
CHAPTER 

BAYESIAN 
LEARNING 

Bayesian reasoning provides a probabilistic approach to inference. It is based on 
the assumption that the quantities of interest are governed by probability distri- 
butions and that optimal decisions can be made by reasoning about these proba- 
bilities together with observed data. It is important to machine learning because 
it provides a quantitative approach to weighing the evidence supporting alterna- 
tive hypotheses. Bayesian reasoning provides the basis for learning algorithms 
that directly manipulate probabilities, as well as a framework for analyzing the 
operation of other algorithms that do not explicitly manipulate probabilities. 

6.1 INTRODUCTION 
Bayesian learning methods are relevant to our study of machine learning for 
two different reasons. First, Bayesian learning algorithms that calculate explicit 
probabilities for hypotheses, such as the naive Bayes classifier, are among the most 
practical approaches to certain types of learning problems. For example, Michie 
et al. (1994) provide a detailed study comparing the naive Bayes classifier to 
other learning algorithms, including decision tree and neural network algorithms. 
These researchers show that the naive Bayes classifier is competitive with these 
other learning algorithms in many cases and that in some cases it outperforms 
these other methods. In this chapter we describe the naive Bayes classifier and 
provide a detailed example of its use. In particular, we discuss its application to 
the problem of learning to classify text documents such as electronic news articles. 
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For such learning tasks, the naive Bayes classifier is among the most effective 
algorithms known. 

The second reason that Bayesian methods are important to our study of ma- 
chine learning is that they provide a useful perspective for understanding many 
learning algorithms that do not explicitly manipulate probabilities. For exam- 
ple, in this chapter we analyze algorithms such as the FIND-S and CANDIDATE- 
ELIMINATION algorithms of Chapter 2 to determine conditions under which they 
output the most probable hypothesis given the training data. We also use a 
Bayesian analysis to justify a key design choice in neural network learning al- 
gorithms: choosing to minimize the sum of squared errors when searching the 
space of possible neural networks. We also derive an alternative error function, 
cross entropy, that is more appropriate than sum of squared errors when learn- 
ing target functions that predict probabilities. We use a Bayesian perspective to 
analyze the inductive bias of decision tree learning algorithms that favor short 
decision trees and examine the closely related Minimum Description Length prin- 
ciple. A basic familiarity with Bayesian methods is important to understanding 

U 
and characterizing the operation of many algorithms in machine learning. 

Features of Bayesian learning methods include: 

0 Each observed training example can incrementally decrease or increase the 
estimated probability that a hypothesis is correct. This provides a more 
flexible approach to learning than algorithms that completely eliminate a 
hypothesis if it is found to be inconsistent with any single example. 

0 Prior knowledge can be combined with observed data to determine the final 
probability ~f a hypothesis. In Bayesian learning, prior knowledge is pro- 
vided by asserting (1) a prior probability for each candidate hypothesis, and 
(2) a probability distribution over observed data for each possible hypothesis. 
Bayesian methods can accommodate hypotheses that make probabilistic pre- 
dictions (e.g., hypotheses such as "this pneumonia patient has a 93% chance 
of complete recovery"). 

0 New instances can be classified by combining the predictions of multiple 
hypotheses, weighted by their probabilities. 

0 Even in cases where Bayesian methods prove computationally intractable, 
they can provide a standard of optimal decision making against which other 
practical methods can be measured. 

One practical difficulty in applying Bayesian methods is that they typically 
require initial knowledge of many probabilities. When these probabilities are not 
known in advance they are often estimated based on background knowledge, pre- 
viously available data, and assumptions about the form of the underlying distribu- 
tions. A second practical difficulty is the significant computational cost required to 
determine the Bayes optimal hypothesis in the general case (linear in the number 
of candidate hypotheses). In certain specialized situations, this computational cost 
can be significantly reduced. 



The remainder of this chapter is organized as follows. Section 6.2 intro- 
duces Bayes theorem and defines maximum likelihood and maximum a posteriori 
probability hypotheses. The four subsequent sections then apply this probabilistic 
framework to analyze several issues and learning algorithms discussed in earlier 
chapters. For example, we show that several previously described algorithms out- 
put maximum likelihood hypotheses, under certain assumptions. The remaining 
sections then introduce a number of learning algorithms that explicitly manip- 
ulate probabilities. These include the Bayes optimal classifier, Gibbs algorithm, 
and naive Bayes classifier. Finally, we discuss Bayesian belief networks, a rela- 
tively recent approach to learning based on probabilistic reasoning, and the EM 
algorithm, a widely used algorithm for learning in the presence of unobserved 
variables. 

6.2 BAYES THEOREM 
In machine learning we are often interested in determining the best hypothesis 
from some space H, given the observed training data D. One way to specify 
what we mean by the best hypothesis is to say that we demand the most probable 
hypothesis, given the data D  plus any initial knowledge about the prior probabil- 
ities of the various hypotheses in H. Bayes theorem provides a direct method for 
calculating such probabilities. More precisely, Bayes theorem provides a way to 
calculate the probability of a hypothesis based on its prior probability, the proba- 
bilities of observing various data given the hypothesis, and the observed data itself. 

To define Bayes theorem precisely, let us first introduce a little notation. We 
shall write P(h)  to denote the initial probability that hypothesis h  holds, before we 
have observed the training data. P(h)  is often called the priorprobability of h  and 
may reflect any background knowledge we have about the chance that h  is a correct 
hypothesis. If we have no such prior knowledge, then we might simply assign 
the same prior probability to each candidate hypothesis. Similarly, we will write 
P ( D )  to denote the prior probability that training data D will be observed (i.e., 
the probability of D given no knowledge about which hypothesis holds). Next, 
we will write P(D1h) to denote the probability of observing data D  given some 
world in which hypothesis h  holds. More generally, we write P(xly)  to denote 
the probability of x given y. In machine learning problems we are interested in 
the probability P  (h  1 D )  that h  holds given the observed training data D.  P  (h 1 D )  is 
called the posteriorprobability of h,  because it reflects our confidence that h  holds 
after we have seen the training data D .  Notice the posterior probability P(h1D) 
reflects the influence of the training data D, in contrast to the prior probability 
P(h) , which is independent of D. 

