or medium default and high buyer value. The
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Fig. 8. Equilibria found for the 12 credit network environments. Letters denote the strategy classes repre-
sented in equilibrium, with circled letters indicating pure-strategy equilibria.

two least favorable environments—graded risk with high or medium default and low
value—have only this equilibrium, whereas all the others have some equilibrium
where credit is provided. All of the global risk environments have an equilibrium
where everybody plays Default, but this strategy does not appear in equilibrium for any
graded risk environments. Indeed, there is a one-to-one correspondence between the
equilibria for the two risk classes, except that the graded risk environments omit these
Default equilibria, and when buyer value is high, these are replaced by transaction-
based equilibria. The weakened information about defaults plus the lack of coordinat-
ing power render this a poor credit-issuing criterion in graded risk environments.

For completeness, we list the equilibria found. Groups in brackets with probabilities
represent SMSNEs, and ungrouped strategies indicate pure equilibria.

CLL. Default(1,1); Default(3,1); Default(4,1); Zero; [Buy rate(2,1), 0.899; Trade
value(3,1), 0.101]; [Trade value(2,1), 0.806; Trade value(3,1), 0.194]
CLH. Default(3,2); Trade profit(5,1); [Default(6,1), 0.951; Default(8,1), 0.049];
[Default(5,1), 0.744; Default(8,1), 0.256]
CML. Default(1,1); Default(3,1); Zero
CMH. Default(2,2); [Default(2,2), 0.014; Default(6,1), 0.986]; [Default(3,2), 0.880; De-
fault(4,1), 0.120]; [Default(5,1), 0.821; Default(6,1), 0.179]
CHL. Default(1,1); Default(3,1); Zero
CHH. Default(2,2); Zero; [Default(3,2), 0.081; Default(4,1), 0.919]
ILL. Zero; [Trade value(2,1), 0.637; Trade value(3,1), 0.363]
ILH. [Buy rate(4,1), 0.229; Trade profit(5,1), 0.771]
IML. Zero
IMH. [Buy rate(4,1),0.172; Trade profit(5,1),0.785; Trade value(3,1),0.042]
IHL. Zero
IHH. Buy rate(4,1); Zero
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Fig. 9. Welfare at social optimum compared to welfare at equilibrium.

Fig. 10. Total units of credit issued at social optimum compared to equilibrium.

Whereas the set of equilibria evolved as the empirical game was refined from Stage I
to Stage II, the qualitative categories of strategy profiles represented in equilibrium
(as depicted in Figure 8, ignoring the circle designations) remained constant.

We next turn to the question: How well do the credit networks generated in equi-
librium perform? Figure 9 compares the welfare (sum of agent utility) of equilibrium
outcomes to that of an estimated social optimum. Our estimate is actually a lower
bound, equal to the greatest social welfare seen in any full-game profile simulated.
Equilibrium welfare varies across equilibria, hence we present the best and worst of
those identified. In eight of twelve environments, the worst is the Zero equilibrium,
which supports no transactions and thus yields zero welfare. What we find overall is
that, when there is a substantial amount of welfare possible (i.e., the most favorable
environments), equilibrium network formation does a good job of obtaining most of it.
For less favorable environments, a network (if it forms at all) tends to produce little
utility.

We can also observe directly the amount of credit issued in equilibrium networks
as compared to the social optimum—which is not necessarily the credit-maximizing
network. As seen in Figure 10, the comparison mirrors that for welfare, but with lower
ratios of equilibrium to social optimum across the board. This is due to the diminishing
returns to credit once the network has ample credit capacity. In other words, we can
achieve a substantial fraction of available social welfare without issuing this same
fraction of the credit that a social planner would.
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As acknowledged at the outset, all of these results are relative to the particular strat-
egy space included in the empirical game analysis. Our choice was driven by an effort
to span a diverse space and to include strategies successful in preliminary studies or
otherwise representing plausible prospects for refuting initial equilibrium candidates.
The fact that adding strategies in Stage II based on automated exploration of para-
metric variations on the original strategies did not change the qualitative character of
equilibria lends support to the robustness of these results.

6. CONCLUSION

Our investigation of strategic issues in the formation of credit networks characterizes,
in various settings, the nature and efficiency of credit networks that are formed by self-
interested agents autonomously choosing how to issue credit among available counter-
parts. The analysis employs game-theoretic solution concepts employed in theoretical
examination of analytic models, as well as simulation-based exploration of extended
environments.

In the most restrictive case of dichotomous risk with only bilateral transactions
permitted, we show that the formation game is a potential game and, under many
transaction size distributions, every Nash equilibrium of the game maximizes social
welfare. More interestingly, we showed that the Nash equilibria are equivalent in a
much stronger sense: all Nash equilibria are cycle reachable from each other, which
implies that the sequences of transactions that can be supported from each equilib-
rium network are identical. However, when we allow transactions over longer paths,
best-response dynamics may not converge and PoA is unbounded.

Under a model of global risk, if agents are limited to extend credit to at most one
other agent, we prove that the networks formed in equilibrium have a star-like struc-
ture. Although PoA is unbounded, simple greedy dynamics quickly converge to a social
optimum. Even when agents are allowed to extend credit to multiple agents, we show
using empirical game simulation that nonempty equilibria tend to be star like.

Our empirical game simulations confirm the finding of star-like equilibrium net-
works under global risk, even in less restrictive scenarios. In addition, we study a
graded risk model where agents have partial information about default risks. We find
that star-like equilibria disappear because agents are unable to coordinate on highly
trustworthy central nodes. We also find that whether empty networks can occur in
equilibrium depends primarily on the relative profitability of transactions, and not on
the structure of information about default probabilities.
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APPENDIXES

A. TABLE OF SYMBOLS

Table III summarizes the notation we employ in this article.

