Monte Carlo Tree Search

2/13/17
General Game Playing

Suppose you wanted to write an AI that could play any game. How could you do that?

First idea: backward induction

- Plays optimally once the full tree is explored.
- Exploring the whole tree may not be feasible.

Second idea: generalized heuristics

- When the tree is too big, we use depth-bounded search.
- `$basicEval$ and $betterEval$ are connect-four specific.
- How can we make a heuristic that works for any game?
Monte Carlo Simulation Heuristic

Key idea: play out a bunch of random games.

To evaluate a state:
• Play random moves until the end of the game.
• Record the result.
• Repeat a bunch of times.
• Return the average result over the random games.
Monte Carlo Heuristic Pseudocode

function MC_BoardEval(state):
 wins = losses = draws = 0
 for i=1:NUM_SAMPLES
 next_state = state
 while non_terminal(next_state):
 next_state = random_move(next_state)
 increment wins/losses/draws
 return (2*wins + draws) / NUM_SAMPLES

Here, I’m using the following utility function:

• win: 2pts, draw: 1pt, loss: 0pts
• Many other other utility functions are possible.
Monte Carlo Board Evaluation

Advantages
- simple
- domain independent
- anytime algorithm

Disadvantages
- slow
- non-static
- nondeterministic
Improving MC_BoardEval

Consider one level up. Suppose we’re doing min/max search with a depth limit of 4 and using `MC_BoardEval` as our heuristic. What’s happening at depth 3?

- p1 wins: 103, p2 wins: 717, draws: 180, u1 = 0.386
- p1 wins: 723, p2 wins: 156, draws: 121, u1 = 1.567
- p1 wins: 65, p2 wins: 662, draws: 273, u1 = 0.403
- p1 wins: 725, p2 wins: 162, draws: 113, u1 = 1.563
- p1 wins: 228, p2 wins: 472, draws: 300, u1 = 0.756

really bad
really close
Improving MC_BoardEval

• We’d like to do more simulations from the more-important states (those more likely to be picked).
• We’re willing to do fewer simulations from the less important (low value) states.

Key idea: explore/exploit tradeoff
• Explore: try something new
• Exploit: try something you know is good
Multi-armed bandit problem

It turns out we’ve stumbled upon a widely-studied problem.

Given a row of slot machines (bandits), with different, unknown, probabilities of winning a jackpot, use a fixed number of quarters to win as many jackpots as possible.
Upper confidence bound (UCB)

Provably optimal solution to multi-armed bandit.

Pick nodes with probability proportional to:

\[v_i + C \times \sqrt{\frac{\ln(N)}{n_i}} \]

- probability decreases in number of visits (explore)
- probability increases in a node’s value (exploit)
- always tries every option once
Why do UCB at only one level?

1. Why might we want to do UCB (instead of Min/Max) at shallower levels?
2. Why might we want to do UCB (instead of uniform random moves) at deeper levels?
Doing UCB at more levels

Extend to deeper levels?
+ more value out of every random playout
− more information to keep track of
 How can we alleviate this?

Extend to shallower levels?
+ guide the search to explore better paths first
− lose optimality of minimax
 Is this a big deal?
− never completely prune branches
 Is this a big deal?
The Monte Carlo Tree Search Algorithm

![Diagram showing the Monte Carlo Tree Search Algorithm with stages: Selection, Expansion, Simulation, and Backpropagation. The process is repeated X times.](Figure from Chaslot (2006))
Selection

• Used for nodes we’ve seen before.
• Pick according to UCB.

Expansion

• Used when we reach the frontier.
• Add one node per playout.
Simulation

• Used beyond the search frontier.
• Don’t bother with UCB, just play randomly.

Backpropagation

• After reaching a terminal node.
• Update value and visits for all states visited in selection and expansion phases.
function MCTS_sample(node)
 if all children expanded:
 #selection
 next = UCB_sample(node)
 outcome = MCTS_sample(next)
 else:
 #expansion
 next = random unexpanded child
 create node for next, add to tree
 #simulation
 outcome = random_playout(next.state)
 #backpropagation
 update_value(node, outcome)
MCTS Helper Functions

function UCB_sample(node):
 weights = []
 for child of node:
 w = child.value
 w += C*sqrt(ln(node.visits) / child.visits)
 add w to weights
 distribution = normalize weights to sum to 1
 return child sampled according to distribution
MCTS Helper Functions

function random_playout(state):
 while state is not terminal:
 state = make a random move from state
 return outcome

function update_value(node, outcome):
 #combine the new outcome with the average value
 node.value *= node.visits
 node.visits++
 node.value += outcome
 node.value /= node.visits