Bayes theorem is the cornerstone of Bayesian learning methods because 
it provides a way to calculate the posterior probability P(hlD), from the prior 
probability P(h),  together with P ( D )  and P(D(h) .  

Bayes theorem: 
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As one might intuitively expect, P(h ID) increases with P(h) and with P(D1h) 
according to Bayes theorem. It is also reasonable to see that P(hl D)  decreases as 
P(D)  increases, because the more probable it is that D will be observed indepen- 
dent of h,  the less evidence D provides in support of h. 

In many learning scenarios, the learner considers some set of candidate 
hypotheses H and is interested in finding the most probable hypothesis h E H 
given the observed data D (or at least one of the maximally probable if there 
are several). Any such maximally probable hypothesis is called a maximum a 
posteriori (MAP) hypothesis. We can determine the MAP hypotheses by using 
Bayes theorem to calculate the posterior probability of each candidate hypothesis. 
More precisely, we will say that  MAP is a MAP hypothesis provided 

h ~ ~ p  = argmax P(hlD) 
h€H  

= argmax P(D 1 h) P (h) 
h€H  

(6.2) 

Notice in the final step above we dropped the term P ( D )  because it is a constant 
independent of h. 

In some cases, we will assume that every hypothesis in H is equally probable 
a priori (P(hi )  = P(h;) for all hi and h; in H). In this case we can further 
simplify Equation (6.2) and need only consider the term P(D1h) to find the most 
probable hypothesis. P(Dlh) is often called the likelihood of the data D given h, 
and any hypothesis that maximizes P(Dlh) is called a maximum likelihood (ML) 
hypothesis, hML. 

hML = argmax P(Dlh) 
h €H  

In order to make clear the connection to machine learning problems, we 
introduced Bayes theorem above by referring to the data D as training examples of 
some target function and referring to H as the space of candidate target functions. 
In fact, Bayes theorem is much more general than suggested by this discussion. It 
can be applied equally well to any set H of mutually exclusive propositions whose 
probabilities sum to one (e.g., "the sky is blue," and "the sky is not blue"). In this 
chapter, we will at times consider cases where H is a hypothesis space containing 
possible target functions and the data D are training examples. At other times we 
will consider cases where H is some other set of mutually exclusive propositions, 
and D is some other kind of data. 

6.2.1 An Example 
To illustrate Bayes rule, consider a medical diagnosis problem in which there are 
two alternative hypotheses: (1) that the patien; has a- articular form of cancer. 
and (2) that the patient does not. The avaiiable data is from a particular laboratory 



test with two possible outcomes: $ (positive) and 8 (negative). We have prior 
knowledge that over the entire population of people only .008 have this disease. 
Furthermore, the lab test is only an imperfect indicator of the disease. The test 
returns a correct positive result in only 98% of the cases in which the disease is 
actually present and a correct negative result in only 97% of the cases in which 
the disease is not present. In other cases, the test returns the opposite result. The 
above situation can be summarized by the following probabilities: 

Suppose we now observe a new patient for whom the lab test returns a positive 
result. Should we diagnose the patient as having cancer or not? The maximum a 
posteriori hypothesis can be found using Equation (6.2): 

Thus, h ~ ~ p  = -cancer. The exact posterior hobabilities can also be determined 
by normalizing the above quantities so that they sum to 1 (e.g., P(cancer($) = 
.00;~~298 = .21). This step is warranted because Bayes theorem states that the 
posterior probabilities are just the above quantities divided by the probability of 
the data, P(@). Although P($) was not provided directly as part of the problem 
statement, we can calculate it in this fashion because we know that P(cancerl$) 
and P(-cancerl$) must sum to 1 (i.e., either the patient has cancer or they do 
not). Notice that while the posterior probability of cancer is significantly higher 
than its prior probability, the most probable hypothesis is still that the patient does 
not have cancer. 

As this example illustrates, the result of Bayesian inference depends strongly 
on the prior probabilities, which must be available in order to apply the method 
directly. Note also that in this example the hypotheses are not completely accepted 
or rejected, but rather become more or less probable as more data is observed. 

Basic formulas for calculating probabilities are summarized in Table 6.1. 

6.3 BAYES THEOREM AND CONCEPT LEARNING 
What is the relationship between Bayes theorem and the problem of concept learn- 
ing? Since Bayes theorem provides a principled way to calculate the posterior 
probability of each hypothesis given the training data, we can use it as the basis 
for a straightforward learning algorithm that calculates the probability for each 
possible hypothesis, then outputs the most probable. This section considers such 
a brute-force Bayesian concept learning algorithm, then compares it to concept 
learning algorithms we considered in Chapter 2. As we shall see, one interesting 
result of this comparison is that under certain conditions several algorithms dis- 
cussed in earlier chapters output the same hypotheses as this brute-force Bayesian 
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- . Product rule: probability P ( A  A B)  of a conjunction of two events A and B 

Sum rule: probability of a disjunction of two events A  and B 

Bayes theorem: the posterior probability P(hl D )  of h  given D  

. Theorem of totalprobability: if events A 1 , .  . . , A, are mutually exclusive with xy=l P ( A i )  = 1 ,  
then 

TABLE 6.1 
Summary of basic probability formulas. 

11 

t 
algorithm, despite the fact that they do not explicitly manipulate probabilities and 
are considerably more efficient. 

6.3.1 Brute-Force Bayes Concept Learning 
Consider the concept learning problem first introduced in Chapter 2. In particular, 
assume the learner considers some finite hypothesis space H defined over the 
instance space X, in which the task is to learn some target concept c : X + {0,1}. 
As usual, we assume that the learner is given some sequence of training examples 
( ( x ~ ,  d l )  . . . (xm, dm))  where xi is some instance from X and where di is the target 
value of xi (i.e., di = c(xi)).  To simplify the discussion in this section, we assume 
the sequence of instances (xl . . . xm) is held fixed, so that the training data D can 
be written simply as the sequence of target values D = (dl . . . dm) .  It can be shown 
(see Exercise 6.4) that this simplification does not alter the main conclusions of 
this section. 

