Continuous Optimization

2/3/17
Review: discrete local search

Requirements:
• Generate initial candidate
• Generate neighbor candidates
• Evaluate cost/value of a candidate

Algorithms:
• Hill climbing
• Simulated annealing
• Beam search
• Genetic algorithm
Building up the algorithms

Hill climbing: move up the value hill
- In the steepest possible direction (best neighbor)
- In a random uphill direction (random neighbor)

Question: what differences does this choice make?

Problem: getting stuck in local optima

Solutions:
- Random restarts (get onto a different mountain)
- Random moves (get over small hills)
Building up the algorithms

Simulated annealing: fewer random moves over time
 • Like hill climbing with random neighbor AND random moves
 • As temperature decays, the probability of a random move goes down.

Question: why take more random moves early?

 • No random restart probability; instead run it several times.
Building up the algorithms

Beam search: focus on more important regions
 • Track a bunch of states at once (like running several HC searches in parallel)
 • Instead of picking one neighbor of each state, pick the best subset of all states’ neighbors.

Problems:
 • We still want random moves
 • Focuses too fast

Solution (stochastic beam search):
 • Don’t pick strictly the best neighbors
 • Pick randomly, give better states higher probability
Building up the algorithms

Genetic algorithm: combine states via crossover

• As long as we’re tracking a population of states, maybe we can combine partial solutions from different ones.
• Instead of generating neighbors by small changes, generate offspring by crossover.
• Requires us to define crossover for our states.
• We still want random perturbations, so do mutations.

• There are many variants on GAs, some more and some less connected to the biological inspiration.
Satisfying vs. Optimizing

- **Satisfying**
 - search for states that **satisfy** constraints
 - state = an assignment of values to variables
 - constraints specify allowed states

- **Optimizing**
 - search for states that **satisfy constraints and optimize objective**
Variables, constraints, and objective

Variables: Q_0, \ldots, Q_{N-1}

Constraints:
$Q_0 \neq Q_1, Q_0 \neq Q_2, \ldots$
$Q_0 \neq Q_1, Q_0 \neq Q_2, \ldots$
$Q_0 \neq Q_1 + 1, Q_0 \neq Q_2 + 2, \ldots$

Variables: C_0, \ldots, C_{N-1}

Constraints: $C_0 \neq C_1, C_0 \neq C_2, \ldots$

Objective: minimize
$\text{cost}(C_0, C_1) + \text{cost}(C_1, C_2) + \ldots$
Discrete vs Continuous Optimization

All our examples so far have had discrete variables:
• rows
• colors
• cities

Sometimes the variables can be continuous:
• Motion planning in continuous space.
• Inputs/outputs in a manufacturing supply chain.
• Security personnel positioning to defend against terrorist attacks.
• Electricity transmission on a power grid.
Gradient Ascent

General idea:
• Start from a random point.
• Compute the gradient.
• Take a step in that direction.
• Recompute gradient and repeat.
Linear Programming

If your objective and all of your constraints are linear functions:

\[5 \, x + 6 \, y \leq 5 \]

minimize: \(2x - z \)

Then continuous optimization is “easy”. We have good linear program solvers.

We can also handle some non-linear functions if they’re convex.
Continuous optimization takeaways

• We’ll see gradient ascent (descent) again.

• If you can formulate an optimization problem as a linear program, you should.
 • LP solvers are very powerful!
 • This is different way of thinking about “programming”: describe the problem in terms of equations and then the LP solver will spit out an answer.

• You don’t need to know algorithm details here, just the big ideas.