3SAT

\((A \lor B \lor \neg C) \land (\neg B \lor C \lor \neg D) \land (\neg A \lor \neg B \lor D) \land \ldots\)

Yes if \(\exists\) a satisfying assignment

\[A = T \quad C = T\]
\[B = F \quad D = T\]
Polynomial time verifier for 3SAT

Describe
- certificate \(w \)
- verifier alg. \(V \)

Prove
- \(w \) has poly-length
- \(V \) takes poly-time
- \(\exists w \) such that
 \[V(x, w) = \text{Yes} \]
 iff \(x \in L \)
Aside on Boolean logic

if and only if (iff) if, then
\[p \iff q \equiv (p \implies q) \land (\neg p \implies \neg q) \]
\[\equiv (p \implies q) \land (q \implies p) \]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p \implies q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\neg p</th>
<th>\neg q</th>
<th>\neg q \implies \neg p</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
3SAT verifier

\(w = \) an assignment of truth values to variables

\(A = T, B = F, C = T, D = T \)

V

- verify that \(w \) is a valid assignment
- go through formula \(\phi \), plug in assignments from \(w \). Say Yes if all clauses eval to T.
$3\text{SAT} \leq_p \text{IS}$

- poly # of black box calls
- poly time translation steps
- correctness

\[(A \lor B \lor \neg C) \land (\neg B \lor C \lor \neg D) \land (\neg A \lor \neg B \lor D) \land \cdots \quad K = \# \text{ clauses}\]
Why do we care about \leq_p?

$A \leq_p B$ if \exists poly-time alg. for B then \exists poly-time alg. for A
The set of all decision problems for which there exists a polynomial time algorithm.

The set of all decision problems for which a polynomial time verifier exists.

\[P \subseteq NP \]

\[P \neq NP \quad P = NP \]