We can design a straightforward concept learning algorithm to output the 
maximum a posteriori hypothesis, based on Bayes theorem, as follows: 

BRUTE-FORCE MAP LEARNING algorithm 
1. For each hypothesis h in H, calculate the posterior probability 

2. Output the hypothesis hMAP with the highest posterior probability 



160 MACHINE LEARNING 

This algorithm may require significant computation, because it applies Bayes theo- 
rem to each hypothesis in H to calculate P(hJ D ) .  While this may prove impractical 
for large hypothesis spaces, the algorithm is still of interest because it provides a 
standard against which we may judge the performance of other concept learning 
algorithms. 

In order specify a Iearning problem for the BRUTE-FORCE MAP LEARNING 
algorithm we must specify what values are to be used for P(h)  and for P(D1h) 
(as we shall see, P ( D )  will be determined once we choose the other two). We 
may choose the probability distributions P(h) and P(D1h) in any way we wish, 
to describe our prior knowledge about the learning task. Here let us choose them 
to be consistent with the following assumptions: 

1. The training data D is noise free (i.e., di = c(xi) ) .  

2. The target concept c is contained in the hypothesis space H 

3. We have no a priori reason to believe that any hypothesis is more probable 
than any other. 

Given these assumptions, what values should we specify for P(h)? Given no 
prior knowledge that one hypothesis is more likely than another, it is reasonable to 
assign the same prior probability to every hypothesis h in H .  Furthermore, because 
we assume the target concept is contained in H we should require that these prior 
probabilities sum to 1. Together these constraints imply that we should choose 

1 
P(h)  = - for all h in H 

IHI 

What choice shall we make for P(Dlh)? P(D1h) is the probability of ob- 
serving the target values D = (dl  . . .dm) for the fixed set of instances ( X I  . . . x,), 
given a world in which hypothesis h holds (i.e., given a world in which h is the 
correct description of the target concept c). Since we assume noise-free training 
data, the probability of observing classification di given h is just 1 if di = h(xi) 
and 0 if di # h(xi).  Therefore, 

1 if di = h(xi) for all di in D 
P(D1h) = (6.4) 

0 otherwise 

In other words, the probability of data D given hypothesis h is 1 if D is consistent 
with h, and 0 otherwise. 

Given these choices for P(h) and for P(Dlh) we now have a fully-defined 
problem for the above BRUTE-FORCE MAP LEARNING algorithm. Let us consider the 
first step of this algorithm, which uses Bayes theorem to compute the posterior 
probability P(h1D) of each hypothesis h given the observed training data D .  
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Recalling Bayes theorem, we have 

First consider the case where h is inconsistent with the training data D. Since 
Equation (6.4) defines P(D)h )  to be 0 when h is inconsistent with D, we have 

P ( ~ ( D )  = - ' P(h) - - o if h is inconsistent with D 
P(D)  

The posterior probability of a hypothesis inconsistent with D is zero. 
Now consider the case where h is consistent with D. Since Equation (6.4) 

defines P(Dlh) to be 1 when h is consistent with D, we have 

- 1 -- if h is consistent with D 
IVSH,DI 

where V S H , ~  is the subset of hypotheses from H that are consistent with D (i.e., 
V S H , ~  is the version space of H with respect to D as defined in Chapter 2). It 
is easy to verify that P(D)  = above, because the sum over all hypotheses 
of P(h ID) must be one and because the number of hypotheses from H consistent 
with D is by definition IVSH,DI. Alternatively, we can derive P(D)  from the 
theorem of total probability (see Table 6.1) and the fact that the hypotheses are 
mutually exclusive (i.e., (Vi # j ) (P(hi  A hj )  = 0 ) )  

To summarize, Bayes theorem implies that the posterior probability P(h ID) 
under our assumed P(h) and P(D1h) is 

if h is consistent with D 
P(hlD) = (6 .3  

0 otherwise 



where IVSH,DI is the number of hypotheses from H consistent with D. The evo- 
lution of probabilities associated with hypotheses is depicted schematically in 
Figure 6.1. Initially (Figure 6 . 1 ~ )  all hypotheses have the same probability. As 
training data accumulates (Figures 6.1 b and 6. lc), the posterior probability for 
inconsistent hypotheses becomes zero while the total probability summing to one 
is shared equally among the remaining consistent hypotheses. 

The above analysis implies that under our choice for P(h) and P(Dlh), every 
consistent hypothesis has posterior probability (1 / I  V SH, I), and every inconsistent 
hypothesis has posterior probability 0. Every consistent hypothesis is, therefore, 
a MAP hypothesis. 

6.3.2 MAP Hypotheses and Consistent Learners 
The above analysis shows that in the given setting, every hypothesis consistent 
with D is a MAP hypothesis. This statement translates directly into an interesting 
statement about a general class of learners that we might call consistent learners. 
We will say that a learning algorithm is a consistent learner provided it outputs a 
hypothesis that commits zero errors over the training examples. Given the above 
analysis, we can conclude that every consistent learner outputs a MAP hypothesis, 
i f  we assume a uniform prior probability distribution over H (i.e., P(hi) = P(hj)  
for all i, j ) ,  and ifwe assume deterministic, noise free training data (i.e., P(D Ih) = 
1 i f  D and h are consistent, and 0 otherwise). 

Consider, for example, the concept learning algorithm FIND-S discussed in 
Chapter 2. FIND-S searches the hypothesis space H from specific to general hy- 
potheses, outputting a maximally specific consistent hypothesis (i.e., a maximally 
specific member of the version space). Because FIND-S outputs a consistent hy- 
pothesis, we know that it will output a MAP hypothesis under the probability 
distributions P(h) and P(D1h) defined above. Of course FIND-S does not explic- 
itly manipulate probabilities at all-it simply outputs a maximally specific member 

hypotheses hypotheses 
( a )  (4 

hypotheses 
( c )  

FIGURE 6.1 
Evolution of posterior probabilities P(hlD) with increasing training data. (a)  Uniform priors assign 
equal probability to each hypothesis. As training data increases first to Dl (b), then to Dl  A 0 2  
(c), the posterior probability of inconsistent hypotheses becomes zero, while posterior probabilities 
increase for hypotheses remaining in the version space. 
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of the version space. However, by identifying distributions for P ( h )  and P ( D ( h )  
under which its output hypotheses will be MAP hypotheses, we have a useful way 
of characterizing the behavior of FIND-S. 