Table III. Notational Symbols and their Interpretation

Symbol Meaning
u, v, . . . Agents; nodes in a credit network

V Set of agents/nodes
n Number of agents/nodes

cuv Credit on edge from u to v
Bu Credit budget for agent u
G Credit network
t Current time step4

λuv Probability that u is chosen to transact with v
� Transaction rate matrix

xt
uv Transaction size between u and v

Xuv(·) Probability distribution over transaction sizes
Xuv(·) Cumulative version of Xuv(·)
X Matrix of transaction-size distributions

〈�,X〉 Transaction regime
P Path in the credit network
Puv Shortest feasible path between u and v

M(G, �,X) Markov chain over the states of the network
Uu(G) Utility (payoff) of u for initial network G
U(G) Social welfare for initial network G

�uv(G) Expected loss of utility to u from prospect of default by v
puv(G) Steady-state success probability of transactions from u to v

γ Factor converting p to utility units
H = (V, E) Social network, with edges E

Eu Set of edges in E incident on node u
δv Probability that agent v defaults
δuv Signal agent u receives about probability v defaults

Beta(α, β) Beta distribution with parameters α and β

∂uv Number of samples generating signal δuv

(G) Potential function
ruv Marginal utility of edge (u, v)

r∗
u Maximum marginal utility among edges incident on u

E∗
u Edges incident on u maximizing marginal utility

rmin
G Minimum marginal utility among edges of G

I(G,F) (G, F)-restriction of setup instance I
du(G) Generalized score: Total credit issued to u in G

c Constant integer credit issued in unit transaction regime
τG(u) The agent issued credit by single-minded agent u

v∗ Node with minimum default probability
v∗

u Node other than u with minimum default probability
xuv Value to u of a successful transaction with v

4Symbols denoting time-varying objects may be superscripted with time; omitted superscripts indicate t = 0
(initial value).
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B. PROOFS OF THE BILATERAL TRANSACTION REGIME

B.1. Proof of Lemma 3.1

Recall from Section 2 that the total credit capacity along edge e = (u, v) remains con-
stant over time, that is, for all t > 0, cuv(Gt) + cvu(Gt) = cuv(G) + cvu(G) = ce(G). The
repeated probabilistic transactions along edge e induce a Markov chain over [ 0, ce(G)]
which is governed entirely by λuv and Xuv(·). We denote the Markov chain along edge e
by Me(λuv, Xuv) = {Ye(t) | t ≥ 0}. A state Ye(t) = y of the Markov chain represents the
current division of total credit capacity across the two directions, so can be encoded by
cuv(Gt) = y, cvu(Gt) = ce(G) − y. Let Pe be the transition kernel of the Markov chain
and let ρe be the corresponding density. Note that since Xuv(·) has support on [ 0, ∞),
for all 0 ≤ y, z ≤ ce(G), ρe(y, z) > 0. This implies that Me is irreducible.

PROPOSITION B.1. The Markov chain Me(λuv, Xuv) is irreducible.

PROOF. If ce(G) = 0, Me(λuv, Xuv) is trivially irreducible. If ce(G) > 0, observe
that, for any y ∈ [ 0, ce(G)] and any closed interval A ⊆ [ 0, ce(G)] of nonzero length,
Pe(y, A) > 0.

Next we show that Me(λuv, Xuv) has a uniform steady-state distribution over
[ 0, ce(G)].

PROPOSITION B.2. The Markov chain Me(λuv, Xuv) has a uniform steady-state dis-
tribution over [ 0, ce(G)].

PROOF. The statement is trivially true if ce(G) = 0. Assume ce(G) > 0. Consider
a uniform distribution given by πe such that πe(y) = 1/ce(G) for all y ∈ [ 0, ce(G)].
Then, πe satisfies the detailed balance condition, πe(y)ρe(y, z) = πe(z)ρe(z, y) for all
0 ≤ y, z ≤ ce(G). Therefore, πe is a steady-state distribution of Me. Further, since Me
is irreducible (by Proposition B.1), πe is the unique steady-state distribution of Me.

Now we are ready to characterize the steady-state transaction probability puv(G)
between nodes u and v. Fix a time step t. Assume that Ye(t−1) = z, where 0 ≤ z ≤ ce(G).
Then the transaction at time step t where u pays v succeeds if yt ≤ ce(G) − z. So the
success probability at time step t is given by λuvP[ yt ≤ ce(G) − z] = λuvXuv(ce(G) − z).
Therefore, the steady-state success probability is given by

puv(G) =
∫ ce(G)

0
πe(z)λuvXuv(ce(G) − z)dz.

When ce(G) = 0, the integral evaluates to zero and therefore puv(G) = 0. On the other
hand, when ce(G) > 0,

puv(G) = λuv

ce(G)

∫ ce(G)

0
Xuv(ce(G) − z)dz.

since πe(z) = 1/ce(G) for all 0 ≤ z ≤ ce(G). Substituting y = ce(G) − z, we get

puv(G) = − λuv

ce(G)

∫ 0

ce(G)

Xuv(y)dy = λuv

ce(G)

∫ ce(G)

0
Xuv(y)dy.

B.2. Proof of Lemma 3.4

B.2.1. Proof that puv is Continuously Differentiable and Strictly Increasing. Recall from (3) that
for an edge e ∈ E, puv is given by

puv(x) =
{ λuv

x

∫ x
0 Xuv(y)dy, if x > 0

0, if x = 0
.
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Recall that Xuv(·) is twice differentiable, which implies puv(x) is continuously differen-
tiable in (0, ∞). We show that both puv and its derivative p′

uv are continuous at 0. For
x > 0,

lim
x→0

puv(x) = lim
x→0

λuv

x

∫ x

0
Xuv(y)dy.

Since both the numerator and denominator in the prior expression are continuously
differentiable functions over [ 0, ∞), we can use L’Hôpital’s rule to evaluate the limit.
Therefore

lim
x→0

λuv

x

∫ x

0
Xuv(y)dy = lim

x→0

λuvXuv(x)

