Approximate Q-Learning

3-25-16
Exploration policy vs. optimal policy

Where do the exploration traces come from?
- We need some policy for acting in the environment before we understand it.
- We’d like to get decent rewards while exploring.
 - Explore/exploit tradeoff.

In lab, we’re using an epsilon-greedy exploration policy.

After exploration, taking random bad moves doesn’t make much sense.
- If Q-value estimates are correct a greedy policy is optimal.
On-policy learning

Instead of updating based on the best action from the next state, update based on the action your current policy actually takes from the next state. SARSA update:

$$Q(s, a) = \alpha \left[R(s) + \gamma Q(s', a') \right] + (1 - \alpha)Q(s, a)$$

$$Q(s, a) + = \alpha \left[R(s) + \gamma Q(s', a') - Q(s, a) \right]$$

When would this be better or worse than Q-learning?

(demo)
Problem: large state spaces

If the state space is large, several problems arise.

- The table of Q-value estimates can get extremely large.
- Q-value updates can be slow to propagate.
- High-reward states can be hard to find.

State space grows exponentially with feature dimension.
PacMan state space

- PacMan’s location (107 possibilities).
- Location of each ghost (107^2).
- Locations still containing food.
 - 2^{104} combinations.
 - Not all feasible because PacMan can’t jump.
- Pills remaining (4 possibilities).
- Whether each ghost is scared (4 possibilities … ignoring the timer).

107^3 * 4^2 = 19,600,688 … ignoring the food!
Reward Shaping

Idea: give some small intermediate rewards that help the agent learn.

- Like a heuristic, this can guide the search in the right direction.
- Rewarding novelty can encourage exploration.

Disadvantages:
- Requires intervention by the designer to add domain-specific knowledge.
- If reward/discount are not balanced right, the agent might prefer accumulating the small rewards to actually solving the problem.
- Doesn’t reduce the size of the Q-table.
Function Approximation

Key Idea: learn a reward function as a linear combination of features.

- We can think of feature extraction as a change of basis.
- For each state encountered, determine its representation in terms of features.
- Perform a Q-learning update on each feature.
- Value estimate is a sum over the state’s features.
PacMan features from lab

- "bias" always 1.0
- "#-of-ghosts-1-step-away" the number of ghosts (regardless of whether they are safe or dangerous) that are 1 step away from Pac-Man
- "closest-food" the distance in Pac-Man steps to the closest food pellet (does take into account walls that may be in the way)
- "eats-food" either 1 or 0 if Pac-Man will eat a pellet of food by taking the given action in the given state
Exercise: extract features from these states

- bias
- #-of-ghosts-1-step-away
- closest-food
- eats-food
Approximate Q-learning update

Initialize weight for each feature to 0.

\[Q(s, a) = \sum_{i}^{n} f_i(s, a)w_i \]

\[w_i \leftarrow w_i + \alpha \text{[correction]} f_i(s, a) \]

\[\text{correction} = (R(s, a) + \gamma V(s')) - Q(s, a) \]

Note: this is performing gradient descent; derivation in the reading.
Advantages and disadvantages of approximation

+ Dramatically reduces the size of the Q-table.
+ States will share many features.
 + Allows generalization to unvisited states.
 + Makes behavior more robust: making similar decisions in similar states.
+ Handles continuous state spaces!

- Requires feature selection (often must be done by hand).
- Restricts the accuracy of the learned rewards.
 - The true reward function may not be linear in the features.
Exercise: approximate Q-learning

Features:
COL $\in \{0, \frac{1}{3}, \frac{2}{3}, 1\}$,
$R_0 \in \{0, 1\}$, $R_1 \in \{0, 1\}$, $R_2 \in \{0, 1\}$

discount: 0.9 learning rate: 0.2

Use these exploration traces:

- $(0,0)\rightarrow(1,0)\rightarrow(2,0)\rightarrow(2,1)\rightarrow(3,1)$
- $(0,0)\rightarrow(0,1)\rightarrow(0,2)\rightarrow(1,2)\rightarrow(2,2)\rightarrow(3,2)$
- $(0,0)\rightarrow(0,1)\rightarrow(0,2)\rightarrow(1,2)\rightarrow(2,2)\rightarrow(2,1)\rightarrow(3,1)$
- $(0,0)\rightarrow(0,1)\rightarrow(0,2)\rightarrow(1,2)\rightarrow(2,2)\rightarrow(3,2)$

$$Q(s,a) = \sum_{i}^{n} f_i(s,a)w_i$$

$$w_i \leftarrow w_i + \alpha [\text{correction}] f_i(s,a)$$

$$\text{correction} = (R(s,a) + \gamma V(s')) - Q(s,a)$$