EVOLUTIONARY STABILITY ON GRAPHS

Background Presentation Cappy Pitts

Evolutionary Game Theory

Evolutionary game theory

- Applies game theory to model the way that populations change over time
- This makes modeling animal's survival strategies easier
- Evolutionarily stable strategy (ESS)
 - A mutant strategy will not be able to invade if every member of a population adopts and evolutionarily stable strategy
 - ESS's become the equilibrium states and this is what is interesting to study

Well mixed population vs. Realistic population

Well mixed population

- In the past ESS have been adopted for a well mixed population that is infinite
- In other words every one is equally likely to interact
- Realistic population
 - Realistically, a member of a population is more likely to interact more with its neighbors than with someone who is very far away
 - Also the population is not infinite

Spatial Evolutionary Game Theory

- Members of a population are distributed on a evenly spaced grid
- Each member of the population only interacts with its neighbors
- Strategies interact with neighboring regions and are updated if the neighboring strategies work better
- Spatial games behave much differently than those of well-mixed populations but are more realistic

Evolutionary Graph Theory

- In evolutionary graph theory populations are represented as graphs
- Spatial games can be represented as lattices
- Well mixed can be represented by evenly weighted complete graphs

Evolutionary Stability for Well-Mixed Population

Update Rules

Birth-Death (BD)

- An individual is chosen for reproduction proportional to its fitness and will replace one of its neighbors who is chosen randomly
- Death-Birth (DB)
 - An individual is randomly chosen to die and its neighbors fight for its place proportional to their fitness
- Imitation (IM)
 - An individual is randomly chosen to update his strategy and either sticks with it or changes to one of his neighbor's strategies proportional to fitness

Other Reading

 Killingback, Timothy, and Michael Doebeli. "Spatial evolutionary game theory: Hawks and Doves revisited." Proceedings of the Royal Society of London B: Biological Sciences 263.1374 (1996): 1135-1144.

Questions?