1
= 0 = puv(0),

where the first equality results from L’Hôpital’s rule. Therefore puv is continuous at 0.
Next we show that p′

uv is also continuous at 0. For x > 0, p′
uv(x) is given by

p′
uv(x) = dpuv(x)

dx
= λuv

(
− 1

x2

∫ x

0
Xuv(y)dy + 1

x
Xuv(x)

)
,

= λuv

x

(
Xuv(x) − 1

x

∫ x

0
Xuv(y)dy

)
. (6)

Note that∫ x

0
(x − y)Xuv(y)dy = x

∫ x

0
Xuv(y)dy −

∫ x

0
yXuv(y)dy,

= xXuv(x) −
∫ x

0
yXuv(y)dy,

= xXuv(x) −
(

yXuv(y)
∣∣x
0 −

∫ x

0
Xuv(y)dy

)
=

∫ x

0
Xuv(y)dy.

Substituting
∫ x

0 (x − y)Xuv(y)dy for
∫ x

0 Xuv(y)dy in (6), we get

p′
uv(x) = λuv

x

(
Xuv(x) − 1

x

∫ x

0
(x − y)Xuv(y)dy

)
,

= λuv

x

(
Xuv(x) − 1

x

∫ x

0
xXuv(y)dy + 1

x

∫ x

0
yXuv(y)dy

)
,

= λuv

x

(
Xuv(x) − Xuv(x) + 1

x

∫ x

0
yXuv(y)dy

)
.

Therefore

p′
uv(x) = λuv

x2

∫ x

0
yXuv(y)dy. (7)

Taking the limit as x → 0, we get

lim
x→0

p′
uv(x) = lim

x→0

λuv

x2

∫ x

0
yXuv(y)dy.

Recall that, by assumption, Xuv is twice differentiable, which implies Xuv is differ-
entiable. Therefore, the numerator and denominator in the expression for p′

uv(x) are
continuously differentiable functions over [ 0, ∞). So we can again use L’Hôpital’s rule
to evaluate the limit. This gives

lim
x→0

λuv

x2

∫ x

0
yXuv(y)dy = lim

x→0

λuvxXuv(x)

2x
= λuvXuv(0)

2
. (8)
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Now, let us evaluate the derivative, p′
uv, at 0.

p′
uv(0) = lim

δ→0

puv(0 + δ) − puv(0)

δ
= lim

δ→0

puv(δ)

δ

= lim
δ→0

λuv

δ2

∫ δ

0
yXuv(y)dy = λuvXuv(0)

2
(from (8)). (9)

From (8) and (9), it follows that limx→0 p′
uv(x) = p′

uv(0), therefore p′
uv is continuous

over [ 0, ∞). Next we show that puv is strictly increasing over [ 0, ∞). Recall that Xuv
has support over [ 0, ∞). Therefore Xuv is strictly increasing. As a result, puv is strictly
increasing over (0, ∞). Furthermore, puv(0) = 0 and puv is strictly positive over (0, ∞).
Therefore puv is strictly increasing over [ 0, ∞).

B.2.2. Proof that puv is Concave. First, let us assume x > 0. Recall from (7) that

p′
uv(x) = λuv

x2

∫ x

0
yXuv(y)dy.

Since Xuv(·) is differentiable, we can differentiate p′
uv again to get

p′′
uv(x) = d2puv

dx2 = λuv

(−2
x3

∫ x

0
yXuv(y)dy + 1

x
Xuv(x)

)
,

= λuv

(−2
x3

∫ x

0
yXuv(y)dy + 2

x3 Xuv(x)

∫ x

0
ydy

)
,

= 2λuv

x3

∫ x

0
y (Xuv(x) − Xuv(y)) dy.

Since Xuv(·) is nonincreasing (by assumption), we have that, for any x ≥ 0, Xuv(y) ≥
Xuv(x) for all y ≤ x. This in turn implies that p′′

uv(x) is nonpositive for x > 0, which
implies puv(·) is concave over (0, ∞). We would like to show that it is concave over its
entire domain [ 0, ∞). Consider any x ∈ (0, ∞) and a small value δ > 0. Then, since
puv(·) is concave over (0, ∞), we have that, for all α ∈ [ 0, 1],

puv(αδ + (1 − α)x) ≥ αpuv(δ) + (1 − α)puv(x).

Taking the limit as δ → 0, we get

lim
δ→0

puv(αδ + (1 − α)x) ≥ α lim
δ→0

puv(δ) + (1 − α)puv(x).

Now,

lim
δ→0

puv(δ) = lim
δ→0

λuvXuv(δ)

1
(by L’Hôpital’s rule) = 0 = puv(0).

Therefore we have that, for any x > 0 and for all α ∈ [ 0, 1],

puv(0 + (1 − α)x) ≥ αpuv(0) + (1 − α)puv(x).

This implies that puv(·) is concave over [ 0, ∞).
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B.3. Proofs of Propositions in Lemma 3.6

PROOF OF PROPOSITION 3.1. By contradiction. Suppose there exists a node u such
that

∑
v:(u,v)∈E cuv(G) < Bu. Recall that ruv(G) > 0 for all (u, v) ∈ E. Therefore, there

must exist an edge (u, v) incident on u such that ruv(G) > 0. So, u can allocate the
remaining credit along e and improve its payoff, contradicting the assumption that G
is a Nash equilibrium.

