Linear Regression

4/14/17
Hypothesis Space

Supervised learning
• For every input in the data set, we know the output

Regression
• Outputs are continuous
 • A number, not a category label

The learned model:
• A linear function mapping input to output
 • A weight for each feature (including bias)
Linear Models

In two dimensions: \(f(x) = wx + b \)

In \(d \) dimensions:

\[
\begin{bmatrix}
 x_0 \\
 x_1 \\
 \vdots \\
 x_d
\end{bmatrix}
\]

\[
\begin{bmatrix}
 w_0 \\
 w_1 \\
 \vdots \\
 w_d
\end{bmatrix}
\cdot
\begin{bmatrix}
 1 \\
 x_0 \\
 \vdots \\
 x_d
\end{bmatrix}
\]

We want to find the linear model that fits our data best.

When have we seen a model like this before?
Linear Regression

We want to find the linear model that fits our data best.

Key idea: model data as linear model plus noise. Pick the weights to minimize noise magnitude.

\[
f(x) = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + b + \epsilon
\]
Squared Error

\[
f(\vec{x}) = \begin{bmatrix} w_b \\ w_0 \\ \vdots \\ w_d \end{bmatrix} \cdot \begin{bmatrix} 1 \\ x_0 \\ \vdots \\ x_d \end{bmatrix} + \epsilon \\
\hat{f}(\vec{x}) = \begin{bmatrix} w_b \\ w_0 \\ \vdots \\ w_d \end{bmatrix} \cdot \begin{bmatrix} 1 \\ x_0 \\ \vdots \\ x_d \end{bmatrix}
\]

Define error for a data point to be the squared distance between correct output and predicted output:

\[
\left(f(\vec{x}) - \hat{f}(\vec{x}) \right)^2 = \epsilon^2
\]

Error for the model is the sum of point errors:

\[
\sum_{\vec{x} \in \text{data}} \left(y - \hat{f}(\vec{x}) \right) = \sum_{\vec{x} \in \text{data}} \epsilon^2_{\vec{x}}
\]
Minimizing Squared Error

Goal: pick weights that minimize squared error.

Approach #1: gradient descent

Your reading showed how to do this for 1D inputs:

\[
\frac{\partial}{\partial m} = \frac{2}{N} \sum_{i=1}^{N} -x_i (y_i - (mx_i + b))
\]

\[
\frac{\partial}{\partial b} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (mx_i + b))
\]
Minimizing Squared Error

Goal: pick weights that minimize squared error.

Approach #2 (the right way): analytical solution

• The gradient is 0 at the error minimum.
• There is generally a unique global minimum.

\[\vec{w} = \left(X^T X \right)^{-1} X^T \vec{y} \]

\[
X \equiv [\vec{x}_0 \ \vec{x}_1 \ldots \vec{x}_n] = \begin{bmatrix}
1 & 1 & \ldots & 1 \\
x_{00} & x_{01} & \ldots & x_{0n} \\
x_{10} & x_{11} & \ldots & x_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{d0} & x_{d1} & \ldots & x_{dn}
\end{bmatrix}
\]
Change of Basis

Polynomial regression is just linear regression with a change of basis.

\[
\begin{bmatrix}
x_0 \\
x_1 \\
\vdots \\
x_d
\end{bmatrix}
\rightarrow
\begin{bmatrix}
x_0 \\
(x_0)^2 \\
x_1 \\
(x_1)^2 \\
\vdots \\
x_d \\
(x_d)^2
\end{bmatrix}
\text{quadratic basis}
\]

Perform linear regression on the new representation.
Change of Basis Demo
Locally Weighted Regression

Recall from KNN: locally weighted averaging

We can apply the same idea here: points that are further away should contribute less to the estimate.

To estimate the value for a specific test point x_t compute a linear regression with error weighted by distance:

$$
\sum_{\bar{x} \in \text{data}} \frac{(y - \hat{f}(\bar{x}))}{\text{dist}(\bar{x}_t, \bar{x})} = \sum_{\bar{x} \in \text{data}} \frac{\epsilon^2_{\bar{x}}}{\| \bar{x}_t - \bar{x} \|_2}
$$
Exam Topics

Covers the machine learning portion of the class.

• Supervised learning
 • Regression
 • Classification
• Unsupervised learning
 • Clustering
 • Dimensionality reduction
• Semi-supervised learning
 • Reinforcement learning

Know the differences between these topics. Know what algorithms apply to which problems.
Machine Learning Algorithms

- neural networks
 - perceptrons
 - backpropagation
 - auto-encoders
 - deep learning
- decision trees
- naive Bayes
- k-nearest neighbors
- support vector machines
- locally-weighted average
- linear regression

- EM
 - K-means
 - Gaussian mixtures
- hierarchical clustering
 - agglomerative
 - divisive
- principal component analysis
- growing neural gas
- Q-learning
- approximate Q-learning
- ensemble learning