Local Search
2-1-16
Consider the following problems

N-Queens: place n queens on an $n \times n$ chessboard so that none share a row, column, or diagonal.

K-Coloring: find an assignment of k colors to graph nodes (map regions) so that no adjacent nodes share a color.
N-Queens as state space search

Size of the search space: N^N

$6^6 \approx 47,000$
$8^8 \approx 17,000,000$

$25^{25} \approx 8.9 \times 10^{34}$
K-Coloring as state space search

Size of the search space: $|G|^K$

$48^3 = 110,592$

$10,000^8 = 10^{32}$
A different approach

State Space Search
- Search for paths to goals.
- Given a start state, goal state, operators.
- Apply operators to states to generate new states.

examples: BFS, DFS, UCS, A*, iterative deepening

Local Search
- Search for solutions.
- Given candidate solutions.
- Make small adjustments to candidates to generate new potentially better candidates.

examples: hill climbing, simulated annealing, beam search, genetic algorithms
Requirements for local search

- We don’t care about the *path* to a solution.
- We can evaluate candidate solutions.
- We can generate neighbor candidates by small modifications.
- Similar candidates have similar values.
N-Queens Local Search Representation

Candidate solution: an assignment of 1 queen per row.
 can represent as a tuple: (1,2,4,2,2,4)

Neighbors: boards that differ by the placement of 1 queen.
 each state has N*N-1 neighbors

Evaluation: minimize number of attacked queens.
 \(v(1,2,4,2,2,4) = 6 \)
 \(v(1,2,4,2,2,5) = 5 \)
Basic pseudocode

```python
hill_climb(problem):
    state = problem.get_candidate()
    neighbor = state
    while state == neighbor:
        neighbor = problem.best_successor(state)
        if problem.cost(neighbor) < problem.cost(state):
            state = neighbor
```
Trace of successful run

state cost: 8 neighbor cost: 6
state cost: 6 neighbor cost: 5
state cost: 5 neighbor cost: 4
state cost: 4 neighbor cost: 3
state cost: 3 neighbor cost: 2
state cost: 2 neighbor cost: 0
state cost: 0 neighbor cost: 1

Goal found in 7 steps
Trace of unsuccessful run

state cost: 6 neighbor cost: 5
state cost: 5 neighbor cost: 4
state cost: 4 neighbor cost: 3
state cost: 3 neighbor cost: 2
state cost: 2 neighbor cost: 2

	Q							
				Q				
							Q	
	Q							
						Q		
				Q				
			Q					
Q								

Goal NOT found in 5 steps
Getting stuck in local optima

(a) random restarts would help

(b) random steps would help
Improved pseudocode

hill_climb(problem):
 state = problem.get_candidate()
 best_state = state
 best_cost = problem.cost(state)
 for i=1:MAX_ITERS:
 if rand() < RESTART_PROB:
 state = problem.get_candidate()
 else if rand() < RAND_STEP_PROB:
 state = problem.random_step(state)
 else:
 problem.best_successor(state)
 if problem.cost(state) < best_cost:
 best_cost = problem.cost(state)
 best_state = state
Trace of improved pseudocode

Hill climbing restarted (1)...

Goal found in 18 steps
This version can solve 25-Queens
Exercise: Map coloring

How would you represent states?

How big is the state space?

What is the objective function?

What is the successor function?

How many successors would there be?
Simulated Annealing

- Always select moves randomly.
- Accept if improving.
- Accept bad moves with some probability.

Key idea: gradually reduce the probability of accepting bad moves.

parameters:
- initial temperature
- decay rate

\[
\text{prob} = e^{\frac{\text{delta}}{T}}
\]
\[
\text{delta} = \text{cost(neighbor)} - \text{cost(state)}
\]
\[
T = \text{initial_temp} \times (\text{decay_rate})^{\text{rounds}}
\]