Are there other probability distributions for P(h)  and P(D1h) under which 
FIND-S outputs MAP hypotheses? Yes. Because FIND-S outputs a maximally spe- 
cz$c hypothesis from the version space, its output hypothesis will be a MAP 
hypothesis relative to any prior probability distribution that favors more specific 
hypotheses. More precisely, suppose 3-1 is any probability distribution P(h)  over 
H that assigns P(h1) 2 P(hz )  if hl  is more specific than h2. Then it can be shown 
that FIND-S outputs a MAP hypothesis assuming the prior distribution 3-1 and the 
same distribution P(D1h) discussed above. 

To summarize the above discussion, the Bayesian framework allows one 
way to characterize the behavior of learning algorithms (e.g., FIND-S), even when 
the learning algorithm does not explicitly manipulate probabilities. By identifying 
probability distributions P(h)  and P(Dlh)  under which the algorithm outputs 
optimal (i.e., MAP) hypotheses, we can characterize the implicit assumptions 

, under which this algorithm behaves optimally. 
( Using the Bayesian perspective to characterize learning algorithms in this 

way is similar in spirit to characterizing the inductive bias of the learner. Recall 
that in Chapter 2 we defined the inductive bias of a learning algorithm to be 
the set of assumptions B sufficient to deductively justify the inductive inference 
performed by the learner. For example, we described the inductive bias of the 
CANDIDATE-ELIMINATION algorithm as the assumption that the target concept c is 
included in the hypothesis space H. Furthermore, we showed there that the output 
of this learning algorithm follows deductively from its inputs plus this implicit 
inductive bias assumption. The above Bayesian interpretation provides an alter- 
native way to characterize the assumptions implicit in learning algorithms. Here, 
instead of modeling the inductive inference method by an equivalent deductive 
system, we model it by an equivalent probabilistic reasoning system based on 
Bayes theorem. And here the implicit assumptions that we attribute to the learner 
are assumptions of the form "the prior probabilities over H are given by the 
distribution P(h) ,  and the strength of data in rejecting or accepting a hypothesis 
is given by P(Dlh)." The definitions of P(h)  and P ( D ( h )  given in this section 
characterize the implicit assumptions of the CANDIDATE-ELIMINATION and FIND-S 
algorithms. A probabilistic reasoning system based on Bayes theorem will exhibit 
input-output behavior equivalent to these algorithms, provided it is given these 
assumed probability distributions. 

The discussion throughout this section corresponds to a special case of 
Bayesian reasoning, because we considered the case where P(D1h) takes on val- 
ues of only 0 and 1, reflecting the deterministic predictions of hypotheses and the 
assumption of noise-free training data. As we shall see in the next section, we 
can also model learning from noisy training data, by allowing P(D1h) to take on 
values other than 0 and 1, and by introducing into P(D1h) additional assumptions 
about the probability distributions that govern the noise. 



6.4 MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR 
HYPOTHESES 
As illustrated in the above section, Bayesian analysis can sometimes be used to 
show that a particular learning algorithm outputs MAP hypotheses even though it 
may not explicitly use Bayes rule or calculate probabilities in any form. 

In this section we consider the problem of learning a continuous-valued 
target function-a problem faced by many learning approaches such as neural 
network learning, linear regression, and polynomial curve fitting. A straightfor- 
ward Bayesian analysis will show that under certain assumptions any learning 
algorithm that minimizes the squared error between the output hypothesis pre- 
dictions and the training data will output a maximum likelihood hypothesis. The 
significance of this result is that it provides a Bayesian justification (under cer- 
tain assumptions) for many neural network and other curve fitting methods that 
attempt to minimize the sum of squared errors over the training data. 

Consider the following problem setting. Learner L considers an instance 
space X and a hypothesis space H consisting of some class of real-valued functions 
defined over X (i.e., each h in H is a function of the form h : X -+ 8, where 
8 represents the set of real numbers). The problem faced by L is to learn an 
unknown target function f : X -+ 8 drawn from H. A set of m training examples 
is provided, where the target value of each example is corrupted by random 
noise drawn according to a Normal probability distribution. More precisely, each 
training example is a pair of the form (xi, d i )  where di = f (xi)  + ei. Here f (xi)  is 
the noise-free value of the target function and ei is a random variable represent- 
ing the noise. It is assumed that the values of the ei are drawn independently and 
that they are distributed according to a Normal distribution with zero mean. The 
task of the learner is to output a maximum likelihood hypothesis, or, equivalently, 
a MAP hypothesis assuming all hypotheses are equally probable a priori. 

A simple example of such a problem is learning a linear function, though our 
analysis applies to learning arbitrary real-valued functions. Figure 6.2 illustrates 

FIGURE 6.2 
Learning a real-valued function. The target 
function f corresponds to the solid line. 
The training examples (xi, di ) are assumed 
to have Normally distributed noise ei with 
zero mean added to the true target value 
f (xi). The dashed line corresponds to the 
linear function that minimizes the sum of 
squared errors. Therefore, it is the maximum 

I likelihood hypothesis ~ M L ,  given these five 
x training examples. 
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a linear target function f depicted by the solid line, and a set of noisy training 
examples of this target function. The dashed line corresponds to the hypothesis 
hML with least-squared training error, hence the maximum likelihood hypothesis. 
Notice that the maximum likelihood hypothesis is not necessarily identical to the 
correct hypothesis, f ,  because it is inferred from only a limited sample of noisy 
training data. 

Before showing why a hypothesis that minimizes the sum of squared errors 
in this setting is also a maximum likelihood hypothesis, let us quickly review two 
basic concepts from probability theory: probability densities and Normal distribu- 
tions. First, in order to discuss probabilities over continuous variables such as e, 
we must introduce probability densities. The reason, roughly, is that we wish for 
the total probability over all possible values of the random variable to sum to one. 
In the case of continuous variables we cannot achieve this by assigning a finite 
probability to each of the infinite set of possible values for the random variable. 
Instead, we speak of a probability density for continuous variables such as e and 
require that the integral of this probability density over all possible values be one. 
In general we will use lower case p to refer to the probability density function, 
to distinguish it from a finite probability P  (which we will sometimes refer to as 
a probability mass). The probability density p(x0) is the limit as E goes to zero, 
of times the probability that x  will take on a value in the interval [xo, xo + 6 ) .  

