Local Search

1/30/17
Consider the following problems

N-Queens: place \(n \) queens on an \(n \times n \) chessboard so that none share a row, column, or diagonal.

K-Coloring: find an assignment of \(k \) colors to graph nodes (map regions) so that no adjacent nodes share a color.
N-Queens as state space search

Search space size: N^N

$6^6 \approx 47,000$

$8^8 \approx 17,000,000$

$25^{25} \approx 8.9 \times 10^{34}$
K-Coloring as state space search

Search space size: $|G|^K$

$48^3 = 110,592$

$10,000^8 = 10^{32}$
A different approach

State Space Search
- Search for paths to goals.
- Given a start state, goal state, operators.
- Apply operators to states to generate new states.

examples: BFS, DFS, UCS, A*, iterative deepening

Local Search
- Search for solutions.
- Given candidate solutions.
- Make small adjustments to candidates to generate new, potentially better candidates.

examples: hill climbing, simulated annealing, beam search, genetic algorithms
Requirements for local search

• We don’t care about the path to a solution.

• We can generate and evaluate candidate solutions.

• We can generate neighbor candidates by small modifications.

• Similar candidates have similar values.
Candidate solution: an assignment of 1 queen per row. can represent as a tuple: (0,1,2,5,6,7,2,3)

Neighbors: boards differing by the placement of 1 ♕.

each state has N*(N-1) neighbors

Evaluation: minimize number of attacked queens.

\[v(0,1,2,5,6,7,2,3) = 8 \]
\[v(0,4,2,5,6,7,2,3) = 7 \]
Hill Climbing

Key idea:

- Start with an arbitrary candidate.
- Iteratively move to a neighbor with higher value.
 - Climb up the value hill.

Basic pseudocode:

```python
state = random_candidate()
neighbor = None
while cost(state) > cost(neighbor):
    state = neighbor
    neighbor = best_neighbor(state)
```
Trace of successful run

state cost: 8 neighbor cost: 6
state cost: 6 neighbor cost: 5
state cost: 5 neighbor cost: 4
state cost: 4 neighbor cost: 3
state cost: 3 neighbor cost: 2
state cost: 2 neighbor cost: 0
state cost: 0 neighbor cost: 1

	Q						
			Q				
				Q			
			Q		Q		
Q		Q		Q		Q	
	Q		Q		Q		Q
		Q		Q		Q	
			Q		Q		Q
				Q		Q	

Goal found in 7 steps
Trace of unsuccessful run

state cost: 6 neighbor cost: 5
state cost: 5 neighbor cost: 4
state cost: 4 neighbor cost: 3
state cost: 3 neighbor cost: 2
state cost: 2 neighbor cost: 2

	Q						
				Q			
							Q
			Q				
						Q	
			Q				
					Q		
			Q				
	Q						

Goal NOT found in 5 steps
Getting stuck in local optima

random restarts would help

random steps would help
Improved hill climbing pseudocode

```python
state = random_candidate()
best_state = state
best_cost = cost(state)
for i=1:MAX_ITERS:
    if rand() < RESTART_PROB:
        state = random_candidate()
    else if rand() < RAND_STEP_PROB:
        state = random_neighbor(state)
    else:
        state = best_neighbor(state)
    if cost(state) < best_cost:
        best_cost = cost(state)
        best_state = state
```
Trace of improved pseudocode

Hill climbing restarted (1)...

Goal found in 18 steps
This version can solve 25-queens
Exercise: map coloring

• How would you represent states?
• How big is the state space?
• What is the objective function?
• What is the successor function?
• How many successors would there be?
Simulated Annealing

• Always select moves randomly.
• Accept if improving.
• Accept bad moves with some probability.

Key idea: gradually reduce the probability of accepting bad moves.

parameters:
• initial temperature
• decay rate

\[
\text{prob} = e^{\Delta / T} \\
\Delta = \text{cost(neighbor)} - \text{cost(state)} \\
T = \text{initial_temp} \times (\text{decay_rate})^{\text{rounds}}
\]
Simulated annealing pseudocode

```python
state = random_candidate()
best_state = state
temp = INIT_TEMP
for round = 1:MAX_ITERS:
    neighbor = random_step(state)
    if cost(neighbor) < cost(best_state):
        best_state = neighbor
    if accept(state, neighbor, temp):
        state = neighbor
    temp *= DECAY

function accept(state, neighbor, temp):
    delta = cost(state) - cost(neighbor)
    r ~ U[0,1]
    return r < e^(delta / temp)
```
Effect of initial temperature
Effect of decay rate