AlphaGo

2/17/17
Video

https://www.youtube.com/watch?v=g-dKXOlsf98
Figure from the AlphaGo Paper
AlphaGo Neural Networks

- Rollout policy: p_π
- SL policy network: p_σ
- RL policy network: p_ρ
- Value network: v_θ
- Tree Policy

- Classification
- Human expert positions
- Default Policy
- Self-play Positions
- Classification
- Self-Play
- Regression
Step 1: learn to predict human moves

- Used a large database of online expert games.

- Learned two versions of the neural network:
 - A fast network P_π for use in evaluation
 - An accurate network P_σ for use in selection.

\[p_\pi \]
\[p_\sigma \]

CS63 topic
neural networks
weeks 8–9
Step 2: improve P_σ (accurate network)

- Run large numbers of self-play games.
- Update P_σ using reinforcement learning
 - weights updated by stochastic gradient descent
Step 3: learn a better boardEval V_θ

- use random samples from the self-play database
- prediction target: probability that black wins from a given board

CS63 topic
avoiding overfitting
weeks 9-10
AlphaGo Tree Policy (selection)

- select nodes randomly according to weight:

\[\text{value} + \frac{\text{prior}}{1 + \text{visits}} \]

- \textit{prior} is determined by the improved policy network

\[p_\rho \]
When expanding a node, its initial value combines:
- an evaluation from value network V_θ
- a rollout using fast policy P_π

$$v(s) = \lambda \ast \text{outcome} + (1 - \lambda) \ast \text{eval}$$

A rollout according to P_π selects random moves with the estimated probability a human would select them instead of uniformly randomly.
AlphaGo Results

• Played Fan Hui (October 2015)
 • World #522.
 • AlphaGo won 5-0.

• Played Lee Sedol (March 2016)
 • World #5, previously world #1 (2007-2011).
 • AlphaGo won 4-1.

• Played against top pros (Dec 2016 – Jan 2017)
 • Included games against the word #1-4.
 • Games played online with short time limits.
 • AlphaGo won 60-0.
MCTS vs Bounded Min/Max

UCT / MCTS
- Optimal with infinite rollouts.
- Anytime algorithm (can give an answer immediately, improves its answer with more time).
- A heuristic is not required, but can be used if available.
- Handles incomplete information gracefully.

MinMax/Backward Induction
- Optimal once the entire tree is explored or pruned.
- Can prove the outcome of the game.
- Can be made anytime-ish with iterative deepening.
- A heuristic is required unless the game tree is small.
- Hard to use on incomplete information games.
Discussion: why use MCTS for go?

• We’re using MCTS in lab because we don’t want to write new heuristics for every game.
 • AlphaGo is all about heuristics. They’re learned by neural networks, but they’re still heuristics.

• MCTS handles randomness and incomplete information better than Min/Max.
 • Go is a deterministic, perfect information game.

So why does MCTS make so much sense for go?