Next, suppose there exists an edge e = (u, v) /∈ E∗
u(G). This implies r∗

u(G) > ruv(G) >
0. Assume that cuv(G) > 0. If u lowers its credit allocation along e by some ε > 0, its
utility on e changes by γ (puv(ce(G) − ε) − puv(cG(e))). If u puts this ε credit on an edge
e′ ∈ E∗

u(G), its utility on e′ changes by γ (pe′(ce′(G) + ε) − pe′(ce′(G))). In the limit as
ε → 0, puv(ce(G) − ε) − puv(ce(G)) = −εruv(G) and pe′(ce′(e′) + ε) − pe′(ce′(G)) = εr∗

u(G).
The net change in u’s utility is γ (ε(r∗

u(G) − ruv(G))) > 0. This again implies that G
cannot be a Nash equilibrium, resulting in a contradiction.

PROOF OF PROPOSITION 3.2. By contradiction. Assume rmin
G′ < rmin

G .
Let V int

G′ := Vmin
G′ −V+

G′ . For a node u ∈ V int
G′ , all edges incident upon u are in Emin

G′ . We
first prove a few properties of edges in Emin

G′ and nodes in V int
G′ .

P1. For all edges e ∈ Emin
G′ , ce(G′) > 0.

Proof. Consider an edge e = (u, v) ∈ Emin
G′ . We know that in state G, ruv(G) ≥ rmin

G .
Assume ce(G′) = 0. Since ruv(·) is a strictly decreasing function, this implies ruv(t) ≤
rmin

G′ for any network t. This contradicts the statement that re(G) ≥ rmin
G > rmin

G′ .
Therefore ce(G′) > 0.
P2. For each edge e = (u, v) ∈ Emin

G′ , at least one of u and v must be in V int
G′ .

Proof. Consider edge e = (u, v) ∈ Emin
G′ . Assume u /∈ V int

G′ and v /∈ V int
G′ . This implies

that u and v each have at least one incident edge that is not in Emin
G′ (by definition

of V int
G′ ). This implies e /∈ E∗

u(G′) and e /∈ E∗
v(G

′) (by definition of Emin
G′ ). Therefore, by

Proposition 3.1, cuv(G′) = cvu(G′) = 0. But this contradicts P1. Therefore at least
one of the endpoints of e must be in V int

G′ .
P3. An edge e ∈ Emin

G′ is a slack edge if and only if exactly one of its endpoints is in
V int

G′ .
Proof. Fix edge e = (u, v) ∈ Emin

G′ .
First, assume e is slack. It is obvious that at least one of u and v must not be in V int

G′
(by definition of a slack edge). But, from P2, we know that at least one of u and v
must be in V int

G′ . Therefore exactly one of u and v must be in V int
G′ .

Now assume that exactly one endpoint, say node u, is in V int
G′ and v /∈ V int

G′ . Then,
there exists an edge e′ ∈ E−Emin

G′ incident on v. This implies e /∈ E∗
v(G

′) (by definition
of Emin

G′ ). Therefore e must be slack (by definition of slackness).
P4. An edge e ∈ Emin

G′ is not slack if and only if both its endpoints are in V int
G′ (this

follows from P2 and P3).
P5. For all edges e ∈ Emin

G′ , ce(G′) > ce(G) (since rmin
G′ < rmin

G ).
P6. Let Y ⊆ Emin

G′ be the set of slack edges in Emin
G′ . Then, for all edges e = (u, v) ∈ Y

where u ∈ V int
G′ , ce(G′) = cuv(G′) (since v ∈ V+

G′ , cvu(G′) = 0).
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Strategic Formation of Credit Networks 3:33

Using these properties, we show that at least one node in V int
G′ is not expending its

entire credit budget in network G. Therefore G cannot be an equilibrium. The total
credit allocated by nodes in V int

G′ in equilibrium G′ is given by∑
u∈Vint

G′

∑
v:(u,v)∈E

cuv(G′) =
∑

u∈Vint
G′

∑
e=(u,v)∈Emin

G′

cuv(G′) (by definition of V int
G′ ),

=
∑

e∈Emin
G′ −Y

ce(G′) +
∑

e=(u,v)∈Y
u∈Vint

G′

cuv(G′) (by P3 and P4) ,

=
∑

e∈Emin
G′

ce(G′) (from P6),

>
∑

e∈Emin
G′

ce(G) (from P5),

=
∑

e∈Emin
G′ −Y

ce(G) +
∑
e′∈Y

ce′ (G),

≥
∑

e∈Emin
G′ −Y

ce(G) +
∑

e′=(u,v)∈Y
u∈Vint

G′

cuv(G) (because 1∀e = (u, v) ∈ E, ce(G) ≥ cuv(G)),

=
∑

u∈Vint
G′

∑
v:(u,v)∈E

cuv(G) (by definition of V int
G′ and by P3 and P4).

Thus we have shown that the total credit allocated by nodes in V int
G′ in equilibrium G′

is greater than that in equilibrium G. This implies that there exists at least one node
in V int

G′ , say u∗, such that ∑
v:(u∗,v)∈E

cu∗v(G′) >
∑

v:(u∗,v)∈E

cu∗v(G).

So, u∗ is violating the conditions of Proposition 3.1 in network G and therefore G cannot
be a Nash equilibrium.

PROOF OF PROPOSITION 3.3. Consider the set Emin
G . We know that for all edges

e ∈ Emin
G , re(G′) ≥ ruv(G) (by Proposition 3.2). We partition the set Emin

G into sets T1
and T2 (informally corresponding to “type I” and “type II” edges) as follows.