Probability density function: 

Second, we stated that the random noise variable e is generated by a Normal 
probability distribution. A Normal distribution is a smooth, bell-shaped distribu- 
tion that can be completely characterized by its mean p and its standard deviation 
a. See Table 5.4 for a precise definition. 

Given this background we now return to the main issue: showing that the 
least-squared error hypothesis is, in fact, the maximum likelihood hypothesis 
within our problem setting. We will show this by deriving the maximum like- 
lihood hypothesis starting with our earlier definition Equation (6.3), but using 
lower case p to refer to the probability density 

As before, we assume a fixed set of training instances (xl  . . . xm) and there- 
fore consider the data D to be the corresponding sequence of target values 
D = (d l  . . . d m ) .  Here di = f (x i )  + ei. Assuming the training examples are mu- 
tually independent given h,  we can write P ( D J h )  as the product of the various 
~ ( d i  lh) 



Given that the noise ei obeys a Normal distribution with zero mean and unknown 
variance a 2 ,  each di must also obey a Normal distribution with variance a2 cen- 
tered around the true target value f (x i )  rather than zero. Therefore p(di lh) can 
be written as a Normal distribution with variance a2 and mean p = f (x i ) .  Let us 
write the formula for this Normal distribution to describe p(di Ih), beginning with 
the general formula for a Normal distribution from Table 5.4 and substituting the 
appropriate p and a 2 .  Because we are writing the expression for the probability 
of di given that h is the correct description of the target function f ,  we will also 
substitute p = f (x i )  = h(xi) ,  yielding 

We now apply a transformation that is common in maximum likelihood calcula- 
tions: Rather than maximizing the above complicated expression we shall choose 
to maximize its (less complicated) logarithm. This is justified because lnp  is a 
monotonic function of p. Therefore maximizing In p also maximizes p. 

... 1 1 hML = argmax x l n  - - -(di - h ( ~ i ) ) ~  
h€H  i=l dG7 202 

The first term in this expression is a constant independent of h, and can therefore 
be discarded, yielding 

1 
hMr = argmax C -s(di - h(xi)12 

h€H  i=l 

Maximizing this negative quantity is equivalent to minimizing the corresponding 
positive quantity. 

Finally, we can again discard constants that are independent of h. 

Thus, Equation (6.6) shows that the maximum likelihood hypothesis ~ M L  is 
the one that minimizes the sum of the squared errors between the observed training 
values di and the hypothesis predictions h(x i ) .  This holds under the assumption 
that the observed training values di are generated by adding random noise to 
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the true target value, where this random noise is drawn independently for each 
example from a Normal distribution with zero mean. As the above derivation 
makes clear, the squared error term (di - h ( ~ ~ ) ) ~  follows directly from the exponent 
in the definition of the Normal distribution. Similar derivations can be performed 
starting with other assumed noise distributions, producing different results. 

Notice the structure of the above derivation involves selecting the hypothesis 
that maximizes the logarithm of the likelihood (In p(D1h)) in order to determine 
the most probable hypothesis. As noted earlier, this yields the same result as max- 
imizing the likelihood p(D1h). This approach of working with the log likelihood 
is common to many Bayesian analyses, because it is often more mathematically 
tractable than working directly with the likelihood. Of course, as noted earlier, 
the maximum likelihood hypothesis might not be the MAP hypothesis, but if one 
assumes uniform prior probabilities over the hypotheses then it is. 

Why is it reasonable to choose the Normal distribution to characterize noise? 
One reason, it must be admitted, is that it allows for a mathematically straightfor- 
ward analysis. A second reason is that the smooth, bell-shaped distribution is a 
good approximation to many types of noise in physical systems. In fact, the Cen- i tral Limit Theorem discussed in Chapter 5 shows that the sum of a sufficiently 
large number of independent, identically distributed random variables itself obeys 
a Normal distribution, regardless of the distributions of the individual variables. 
This implies that noise generated by the sum of very many independent, but 
identically distributed factors will itself be Normally distributed. Of course, in 
reality, different components that contribute to noise might not follow identical 
distributions, in which case this theorem will not necessarily justify our choice. 

Minimizing the sum of squared errors is a common approach in many neural 
network, curve fitting, and other approaches to approximating real-valued func- 
tions. Chapter 4 describes gradient descent methods that seek the least-squared 
error hypothesis in neural network learning. 

Before leaving our discussion of the relationship between the maximum 
likelihood hypothesis and the least-squared error hypothesis, it is important to 
note some limitations of this problem setting. The above analysis considers noise 
only in the target value of the training example and does not consider noise in 
the attributes describing the instances themselves. For example, if the problem 
is to learn to predict the weight of someone based on that person's age and 
height, then the above analysis assumes noise in measurements of weight, but 
perfect measurements of age and height. The analysis becomes significantly more 
complex as these simplifying assumptions are removed. 

6.5 MAXIMUM LIKELIHOOD HYPOTHESES FOR PREDICTING 
PROBABILITIES 
In the problem setting of the previous section we determined that the maximum 
likelihood hypothesis is the one that minimizes the sum of squared errors over the 
training examples. In this section we derive an analogous criterion for a second 
setting that is common in neural network learning: learning to predict probabilities. 



Consider the setting in which we wish to learn a nondeterministic (prob- 
abilistic) function f : X -+ {0, 11, which has two discrete output values. For 
example, the instance space X might represent medical patients in terms of their 
symptoms, and the target function f (x) might be 1 if the patient survives the 
disease and 0 if not. Alternatively, X might represent loan applicants in terms of 
their past credit history, and f (x) might be 1 if the applicant successfully repays 
their next loan and 0 if not. In both of these cases we might well expect f to be 
probabilistic. For example, among a collection of patients exhibiting the same set 
of observable symptoms, we might find that 92% survive, and 8% do not. This 
unpredictability could arise from our inability to observe all the important distin- 
guishing features of the patients, or from some genuinely probabilistic mechanism 
in the evolution of the disease. Whatever the source of the problem, the effect is 
that we have a target function f (x) whose output is a probabilistic function of the 
input. 

