Heads-up limit hold’em poker is solved

Background Presentation
Texas Hold’em

Rounds:
- hole cards
- betting
- flop
- betting
- turn
- betting
- river
- betting
- showdown

Betting
- check
- fold
- call
- raise (amount)
Showdown

common

hole

best 5-card hand
Two major simplifications:

- Heads-up: 2 players
 - zero-sum
- Limit: fixed betting increment
 - much smaller strategy space

But people actually play this game!
Value of a Game

According to the minimax theorem, in 2-player zero-sum games:

- Maximizing your own payoff is equivalent to minimizing your opponent’s.
- Maximizing your worst-case payoff results in a NE strategy.
- All Nash equilibria have the same payoffs.

The NE payoff to player 1 is called the value of the game.

The value of rock-paper-scissors is 0.
Strength of a Game Solution

- **ultra-weakly solved**
 - The value of the game is known (but strategies to achieve it are not).

- **weakly solved**
 - A Nash equilibrium strategy is known (but off-path optimal play is not).

- **strongly solved**
 - Optimal play is known from anywhere in the game tree.
Unsolved Games

● computers better than any human
 ○ chess

● computers are worse than the best professionals
 ○ go

● computers are worse than many amateurs
 ○ n-player no-limit hold’em
The State of HUHLE

Polaris lost to human professionals in 2007, but won in 2008.

Human-computer tournaments are hard to run because a huge number of games are required for statistical significance.

Polaris is now known to be exploitable for roughly ¼ big bet per game.
Size of the Game Tree

HUHLE has 1.38×10^{13} information sets.

The largest previously solved abstraction has 3.8×10^{10} information sets.
Big Developments in Solving HUHLE

 - Self-play algorithm that converges to NE
 - Can run on larger abstractions than previous algorithms

 - Allows exploitability (regret) calculations
Counterfactual Regret Minimization (CFR)

Key Ideas:

- Iteratively improve strategies through self-play.
 - Reduce regret on each iteration.
- Split up regret into independent additive terms.
 - Counterfactual regret value for each information set.
 - Sum of CFR values bounds total regret.
- CFR is (roughly) the expected gain from switching one action.
- Choose actions to minimize CFR at each information set.
Accelerated Best-Response Calculation

Key Ideas:

- Efficiently re-use information from the public game tree & opponent strategy.
 - Requires re-ordering computation to evaluate game tree nodes with the same public information together.
- Exploit the ranking of hands in expected value computation.
 - Don’t need to compute EV for all opponent information sets; two hands that you beat have the same EV.
- Suit isomorphisms
 - Swap all hearts for clubs and the outcome is the same.
- Parallel Computation
 - Split up independent subtrees.