T1 = {e ∈ Emin
G | ruv(G′) = ruv(G)}; T2 = {e ∈ Emin

G | ruv(G′) > ruv(G)}
Note that Emin

G = Emin
G′ if and only if T2 is empty. We prove that T2 is empty by contra-

diction. Assume T2 �= ∅.

P1. For all edges e ∈ T2, ce(G′) < ce(G) (since ruv(·) is a nonincreasing function).
The following derives from P1 and the definition of Vmin

G .
P2. ∑

u∈Vmin
G

∑
e=(u,v)∈E∩T2

cuv(G′) <
∑

u∈Vmin
G

∑
e=(u,v)∈E∩T2

cuv(G)

The following comes from P2.

ACM Transactions on Internet Technology, Vol. 15, No. 1, Article 3, Publication date: February 2015.



�

�

�

�

�

�

�

�

3:34 P. Dandekar et al.

P3. ∃u ∈ Vmin
G (say u∗) such that∑

e=(u∗,v)∈E∩T2

cu∗v(G′) <
∑

e=(u∗,v)∈E∩T2

cu∗v(G).

P4. u∗ /∈ V+
G .

Proof. Assume u∗ ∈ V+
G . Then, there exists an edge e′ ∈ E − Emin

G incident upon u∗,
which means edges in Emin

G incident upon u∗ are not in E∗
u∗(G) (by definition of Emin

G ).
This implies that, for all edges e = (u∗, v) ∈ Emin

G , cu∗v(G) = 0. But this implies P3
cannot be true; we have a contradiction.
P5. For all edges e = (u∗, v) /∈ T2, cu∗v(G′) = 0.
Proof. Since u∗ /∈ V+

G (P4), all edges incident upon u∗ are in Emin
G . Consider an edge

e = (u∗, v) /∈ T2. Since T1 and T2 partition Emin
G , this implies e ∈ T1. We know that

ruv(G′) = rmin
G < re′(G′) for all edges e′ ∈ T2 incident upon u∗ (by definition of T1 and

T2). Therefore cu∗v(G′) = 0 (by Proposition 3.1).

From P3 and P5, it follows that∑
e=(u∗,v)∈E

cu∗v(G′) <
∑

e=(u∗,v)∈E

cu∗v(G).

That is, u∗ is not allocating its entire budget in G′. Hence G′ is not a Nash equilibrium,
resulting in a contradiction.

PROOF OF PROPOSITION 3.4. Observe that any improving unilateral deviation for
node u in I(G,F) starting from G(F) is also a valid improving unilateral deviation for u
in I starting from G.

PROOF OF PROPOSITION 3.5. Proof by induction on the number of edges m in the
network.

Inductive Hypothesis. Assume the theorem holds for instances with at most m edges.

Base Case. m = 1. If ruv(G) > 0 in Nash equilibrium G, then G is the only Nash
equilibrium. Otherwise, ruv(G) = 0 in all Nash equilibria.

We now show that the theorem is also true for instances with m + 1 edges. We are
given the instance I : G = (V, E); puv, e ∈ E; Bu, u ∈ V, with |E| = m + 1. Let G and G′
be two Nash equilibria of I. By Proposition 3.3, Emin

G = Emin
G′ . Let F := Emin

G .
By Proposition 3.4, G(F) is a Nash equilibrium for the instance I(G,F) and G′

(F)
is

a Nash equilibrium for the instance I(G′,F). Instances I(G,F) and I(G′,F) have the same
graph G(F) and the same utilities p(F)

uv , since these depend only on F. We show next
that they also have the same budgets: for all nodes u ∈ V, B(G,F)

u = B(G′,F)
u . From

Corollary 3.1, we know that Vmin
G = Vmin

G′ and V+
G = V+

G′ . We divide the proof into
three cases.

Case (i). u ∈ V \ Vmin
G . This implies u is not incident on any edge in F. Therefore

B(G,F)
u = B(G′,F)

u = Bu.
Case (ii). u ∈ V+

G . Then, by slackness and as explained in the proof of

Proposition 3.3, for all edges e ∈ F, cG(u, e) = cG′(u, e) = 0. This implies B(G,F)
u =

B(G′,F)
u = Bu.

Case (iii). u ∈ Vmin
G \ V+

G . Then B(G,F)
u = B(G′,F)

u = 0 (by construction, since Eu ⊆ F).
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Hence, I(G,F) and I(G′,F) are the same problem instance, and G(F) and G′
(F)

are two
Nash equilibria of this instance. Further G(F) has at most m edges. Therefore, by the
inductive hypothesis, for all edges e ∈ E \ F, ruv(G(F)) = ruv(G′

(F)
). But

∀e ∈ E \ F, ce(G(F)) = ce(G) and ce(G′
(F)) = ce(G′)

by definition of an F-restriction. This implies

∀(u, v) ∈ E \ F, ruv(G) = ruv(G′).
Also, ∀(u, v) ∈ F, ruv(G) = ruv(G′) (from Proposition 3.3). This completes the inductive
proof.

C. PROOFS OF THEOREMS ABOUT THE GLOBAL RISK MODEL

C.1. Proof of Theorem 4.3

The proof consists of two parts. First, we show that G is weakly connected. Second, we
show that when n is large, G is a star network.

Throughout this proof, we call a node u a leaf node in G if no nodes extend credit
to u in G. We define some notation that we need in the proof. Observe that, since
agents are single minded, in any network G′, for any node u, there is exactly one edge
leaving u. For any network G′ and for nodes u, v ∈ V, we define the network �G′(u, v) :=
G′ \ {(u, τG′(u))} ∪ {(u, v)}, that is, �G′(u, v) is the network obtained by deleting the edge
leaving u in G′ and adding the edge (u, v). Let h := c/(c + 1). For an integer k ≥ 2 and
1 ≤ l ≤ k − 1, let

q(l, k) := hl + hk−l − 2hk

1 − hk
. (10)

For an integer k ≥ 2, let

ρC(k) :=
k−1∑
l=1

q(l, k) = 2
k−1∑
l=1

hl − hk

1 − hk
. (11)

Observe that:

(a) limk→∞ ρC(k) = 2h
(1−h)

, and

(b) for all finite k ≥ 2, 2h
(1−h)

> ρC(k) (since h < 1).