Given this problem setting, we might wish to learn a neural network (or other 
real-valued function approximator) whose output is the probability that f (x) = 1. 
In other words, we seek to learn the target function, f '  : X + [O, 11, such that 
f '(x) = P (  f (x) = 1). In the above medical patient example, if x is one of those 
indistinguishable patients of which 92% survive, then f'(x) = 0.92 whereas the 
probabilistic function f (x) will be equal to 1 in 92% of cases and equal to 0 in 
the remaining 8%. 

How can we learn f' using, say, a neural network? One obvious, brute- 
force way would be to first collect the observed frequencies of 1's and 0's for 
each possible value of x and to then train the neural network to output the target 
frequency for each x. As we shall see below, we can instead train a neural network 
directly from the observed training examples of f, yet still derive a maximum 
likelihood hypothesis for f '. 

What criterion should we optimize in order to find a maximum likelihood 
hypothesis for f' in this setting? To answer this question we must first obtain 
an expression for P(D1h). Let us assume the training data D is of the form 
D = {(xl, dl)  . . . (x,, dm)}, where di is the observed 0 or 1 value for f (xi). 

Recall that in the maximum likelihood, least-squared error analysis of the 
previous section, we made the simplifying assumption that the instances (xl . . . x,) 
were fixed. This enabled us to characterize the data by considering only the target 
values di. Although we could make a similar simplifying assumption in this case, 
let us avoid it here in order to demonstrate that it has no impact on the final 
outcome. Thus treating both xi and di as random variables, and assuming that 
each training example is drawn independently, we can write P(D1h) as 

m 

P(Dlh) = n ,(xi, 41,) (6.7) 
i=l 

It is reasonable to assume, furthermore, that the probability of encountering 
any particular instance xi is independent of the hypothesis h. For example, the 
probability that our training set contains a particular patient xi is independent of 
our hypothesis about survival rates (though of course the survival d, of the patient 
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does depend strongly on h). When x is independent of h we can rewrite the above 
expression (applying the product rule from Table 6.1) as 

Now what is the probability P(dilh, xi) of observing di = 1 for a single 
instance xi, given a world in which hypothesis h holds? Recall that h is our 
hypothesis regarding the target function, which computes this very probability. 
Therefore, P(di = 1 1 h, xi) = h(xi),  and in general 

In order to substitute this into the Equation (6.8) for P(Dlh), let us first 
" re-express it in a more mathematically manipulable form, as I' 

It is easy to verify that the expressions in Equations (6.9) and (6.10) are equivalent. 
Notice that when di = 1 ,  the second term from Equation (6.10), ( 1  - h(xi))'-", 
becomes equal to 1. Hence P(di = l lh,xi)  = h(xi),  which is equivalent to the 
first case in Equation (6.9). A similar analysis shows that the two equations are 
also equivalent when di = 0. 

We can use Equation (6.10) to substitute for P(di lh, xi) in Equation (6.8) to 
obtain 

Now we write an expression for the maximum likelihood hypothesis 

The last term is a constant independent of h, so it can be dropped 

The expression on the right side of Equation (6.12) can be seen as a gen- 
eralization of the Binomial distribution described in Table 5.3. The expression in 
Equation (6.12) describes the probability that flipping each of m distinct coins will 
produce the outcome (dl . . .dm),  assuming that each coin xi  has probability h(xi) 
of producing a heads. Note the Binomial distribution described in Table 5.3 is 



similar, but makes the additional assumption that the coins have identical proba- 
bilities of turning up heads (i.e., that h(xi) = h(xj), Vi, j). In both cases we assume 
the outcomes of the coin flips are mutually independent-an assumption that fits 
our current setting. 

As in earlier cases, we will find it easier to work with the log of the likeli- 
hood, yielding 

Equation (6.13) describes the quantity that must be maximized in order to 
obtain the maximum likelihood hypothesis in our current problem setting. This 
result is analogous to our earlier result showing that minimizing the sum of squared 
errors produces the maximum likelihood hypothesis in the earlier problem setting. 
Note the similarity between Equation (6.13) and the general form of the entropy 
function, -xi pi log pi, discussed in Chapter 3. Because of this similarity, the 
negation of the above quantity is sometimes called the cross entropy. 

6.5.1 Gradient Search to Maximize Likelihood in a Neural Net 
Above we showed that maximizing the quantity in Equation (6.13) yields the 
maximum likelihood hypothesis. Let us use G(h, D) to denote this quantity. In 
this section we derive a weight-training rule for neural network learning that seeks 
to maximize G(h, D) using gradient ascent. 

As discussed in Chapter 4, the gradient of G(h, D) is given by the vector 
of partial derivatives of G(h, D) with respect to the various network weights that 
define the hypothesis h represented by the learned network (see Chapter 4 for a 
general discussion of gradient-descent search and for details of the terminology 
that we reuse here). In this case, the partial derivative of G(h, D) with respect to 
weight wjk from input k to unit j is 

To keep our analysis simple, suppose our neural network is constructed from 
a single layer of sigmoid units. In this case we have 

where xijk is the kth input to unit j for the ith training example, and d ( x )  is 
the derivative of the sigmoid squashing function (again, see Chapter 4). Finally, 
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substituting this expression into Equation (6.14), we obtain a simple expression 
for the derivatives that constitute the gradient 

Because we seek to maximize rather than minimize P(D(h), we perform 
gradient ascent rather than gradient descent search. On each iteration of the search 
the weight vector is adjusted in the direction of the gradient, using the weight- 
update rule 

where 
m 

Awjk = 7 C ( d i  - hbi)) xijk (6.15) 
i=l 

and where 7 is a small positive constant that determines the step size of the i gradient ascent search. 
It is interesting to compare this weight-update rule to the weight-update 

rule used by the BACKPROPAGATION algorithm to minimize the sum of squared 
errors between predicted and observed network outputs. The BACKPROPAGATION 
update rule for output unit weights (see Chapter 4), re-expressed using our current 
notation, is 

where 

Notice this is similar to the rule given in Equation (6.15) except for the extra term 
h ( x , ) ( l  - h(xi)), which is the derivative of the sigmoid function. 

