Approximate Q-Learning

2/24/17
State Value $V(s)$ vs. Action Value $Q(s,a)$

$$V = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

Either way, value is the sum of future discounted rewards (assuming the agent behaves optimally):

- $V(s)$: after being in state s
 - Value Iteration
- $Q(s,a)$: after being in state s and taking action a
 - Q-Learning
State Value vs. Action Value

• These concepts are closely tied.

• Both algorithms implicitly compute the other value.

Value Iteration update:

\[V(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} P(s' \mid s, a)V(s') \]

Q-Learning update:

\[Q(s, a) \leftarrow \alpha \left[R(s) + \gamma \max_{a'} Q(s', a') \right] + (1 - \alpha)Q(s, a) \]
Converting Between $V(s)$ and $Q(s, a)$

If you know $V(s)$ and the transition probabilities, you can calculate $Q(s,a)$ by taking an expected value:

$$Q(s, a) = \sum_{s'} P(s' \mid s, a) V(s')$$

If you know $Q(s,a)$, you can calculate $V(s)$ directly by taking a max:

$$V(s) = \max_a Q(s, a)$$
On-Policy Learning (SARSA)

Instead of updating based on the \textit{best action} from the next state, update based on the \textit{action your current policy actually takes} from the next state.

SARSA update:

\begin{align*}
Q(s, a) &= \alpha \left[R(s) + \gamma Q(s', a') \right] + (1 - \alpha) Q(s, a) \\
Q(s, a) &= \alpha \left[R(s) + \gamma Q(s', a') - Q(s, a) \right]
\end{align*}

When would this be better or worse than Q-learning?
Demo: Q-learning vs SARSA

https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/
What will Q-learning do here?
Problem: Large State Spaces

If the state space is large, several problems arise.

• The table of Q-value estimates becomes enormous.
• Q-value updates can be slow to propagate.
• High-reward states can be hard to find.

The state space grows exponentially with the number of relevant features in the environment.
Reward Shaping

Idea: give some small intermediate rewards that help the agent learn.

- Like a heuristic, this can guide the search in the right direction.
- Rewarding novelty can encourage exploration.

Disadvantages:

- Requires intervention by the designer to add domain-specific knowledge.
- If reward/discount are not balanced right, the agent might prefer accumulating the small rewards to actually solving the problem.
- Doesn’t reduce the size of the Q-table.
PacMan State Space

- PacMan’s location
 - ~100 possibilities
- The ghosts’ locations
 - ~100^2 possibilities
- Locations still containing food.
 - Enormous number of combinations
- Pills remaining
 - 4 possibilities
- Ghost scared timers
 - ~40^2 possibilities

The state space is the cross product of these feature sets.
 - So there are $\sim100^3*4*40^2*(\text{food configs})$ states.
Function Approximation

Key Idea: learn a value function as a linear combination of features.

• For each state encountered, determine its representation in terms of features.
• Perform a Q-learning update on each feature.
• Value estimate is a sum over the state’s features.

This is our first real foray into machine learning. Many methods we see later are related to this idea.
PacMan Features from Lab

• "bias" always 1.0
• "#-of-ghosts-1-step-away" the number of ghosts (regardless of whether they are safe or dangerous) that are 1 step away from Pac-Man
• "closest-food" the distance in Pac-Man steps to the closest food pellet (does take into account walls that may be in the way)
• "eats-food" either 1 or 0 if Pac-Man will eat a pellet of food by taking the given action in the given state
Extract features from neighbor states:

• Each of these states has two legal actions.

Describe each (s,a) pair in terms of the basic features:
 • bias
 • #-of-ghosts-1-step-away
 • closest-food
 • eats-food
Approximate Q-Learning Update

Initialize weight for each feature to 0.

Every time we take an action, perform this update:

\[w_i \leftarrow w_i + \alpha [\text{correction}] f_i(s, a) \]

\[\text{correction} = (R(s, a) + \gamma V(s')) - Q(s, a) \]

The Q-value estimate for \((s, a)\) is the weighted sum of its features:

\[Q(s, a) = \sum_{i}^{n} f_i(s, a)w_i \]
Exercise: Feature Q-Update

• Suppose PacMan takes the up action.
 • The experienced next state is random, because the ghosts’ movements are random.
 • Suppose 🍊 moves right and 🍏 moves down.

\[
\begin{align*}
 w_i &\leftarrow w_i + \alpha[\text{correction}]f_i(s, a) \\
 \text{correction} &\Rightarrow (R(s, a) + \gamma V(s')) - Q(s, a)
\end{align*}
\]

Old Feature Values:
- \(w_{\text{bias}} = 1\)
- \(w_{\text{ghosts}} = -20\)
- \(w_{\text{food}} = 2\)
- \(w_{\text{eats}} = 4\)

Reward eating food: +10
Reward for losing: -500
Notes on Approximate Q-Learning

• Learns weights for a tiny number of features.
• Every feature’s value is update every step.
• No longer tracking values for individual (s,a) pairs.
 • (s,a) value estimates are calculated from features.

• The weight update is a form of gradient descent.
 • We’ve seen this before.

• We’re performing a variant of linear regression.
• Feature extraction is a type of basis change.
 • We’ll see these again.
Plusses and Minuses of Approximation

+ Dramatically reduces the size of the Q-table.

+ States will share many features.
 + Allows generalization to unvisited states.
 + Makes behavior more robust: making similar decisions in similar states.

+ Handles continuous state spaces!

− Requires feature selection (often must be done by hand).

− Restricts the accuracy of the learned rewards.
 − The true reward function may not be linear in the features.