For an integer k ≥ 2, let

ρL(k) :=
k−1∑
l=1

hl = h
1 − hl−1

1 − h
. (12)

In a unit transaction regime q(l, k) is the steady-state transaction success probability
between two nodes separated by l edges in a circular graph with k edges of capacity c
each, whereas ρL(k) is the sum of the steady-state transaction success probabilities for
a node at the end of a k-node line graph [Dandekar et al. 2011].

We use these quantities to argue about improving unilateral deviations of nodes
in G.

PROPOSITION C.1. Let G be a Nash equilibrium. Then, G is weakly connected.

PROOF. By contradiction. Assume that G is not weakly connected. Consider two
weakly connected components G1 and G2 of G. Let V1 and V2 be the set of nodes in G1
and G2, respectively. Let |V1| = n1 and |V2| = n2. Observe that: (i) both n1, n2 ≥ 2, and
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(ii) G1 and G2 have n1 and n2 edges, respectively, and consequently, each contains a
directed cycle. We divide the proof into three cases.

— Case I. Both G1 and G2 each have at least one leaf node. Let u ∈ V1 and v ∈ V2 be leaf
nodes. Further assume there exist nodes y ∈ V1 and z ∈ V2 such that τG(u) = y and
τG(v) = z. For any network t, define F(u, t) := ∑

w∈V\{u,v,y,z} puw(t) and let F(v, t) :=∑
w∈V\{u,v,y,z} pvw(t).

Then we have

Uu(G) = γ
(
puy(G) + F(u, G)

) − δyc,

Uv(G) = γ
(
pvz(G) + F(v, G)

) − δzc.

Consider another network G′ = �G(u, z), that is, in G′ node u extends credit to z
instead of y. Then,

Uu(G′) = γ
(
puz(G′) + puv(G′) + F(u, G′)

) − δzc.

Similarly, consider a network G′′ = �G(v, y), that is, in G′′ node v extends credit to y
instead of z. Then,

Uv(G′′) = γ
(
pvy(G′′) + pvu(G′′) + F(v, G′′)

) − δyc.

However, note that Uu(G′) > Uv(G), since puv(G′) is an extra term and all other
terms are identical. For similar reasons, Uv(G′′) > Uu(G). Thus we have

Uu(G′) > Uv(G) ≥ Uv(G′′) > Uu(G),

where the second inequality holds because G is a Nash equilibrium, which implies v
does not have an improving unilateral deviation. However, Uu(G′) > Uu(G) implies
that u has an improving unilateral deviation, contradicting the assumption that G
is a Nash equilibrium.
Case II. Neither G1 nor G2 has a leaf node (i.e., G1 and G2 are both directed cycles).
Observe that, for any node u ∈ V1 such that τG(u) = v, Uu(G) = γ λρC(n1) − δvc,
where ρC(n1) is defined in (11). Similarly, for any node u ∈ V2 such that τG(u) = v,
Uu(G) = γ λρC(n2)−δvc. Let v1 ∈ arg minv∈V1 δv be a node in V1 that has the smallest
value of δv in V1. Similarly, let v2 ∈ arg minv∈V2 δv.
Since G is a Nash equilibrium, no node in V2 has an incentive to switch and extend
credit to v1 instead. This implies that, for all nodes u ∈ V2,

γ λ
(
h + hρC(n1) + ρL(n2)

) − δv1c ≤ γ λρC(n2) − δuc. (13)

Let u1 be the node in V1 that extends credit to v1, that is, τG(u1) = v1. We show that
u1 now has an incentive to extend credit to v2. Instantiating (13) for v2, we get

γ λ
(
h + hρC(n1) + ρL(n2)

) − δv1c ≤ γ λρC(n2) − δv2c,

or equivalently,

(δv1 − δv2)c ≥ γ λ
(
h + hρC(n1) − ρC(n2) + ρL(n2)

)
. (14)

Next we show that h+ρL(n2) > ρC(n1)(1−h). Recall that for all finite k ≥ 2, ρC(k) <
2h/(1 − h). This implies ρC(n1)(1 − h) < 2h. Also recall that for all k ≥ 2, ρL(k) ≥ h.
This implies h + ρL(n2) ≥ 2h > ρC(n1)(1 − h).
Replacing h + ρL(n2) ≥ 2h with ρC(n1)(1 − h) in (14) , we get

(δv1 − δv2)c > γλ (ρC(n1) − ρC(n2)) . (15)

Using a similar argument as earlier, it is easy to see that h + ρL(n1) > ρC(n2)(1 − h),
or equivalently,

ρC(n2) < hρC(n2) + h + ρL(n1).
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Substituting the preceding upper bound on ρC(n2) in (15), we get

(δv1 − δv2)c > γλ
(
ρC(n1) − hρC(n2) − h − ρL(n1)

)
.

Rearranging, we get

γ λ
(
h + hρC(n2) + ρL(n1)

) − δv2c > γλρC(n1) − δv1c.

Observe that the left-hand side of the prior inequality is the utility of u1 when it
extends credit to v2 instead of v1, whereas the right-hand side is Uu1(G). Thus, u1
can improve its utility in G by extending credit to v2, contradicting the assumption
that G is a Nash equilibrium.

