Heuristic Search

1/25/17
Generic search algorithm

add start to frontier
while frontier not empty
 get state from frontier
 if state is goal
 return
 end if
 for neighbor of state
 add neighbor to frontier
 end for
end while
Uninformed Search

Given only the problem definition:
• start state
• goal function
• action function

Depth First
• FIFO frontier

Breadth First
• LIFO frontier

Uniform Cost
• frontier ordered by $c(s)$

Informed Search

Given:
• problem definition
• **heuristic** estimate of the cost-to-goal

Greedy
• frontier ordered by $h(s)$

A
• frontier ordered by $h(s) + c(s)$

$h(s)$: heuristic value of state s
$c(s)$: cost to get to state s
Measuring Performance

- **Completeness**: Is the search guaranteed to find a solution (if one exists)?
- **Optimality**: Is the search guaranteed to find the lowest-cost solution (if it finds one)?
- **Time complexity**: How long does it take to find a solution?
 - How many nodes are expanded?
- **Space complexity**: How much memory is needed to perform the search?
 - How many nodes get stored in frontier + visited
Example domain:
Given a Romanian road map, navigate from Arad to Bucharest.
Example domain:
Given a Romanian road map, navigate from Arad to Bucharest

\[
egin{align*}
 h(A) &= 366 \\
 h(C) &= 160 \\
 h(D) &= 242 \\
 h(F) &= 178 \\
 h(L) &= 244 \\
 h(M) &= 241 \\
 h(O) &= 380 \\
 h(P) &= 98 \\
 h(R) &= 193 \\
 h(S) &= 253 \\
 h(T) &= 329 \\
 h(Z) &= 374
\end{align*}
\]
Example domain:
Given a Romanian road map, navigate from Arad to Bucharest
Example domain:
Given a Romanian road map, navigate from Arad to Bucharest

\[
\begin{align*}
 h(A) &= 366 \\
 h(C) &= 160 \\
 h(D) &= 242 \\
 h(F) &= 178 \\
 h(L) &= 244 \\
 h(M) &= 241 \\
 h(O) &= 380 \\
 h(P) &= 98 \\
 h(R) &= 193 \\
 h(S) &= 253 \\
 h(T) &= 329 \\
 h(Z) &= 374
\end{align*}
\]
Devising Heuristics

• Must be **admissible**: never overestimate the cost to reach the goal.
• Should strive for **consistency**: $h(s) + c(s)$ non-decreasing along paths.
• The higher the estimate (subject to admissibility), the better.

Key idea: simplify the problem.
• Traffic Jam: ignore some of the cars.
• Path Finding: assume straight roads.
Discussion Questions

Why does A* need an admissible heuristic?

a) required for completeness
b) required for optimality
c) improves time complexity
d) improves space complexity
e) some other reason

A* with an uninformative heuristic (such as the zeroHeuristic from lab) is equivalent to:

a) breadth first search
b) depth first search
c) uniform cost search
d) greedy search
e) none of these