Trick or Treat: Putting Peer Prediction to the Test

Yousef Alhessi
CS 97
Why Peer-prediction Mechanisms?

Q: Can we design mechanisms to truthfully elicit subjective evaluations from individual?

A: Try peer-prediction mechanisms!
How do they work?

● One participant’s report is compared to those of their peers to induce truthful reporting equilibrium.
Example

- Let’s say I make cameras.
- I want to learn about the quality of the cameras from the consumers.
- Ask the consumers to rate the product and compare their ratings.
- Pay them for rating!
How do we do that?

- With proper incentives, it is in a participant’s best interest to report truthfully if they believe all other participants will also be truthful.
But there is a problem...

- There exists at least two other uninformative equilibria.
- Participants can coordinate to give the same answer over and over again.
The trick or treat story

What candy did you get?
Payment Rules

<table>
<thead>
<tr>
<th></th>
<th>ref report = GB</th>
<th>ref report = MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>report = GB</td>
<td>$1.20</td>
<td>$0.30</td>
</tr>
<tr>
<td>report = MM</td>
<td>$0.10</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

Table 1: Typical Payment Rule

<table>
<thead>
<tr>
<th></th>
<th>ref report = GB</th>
<th>ref report = MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>report = GB</td>
<td>$1.50</td>
<td>$0.10</td>
</tr>
<tr>
<td>report = MM</td>
<td>$0.10</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

Table 2: Payment Rule Rewarding Agreement
The trick or treat story

You are playing **20 rounds** of the game with **2 other player(s)**. Your bonus (= average reward) so far: **$0.63**.

Current Status: ***Please confirm your claim!***

Current Round is #4:
1. A house has been randomly chosen for this round.

 - 50% chance of winning 80% of the candy
 - 50% chance of winning 70% of the candy

 The randomly chosen house

2. Get a random candy from the chosen house.

 Your candy is: 🍫

3. Choose your claim.

 ![Confirm your claim!]

 Reward Rule

<table>
<thead>
<tr>
<th>Your claim</th>
<th>Other player's claim</th>
<th>Your reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>🍫</td>
<td>🍫</td>
<td>$0.30</td>
</tr>
<tr>
<td>🍫</td>
<td>🍫</td>
<td>$1.50</td>
</tr>
<tr>
<td>🍫</td>
<td>🍫</td>
<td>$0.10</td>
</tr>
<tr>
<td>🍫</td>
<td>🍫</td>
<td>$1.20</td>
</tr>
</tbody>
</table>

Round	Your candy	Your claim	Other players’ claims	Your reward
 1 | 🍫 | 🍫 | 🍫 1 1 | $0.10 |
 2 | 🍫 | 🍫 | 🍫 1 1 | $0.30 |
 3 | 🍫 | 🍫 | 🍫 1 1 | $1.50 |
 4 | 🍫 | 🍫 | ❓ 1 of 2 other player(s) confirmed claims | |

 Average reward: $0.63

Figure 1: The Game Interface
Results

<table>
<thead>
<tr>
<th></th>
<th>MM</th>
<th>GB</th>
<th>Truthful</th>
<th>Unclassified</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1</td>
<td>47</td>
<td>4</td>
<td>5</td>
<td>47</td>
<td>103</td>
</tr>
<tr>
<td>Treatment 2</td>
<td>7</td>
<td>34</td>
<td>7</td>
<td>56</td>
<td>104</td>
</tr>
</tbody>
</table>

Table 3: Simple equilibrium convergence classification

<table>
<thead>
<tr>
<th></th>
<th>MM</th>
<th>GB</th>
<th>Truthful</th>
<th>Unclassified</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment 1</td>
<td>62</td>
<td>11</td>
<td>18</td>
<td>12</td>
<td>103</td>
</tr>
<tr>
<td>Treatment 2</td>
<td>12</td>
<td>47</td>
<td>22</td>
<td>23</td>
<td>104</td>
</tr>
</tbody>
</table>

Table 4: Relaxed equilibrium convergence classification
Relaxed Results

(a) Aggregate strategies in treatment 1.

(b) Aggregate strategies in treatment 2.
Summary

- Just using MRZ as a peer prediction mechanism the way doesn’t work in practice.
Discussion Questions

- Can we make peer prediction mechanisms work somehow?
- Would adding artificial honest players to each game make the truthful equilibrium dominate?
- What about a special payoff matrix?