Case III involves exactly one of G1 and G2 having at least one leaf node. The argument
in this case is similar to that in Case II.

PROPOSITION C.2. Let G be a Nash equilibrium. For a sufficiently large n, there
must exist a node, say u∗, such that for all nodes v ∈ V \ {u∗}, τG(v) = u∗.

PROOF. By contradiction. From Proposition C.1, we know that G is weakly con-
nected. We divide the proof into cases based on the number of leaf nodes in G.

— Case I. G has zero leaf nodes (i.e., G is a circular graph). Observe that the total
utility Uy(G) of a node y in G is given by

Uy(G) = γ λρC(n) − δzc,

where z = τG(y) is the node to which y extends credit, and ρC(n) is defined in (11).
Since ρC(n) is independent of y, the node that maximizes Uy(G) must be extending
credit to the node with the smallest value of δv. Let v1 ∈ arg minv∈V δv be a node
with the smallest value of δv. Let v2 be the node that extends credit to v1, that is,
v1 = τG(v2). Further let u be the node extending credit to v2, that is, v2 = τt(u). We
will show that u can improve its utility by extending credit to v1 instead of v2.
Let G′ = �G(u, v1), that is, G′ is the network obtained when u extends credit to v1
instead of u2. The utility Uu(G′) of u in G′ is given by

Uu(G′) = γ
(
λρC(n − 1) + puv2(G

′)
) − δv1c,

= γ
(
λp(n − 1) + hpuv1(G

′)
) − δv1c (puv2(G

′) = pv2u(G′) = hpv1u(G′),
by Lemma 4.1),

= γ λ
(
p(n − 1) + hq(1, n − 1)

) − δv1c (since u and v1 are adjacent

in a cycle of length n − 1),
> γλp(n) − δv1c (for a sufficiently large n),
= Uv2(G) ≥ Uu(G) (since δv1 ≤ δv2).

Since u has a unilateral improving deviation in G, G cannot be a Nash equilibrium.
— Case II. G has exactly one leaf node (that is, G is a balloon-like graph).

Observe that, since G has n edges, it must contain a directed cycle. Let C ⊆ V be the
set of nodes that are part of the cycle in G. Let T = V \ C be the set of “tail” nodes.
Let |C| = n1 and |T| = n2, where n1 + n2 = n. Since G has exactly one leaf node,
observe that: (a) T is nonempty, and (b) nodes in T form a line graph.
Let v1 ∈ C be the node in the cycle that connects to T, that is, there exists a node
w ∈ T such that τG(w) = v1. Then, since G is a Nash equlibrium, it must be that
v1 ∈ arg minv∈C δv, that is, v1 must have the lowest default probability among nodes
in C.
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As n grows, at least one of n1 and n2 must grow. We divide the proof into two cases.
— Case II(a). We will prove that when n1 is sufficiently large, G cannot be a Nash

equilibrium. Let v2 be the node that extends credit to v1, that is, v1 = τG(v2). Let
u be the node extending credit to v2, that is, v2 = τG(u). We will show that u can
improve its utility by extending credit to v1 instead of v2.
Let G′ = �G(u, v1), that is, G′ is the network obtained when u extends credit
to v1 instead of u2. Observe that, by Lemma 4.1, puv2(G

′) = puv1(G
′)pv1v2(G

′) =
hpuv1 . Similarly, for a node w ∈ T, puw(G′) = puv1(G

′)pv1w(G′). Also, observe
that puv1(G

′) = λq(1, n1 − 1) > λq(1, n1), where q(1, n1) is defined in (10). Finally,∑
w∈T pv1w(G′) = ∑

w∈T pv1w(G) = λρL(n2 +1), where ρL(n2 +1) is defined in (12).
We will use these observations to show that, for a sufficiently large n1, Uu(G′) >
Uu(G).

Uu(G′) = γ

(
λρC(n1 − 1) + puv2(G

′) +
∑
w∈T

puw(G′)
)

− δv1c

= γ λ
(
ρC(n1 − 1) + q(1, n1 − 1)(h + ρL(n2 + 1)

) − δv1c

Recall that as n → ∞, ρC(n) = 2h/1 − h). Also, q(1, n1 − 1) > q(1, n1). Therefore
for a sufficiently large n1,

ρC(n1 − 1) + q(1, n1 − 1)(h + ρL(n2 + 1)) > ρC(n1) + q(1, n1)ρL(n2 + 1).

This implies, for a sufficiently large n1, that

Uu(G′) > γλ (ρC(n1) + q(1, n1)ρL(n2 + 1)) − δv1c,
= Uv1(G) ≥ Uu(G) (since δv1 ≤ δv2).

Thus, u can improve its utility by deviating, contradicting the assumption that
G is a Nash equilibrium.

— Case II(b). We will prove that when n2 is sufficiently large, G cannot be a Nash
equilibrium. Let y be the leaf node in G and let w be the node in G to which y
extends credit. We will show that, for a sufficiently large n2, v1 can improve its
utility by extending credit to w. Let z be the node in C, to which v1 extends credit.
Since G is a Nash equilibrium, it must be that δw ≤ δv1 ≤ δz (otherwise y would
have an improving deviation).
Observe that Uv1(G) = λ(ρC(n1)+ρL(n2 +1))−δzc. Let G′ = �G(v1, w), that is, G′
is the network obtained when v1 extends credit to w instead of z. Then, Uv1(G

′) =
λ(ρC(n2) + ρL(n1)) + pv1y(G′) − δwc, where pv1y(G′) = pv1w(G′)pwy(G′) = hq(1, n2).
Observe that, for a sufficiently large n2, ρL(n2 + 1) − ρL(n2) = hn2 < hq(1, n2) =
pv1y(G′). Therefore

