Population-Based Local Search

2/1/17
Last time: Local search methods

Key ideas:
• Generate candidates
• Explore neighbors
• Move toward higher value (lower cost)

Algorithms:
• Hill Climbing
 • Best neighbor or random improving neighbor
 • Random moves / random restarts
• Simulated Annealing
 • Initial temperature
 • Temperature decay
Ideas for improving hill climbing

• Instead of random restarts, run a bunch of searches in parallel.

• Focus more effort on the searches that seem more promising.
Beam Search Pseudocode

population = [POP_SIZE random states]
temp = INIT_TEMP
for i = 1:MAX_ITERS:
 candidates = []
 for individual in population:
 add neighbors of individual to candidates
 population = [best POP_SIZE candidates]
return best state encountered
Beam Search Illustrated
What’s the problem here?

population = [best POP_SIZE candidates]

This may throw away some good candidates.
We don’t want to focus the search too much too quickly.

What method do we already know to deal with this?

• Simulated annealing temperature
Stochastic Beam Search Pseudocode

population = [POP_SIZE random states]

\textit{temp} = INIT_TEMP

for \textit{i} = 1:MAX_ITERS:

\textit{candidates} = []

for \textit{individual} in \textit{population}:

\textit{add neighbors of individual to candidates}

\textit{population} = \texttt{sample(candidates, temp, POP_SIZE)}

\textit{temp} *= DECAY

return best state encountered
Sampling the next population

Key idea: Gibbs sampling

Recall from Simulated Annealing:

\[
\text{acceptance probability} = e^{(\text{delta} / \text{temp})}
\]

Choose new population by sampling:

\[
\text{probability} \sim e^{(-\text{cost} / \text{temp})}
\]

Pseudocode:

weights = [\[e^{(-\text{cost}(n)/\text{temp})} \] for each candidate n]
distribution = [weights[n] / sum(weights)]
population = [\[\text{POP_SIZE draws from distribution}]]
Exercise: construct the distribution

INIT_TEMP = 20; DECAY = .95; round = 4

Suppose we have the following candidates:

cost(Boston, DC, Philly, NY) = 13.8
cost(Philly, Boston, DC, NY) = 16.6
cost(NY, Boston, Philly, DC) = 13.8
cost(DC, Philly, Boston, NY) = 13.8
cost(DC, NY, Philly, Boston) = 16.6

What is the probability distribution from which the next population will be drawn?
Genetic Algorithms

• Inspired by natural selection and genetic recombination.
 • Individuals with higher fitness are more likely to reproduce.
 • In sexual reproduction, the genomes of the parents get combined.

Key idea:
• Different candidates may have good partial solutions.
• Combining candidates may put those partial solutions together.
Genetic algorithm pseudocode

population = [POP_SIZE random states]
for i = 1:MAX_ITERS:
 new_population = []
 for j = 1:POP_SIZE:
 parent1, parent2 = select(population)
 child = reproduce(parent1, parent2)
 add child to new_population
 return best state encountered
Selecting the parents

• There are many ways this could be done, but a good one is Gibbs sampling.

• Call the `select` function from stochastic beam search with `POP_SIZE = 2`.

• This means we need to add a temperature.
Producing a child

Inspired by biology:

• Crossover (combine the parents)
• Mutation (make random changes)

Pseudocode:

cross = random point in state representation
child = parent1[:cross] + parent2[cross:]
for each variable in child:
 if (small mutation probability):
 give it a random new value
return child
Reproduction in N-Queens

parent1 = (0,4,2,5,6,7,2,3)
parent2 = (2,6,4,7,1,6,5,0)
cross = random integer in [1,7]
suppose it’s 4
offspring after crossover = (0,4,2,5,1,6,5,0)
each element mutated with probability .02
suppose 1 is mutated
mutated elements get random new values
suppose it’s 0
offspring returned = (0,0,2,5,1,6,5,0)
Discussion: state representation for GAs

What effect does crossover have on the state representation for these problems?

Is there an alternative state representation that would work better?