To summarize, these two weight update rules converge toward maximum 
likelihood hypotheses in two different settings. The rule that minimizes sum of 
squared error seeks the maximum likelihood hypothesis under the assumption 
that the training data can be modeled by Normally distributed noise added to the 
target function value. The rule that minimizes cross entropy seeks the maximum 
likelihood hypothesis under the assumption that the observed boolean value is a 
probabilistic function of the input instance. 

6.6 MINIMUM DESCRIPTION LENGTH PRINCIPLE 
Recall from Chapter 3 the discussion of Occam's razor, a popular inductive bias 
that can be summarized as "choose the shortest explanation for the observed 
data." In that chapter we discussed several arguments in the long-standing debate 
regarding Occam's razor. Here we consider a Bayesian perspective on this issue 



and a closely related principle called the Minimum Description Length (MDL) 
principle. 

The Minimum Description Length principle is motivated by interpreting the 
definition of h M ~ p  in the light of basic concepts from information theory. Consider 
again the now familiar definition of  MAP. 

hMAP = argmax P(Dlh)P(h)  
h€H  

which can be equivalently expressed in terms of maximizing the log, 

 MAP = argmax log2 P ( D  lh) + log, P ( h )  
h€H  

or alternatively, minimizing the negative of this quantity 

hMAp = argmin - log, P ( D  1 h )  - log, P(h)  
h€H  

Somewhat surprisingly, Equation (6.16) can be interpreted as a statement 
that short hypotheses are preferred, assuming a particular representation scheme 
for encoding hypotheses and data. To explain this, let us introduce a basic result 
from information theory: Consider the problem of designing a code to transmit 
messages drawn at random, where the probability of encountering message i  is 
pi. We are interested here in the most compact code; that is, we are interested in 
the code that minimizes the expected number of bits we must transmit in order to 
encode a message drawn at random. Clearly, to minimize the expected code length 
we should assign shorter codes to messages that are more probable. Shannon and 
Weaver (1949) showed that the optimal code (i.e., the code that minimizes the 
expected message length) assigns - log, pi bitst to encode message i .  We will 
refer to the number of bits required to encode message i  using code C as the 
description length of message i  with respect to C ,  which we denote by Lc( i ) .  

Let us interpret Equation (6.16) in light of the above result from coding 
theory. 

0 - log, P ( h )  is the description length of h under the optimal encoding for 
the hypothesis space H. In other words, this is the size of the description 
of hypothesis h using this optimal representation. In our notation, LC, (h)  = 
- log, P(h) ,  where CH is the optimal code for hypothesis space H. 

0 -log2 P(D1h) is the description length of the training data D given 
hypothesis h, under its optimal encoding. In our notation, Lc,,,(Dlh) = 
- log, P(Dlh) ,  where C D , ~  is the optimal code for describing data D assum- 
ing that both the sender and receiver know the hypothesis h .  

t ~ o t i c e  the expected length for transmitting one message is therefore xi -pi logz pi, the formula 
for the entropy (see Chapter 3) of the set of possible messages. 
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0 Therefore we can rewrite Equation (6.16) to show that hMAP is the hypothesis 
h that minimizes the sum given by the description length of the hypothesis 
plus the description length of the data given the hypothesis. 

where CH and CDlh are the optimal encodings for H and for D given h, 
respectively. 

The Minimum Description Length (MDL) principle recommends choosing 
the hypothesis that minimizes the sum of these two description lengths. Of course 
to apply this principle in practice we must choose specific encodings or represen- 
tations appropriate for the given learning task. Assuming we use the codes C1 and 
CZ to represent the hypothesis and the data given the hypothesis, we can state the 
MDL principle as 

1' 

I Minimum Description Length principle: Choose hMDL where 

The above analysis shows that if we choose C1 to be the optimal encoding 
of hypotheses CH, and if we choose C2 to be the optimal encoding CDlh, then 
~ M D L  = A MAP. 

Intuitively, we can think of the MDL principle as recommending the shortest 
method for re-encoding the training data, where we count both the size of the 
hypothesis and any additional cost of encoding the data given this hypothesis. 

Let us consider an example. Suppose we wish to apply the MDL prin- 
ciple to the problem of learning decision trees from some training data. What 
should we choose for the representations C1 and C2 of hypotheses and data? 
For C1 we might naturally choose some obvious encoding of decision trees, in 
which the description length grows with the number of nodes in the tree and 
with the number of edges. How shall we choose the encoding C2 of the data 
given a particular decision tree hypothesis? To keep things simple, suppose that 
the sequence of instances (xl . . .x,) is already known to both the transmitter 
and receiver, so that we need only transmit the classifications (f (XI) . . . f (x,)). 
(Note the cost of transmitting the instances themselves is independent of the cor- 
rect hypothesis, so it does not affect the selection of ~ M D L  in any case.) Now if 
the training classifications (f (xl) . . . f (xm)) are identical to the predictions of the 
hypothesis, then there is no need to transmit any information about these exam- 
ples (the receiver can compute these values once it has received the hypothesis). 
The description length of the classifications given the hypothesis in this case is, 
therefore, zero. In the case where some examples are misclassified by h, then 
for each misclassification we need to transmit a message that identifies which 
example is misclassified (which can be done using at most logzm bits) as well 



as its correct classification (which can be done using at most log2 k bits, where 
k is the number of possible classifications). The hypothesis hMDL under the en- 
coding~ C1 and C2 is just the one that minimizes the sum of these description 
lengths. 

Thus the MDL principle provides a way of trading off hypothesis complexity 
for the number of errors committed by the hypothesis. It might select a shorter 
hypothesis that makes a few errors over a longer hypothesis that perfectly classifies 
the training data. Viewed in this light, it provides one method for dealing with 
the issue of overjitting the data. 