Uv1(G
′) − Uv1(G) > λ(ρC(n2) + ρL(n1)) − δwc − (λ(ρC(n1) + ρL(n2)) − δzc) ,

≥ λ(ρC(n2) + ρL(n1) − ρC(n1) − ρL(n2)) (since δw ≤ δz),
= λ(B(n2) − B(n1)),

where B(k) := ρC(k) − ρL(k). Substituting the values of ρC(k) and ρL(k), we get

B(k) = h
1 − h

+ hk

1 − hk

(
1 − hk

1 − h
− 2k

)
.
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Observe that: (i) limk→∞ B(k) = h/(1 − h), and (ii) for all k ≥ 2, B(k) ≤ h/(1 − h),
since (1 − hk)/(1 − h) ≤ 2k. Therefore for a fixed n1,

lim
n2→∞ B(n2) − B(n1) = h

1 − h
− B(n1) ≥ 0.

We have shown that Uv1(G
′)−Uv1(G) > 0, that is, v1 has an improving deviation

in G, contradicting the assumption that G is a Nash equilibrium.
— Case III. G has two or more leaf nodes. The proof of this case is similar to that in

Case I of Proposition C.1. Let u, v ∈ V be leaf nodes in G. Further assume for the
purpose of contradiction that there exist nodes y, z ∈ V such that τG(u) = y and
τG(v) = z. For any network t, let F(u, t) := ∑

w∈V\{u,v,y,z} puw(t) and let F(v, t) :=∑
w∈V\{u,v,y,z} pvw(t).

Then we have

Uu(G) = γ
(
puy(G) + puz(G) + puv(G) + F(u, G)

) − δyc,

Uv(G) = γ
(
pvy(G) + pvz(G) + pvu(G) + F(v, G)

) − δzc.

Consider another network G′ = �G(u, z), that is, in G′ node u extends credit to z
instead of x. Then,

Uu(G′) = γ
(
puy(G′) + puz(G′) + puv(G′) + F(u, G′)

) − δzc.

Similarly, consider a network G′′ = �G(v, y), that is, in G′′ node v extends credit to y
instead of z. Then,

Uv(G′′) = γ
(
pvy(G′′) + pvz(G′′) + pvu(G′′) + F(v, G′′)

) − δyc.

However, note that Uu(G′) > Uv(G), since puv(G′) > pvu(G) and all other terms are
identical. For similar reasons, Uv(G′′) > Uu(G). Thus we have

Uu(G′) > Uv(G) ≥ Uv(G′′) > Uu(G).

where the second inequality holds because G is a Nash equilibrium, which implies v
does not have an improving unilateral deviation. However, Uu(G′) > Uu(G) implies
that u has an improving unilateral deviation, contradicting the assumption that G
is a Nash equilibrium.

This concludes the proof of Theorem 4.3.

PROOF OF THEOREM 4.6. The statement clearly holds for u1. We prove the general
statement by contradiction. Assume that node ui, for some i > 1, is the first node such
that τGi(ui) /∈ {ui−1, τGi−1(ui−1)}. Let τGi(ui) = u′. Let τGi−1(ui−1) = v. Observe that both
u′, v ∈ Vi−2. Since ui extended credit to u′ instead of v, it must be that the utility of
ui from extending credit to u′ is at least the utility that ui would have derived from
extending credit to v.

Uui(Gi−1 ∪ {(ui, u′)}) ≥ Uui(Gi−1 ∪ {(u, v)}) (16)

Let G(u′) := Gi−1 ∪ {(ui, u′)}, and G(v) := Gi−1 ∪ {(u, v)}. Then, (16) implies

γ
∑

w∈Vi

puiw(G(u′)) − δu′c ≥ γ
∑

w∈Vi

puiw(G(v)) − δvc. (17)
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For a network Gi and a node u ∈ Vi, define F(u, Gi) := ∑
w∈Vi

puw(Gi). Using
Lemma 4.1,

∑
w∈Vi

puiw(G(u′)) can be written as∑
w∈Vi

puiw(G(u′)) = puiu′(Gi) + hF(u′, Gi−1) = λh + h
(
F(u′, Gi−2) + pu′ui−1(Gi−1)

)
.

Here h = c/(c + 1). Similarly,∑
w∈Vi

puiw(G(v)) = λh + h
(
F(v, Gi−2) + pvui−1(Gi−1)

)
.

Substituting the expressions for
∑

w∈Vi
puiw(G(u′)) and

∑
w∈Vi

puiw(G(v)) in (17), we
get

γ h
(
λ + F(u′, Gi−2) + pu′ui−1(Gi−1)

) − δu′c ≥ γ h
(
λ + F(v, Gi−2) + pvui−1(Gi−1)

) − δvc.
(18)

Note that, since ui−1 extended credit to v instead of to u′, ui−1 is at least at distance
two from u′ in Gi−1. Therefore

pu′ui−1(Gi−1) < λh = pvui−1(Gi−1). (19)

(18) and (19) imply that

γ h
(
λ + F(u′, Gi−2)

) − δu′c > γ h
(
λ + F(v, Gi−2)

) − δvc.

However,

γ h(λ + F(u′, Gi−2) − δu′c = Uui−1(Gi−2 ∪ {(ui−1, u′)})
and

γ h(λ + F(v, Gi−2) − δvc = Uui−1(Gi−2 ∪ {(ui−1, v}).
Thus our analysis implies that Uui−1(Gi−2 ∪ {(ui−1, u′)}) > Uui−1(Gi−2 ∪ {(ui−1, v}), that
is, ui−1 would have derived a higher utility by extending credit to u′, contradicting the
assumption that ui−1 maximized its utility by extending credit to v.
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