Strategic Formation of Credit Networks
Why should we care about credit networks?

- They allow for modeling of malicious attacks by users.
 - Play money markets
 - Real money markets with a low barrier of entry.
- They allow us to model peer interactions in applications.
 - Peer to Peer applications (Bit Torrent, Freecast etc.)
 - Money Lending within a social network.
What is a credit network?

- Method for modeling trust between agents in a crediting network.
- Nodes represent participating agents
- Edges represent existing trust while the edge weight the max capacity of that relationship
Centralized Credit Networks

- This model can be used to represent government issued money.
Centralized Credit Networks
Centralized Credit Networks
Whitewashing Attacks
Whitewashing Attacks
Whitewashing Attacks
Whitewashing Attacks
Sybil Attacks
Sybil Attacks
Sybil Attacks
Decentralized vs. Centralized Networks

- Trust is determined by an agent’s social network vs a central agent.
- Decentralized model is resistant to Whitewashing and Sybil attacks.
- Decentralized model grants a similar degree of liquidity to that available in centralized models.
Importance of Decentralized Model Research?

- Will decentralized networks be practical?
 - If so, switching to them could allow certain applications to resist malicious agents.
- How do agents balance risk and reward in a network?
 - This will give a better sense of how to optimize practical decentralized networks.
Risk Models

- **Dichotomous Risk**
 - Each agent divides other nodes into trusted and untrusted groups.
 - Assume Trust is symmetric among pairs.
 - Credit never extended to non-neighbors.
 - No agent ever defaults.

- **Global Risk**
 - Each agent has an publicly known chance to default.
 - Can extend credit to any agent in graph.
Risk Models Continued

- Graded Risk
 - Agents are constructed from social networks in the same way as in the dichotomous risk model.
 - Agents have a private default chance.
 - Agents receive “noisy” default probabilities for all agents in the network.
 - Agents considered neighbors receive more informative messages about one another.
Empirical Game-Theoretic Analysis

- Old fashioned Theoretic Analysis does not provide many solid conclusions for these models.
 - These games must be heavily constrained to remain tractable for a Theoretic Approach.
 - What is modelable in Theoretic Analysis may not hold true when constraints are lifted.
- The research team decided to alter their focus to empirical Analysis in order to allow for more informative results.
Empirical Method

- Begins with a set of strategies (briefly explain strategy for issuing credit)
 - heuristically derived
 - parametrized by key strategy features
- Determines a payoff observation to be added to payoff database
 - sample drawn from simulation
 - compiled into payoff matrix
- This matrix is then used to identify dominated strategies and equilibria.
- These methods alone can still produce an intractable problem
How can we simplify the game?

● Complete Subgames
 ○ We model all responses for all strategies for a small section of the game
 ○ We allow a single player to choose a strategy outside this subgame
 ○ This allows us to determine the effectiveness of the Subgame strategy without simulating the rest of the choices.

● Player Reduction
 ○ We reduce the 61 players to 6, who “control” a set of the original players
 ○ These players can be viewed as 6 instead of 61.
Empirical Algorithm

- Identify maximal complete sub games
- Check other possible choices for a preferred action.
- If none exist, we have a SMSNE (symmetric mixed-strategy Nash Equilibria)
- Otherwise we move on to the next sub game