Beyond Backpropagation

3/22/17
Example Backpropagation Update

\[\sigma(x) = \frac{1}{1 + e^{-x}}\]

\[w_{ij} += \alpha \delta_j a_i\]

\[\delta_o = a_o (1 - a_o)(t - a_o)\]

\[\delta_h = a_h (1 - a_h) \sum_{o} w_{ho} \delta_o\]

\[t = 0.1\]

\[t = 0.8\]
Backpropagation Derivation

How would the error change if the weight changed?

\[
E = (t - a_o)^2
\]

\[
E(t, \tilde{a}_h, \bar{w}_{ho}) = \left(t - \frac{1}{1 + e^{-\tilde{a}_h \cdot \bar{w}_{ho}}} \right)^2
\]

\[
\nabla_{\vec{w}} E = \begin{bmatrix}
\frac{\partial E}{\partial w_0} \\
\frac{\partial E}{\partial w_1}
\end{bmatrix}
\]
Local Search Issues

• Backpropagation is performing stochastic gradient descent.
• This is a form of local search.

• Like other local search methods, it can get stuck in:
 • Local minima
 • Plateaus

• High dimensionality helps a bit, because it’s hard to be stuck on all dimensions simultaneously.
Local Search Improvements

We can use the techniques we already know for improving local search.

• Random moves
 • We’re already doing this (by randomly ordering training examples on each epoch), hence the “stochastic”.
 • Non-random moves would mean computing average error over all training examples before doing a backpropagation step.

• Random restarts
 • More precisely: we want to start in a good region of the search space. This is a big issue in deep learning.

• Momentum
 • Keep going in the direction you were already going.
Overfitting

• In your lab implementation, you keep training until the whole data set is classified correctly.

• Why is this a bad idea?
 • We might learn an extremely complicated function.
 • A simpler function is likely to generalize better.

• Possible solutions:
 • Weight decay: dampen all weights by some small factor every round.
 • Learn with targets of 0.1 and 0.9 instead of 0 and 1.
 • Cross validation: split into training and test sets; stop training when performance stops improving on the test set.