Quinlan and Rivest (1989) describe experiments applying the MDL principle 
to choose the best size for a decision tree. They report that the MDL-based method 
produced learned trees whose accuracy was comparable to that of the standard tree- 
pruning methods discussed in Chapter 3. Mehta et al. (1995) describe an alternative 
MDL-based approach to decision tree pruning, and describe experiments in which 
an MDL-based approach produced results comparable to standard tree-pruning 
methods. 

What shall we conclude from this analysis of the Minimum Description 
Length principle? Does this prove once and for all that short hypotheses are best? 
No. What we have shown is only that ifa representation of hypotheses is chosen so 
that the size of hypothesis h is - log2 P(h), and ifa representation for exceptions 
is chosen so that the encoding length of D given h is equal to -log2 P(Dlh), 
then the MDL principle produces MAP hypotheses. However, to show that we 
have such a representation we must know all the prior probabilities P(h), as well 
as the P(D1h). There is no reason to believe that the MDL hypothesis relative to 
arbitrary encodings C1 and C2 should be preferred. As a practical matter it might 
sometimes be easier for a human designer to specify a representation that captures 
knowledge about the relative probabilities of hypotheses than it is to fully specify 
the probability of each hypothesis. Descriptions in the literature on the application 
of MDL to practical learning problems often include arguments providing some 
form of justification for the encodings chosen for C1 and C2. 

6.7 BAYES OPTIMAL CLASSIFIER 
So far we have considered the question "what is the most probable hypothesis 
given the training data?' In fact, the question that is often of most significance is 
the closely related question "what is the most probable classiJication of the new 
instance given the training data?'Although it may seem that this second question 
can be answered by simply applying the MAP hypothesis to the new instance, in 
fact it is possible to do better. 

To develop some intuitions consider a hypothesis space containing three 
hypotheses, hl, h2, and h3. Suppose that the posterior probabilities of these hy- 
potheses given the training data are .4, .3, and .3 respectively. Thus, hl is the 
MAP hypothesis. Suppose a new instance x is encountered, which is classified 
positive by h l ,  but negative by h2 and h3. Taking all hypotheses into account, 
the probability that x is positive is .4 (the probability associated with hi ) ,  and 
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the probability that it is negative is therefore .6. The most probable classification 
(negative) in this case is different from the classification generated by the MAP 
hypothesis. 

In general, the most probable classification of the new instance is obtained 
by combining the predictions of all hypotheses, weighted by their posterior prob- 
abilities. If the possible classification of the new example can take on any value 
v j  from some set V, then the probability P(vjlD) that the correct classification 
for the new instance is v;, is just 

The optimal classification of the new instance is the value v,, for which 
P (v; 1 D) is maximum. 

Bayes optimal classification: 

To illustrate in terms of the above example, the set of possible classifications 
of the new instance is V = (@, 81, and 

therefore 

and 

Any system that classifies new instances according to Equation (6.18) is 
called a Bayes optimal classzjier, or Bayes optimal learner. No other classification 
method using the same hypothesis space and same prior knowledge can outperform 
this method on average. This method maximizes the probability that the new 
instance is classified correctly, given the available data, hypothesis space, and 
prior probabilities over the hypotheses. 



For example, in learning boolean concepts using version spaces as in the 
earlier section, the Bayes optimal classification of a new instance is obtained 
by taking a weighted vote among all members of the version space, with each 
candidate hypothesis weighted by its posterior probability. 

Note one curious property of the Bayes optimal classifier is that the pre- 
dictions it makes can correspond to a hypothesis not contained in H! Imagine 
using Equation (6.18) to classify every instance in X. The labeling of instances 
defined in this way need not correspond to the instance labeling of any single 
hypothesis h from H. One way to view this situation is to think of the Bayes 
optimal classifier as effectively considering a hypothesis space H' different from 
the space of hypotheses H to which Bayes theorem is being applied. In particu- 
lar, H' effectively includes hypotheses that perform comparisons between linear 
combinations of predictions from multiple hypotheses in H. 

6.8 GIBBS ALGORITHM 
Although the Bayes optimal classifier obtains the best performance that can be 
achieved from the given training data, it can be quite costly to apply. The expense 
is due to the fact that it computes the posterior probability for every hypothesis 
in H and then combines the predictions of each hypothesis to classify each new 
instance. 

An alternative, less optimal method is the Gibbs algorithm (see Opper and 
Haussler 1991), defined as follows: 

1. Choose a hypothesis h from H at random, according to the posterior prob- 
ability distribution over H. 

2. Use h to predict the classification of the next instance x. 

Given a new instance to classify, the Gibbs algorithm simply applies a 
hypothesis drawn at random according to the current posterior probability distri- 
bution. Surprisingly, it can be shown that under certain conditions the expected 
misclassification error for the Gibbs algorithm is at most twice the expected error 
of the Bayes optimal classifier (Haussler et al. 1994). More precisely, the ex- 
pected value is taken over target concepts drawn at random according to the prior 
probability distribution assumed by the learner. Under this condition, the expected 
value of the error of the Gibbs algorithm is at worst twice the expected value of 
the error of the Bayes optimal classifier. 

This result has an interesting implication for the concept learning problem 
described earlier. In particular, it implies that if the learner assumes a uniform 
prior over H, and if target concepts are in fact drawn from such a distribution 
when presented to the learner, then classifying the next instance according to 
a hypothesis drawn at random from the current version space (according to a 
uniform distribution), will have expected error at most twice that of the Bayes 
optimal classijier. Again, we have an example where a Bayesian analysis of a 
non-Bayesian algorithm yields insight into the performance of that algorithm. 
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6.9 NAIVE BAYES CLASSIFIER 
One highly practical Bayesian learning method is the naive Bayes learner, often 
called the naive Bayes classijier. In some domains its performance has been shown 
to be comparable to that of neural network and decision tree learning. This section 
introduces the naive Bayes classifier; the next section applies it to the practical 
problem of learning to classify natural language text documents. 

The naive Bayes classifier applies to learning tasks where each instance x 
is described by a conjunction of attribute values and where the target function 
f ( x )  can take on any value from some finite set V. A set of training examples of 
the target function is provided, and a new instance is presented, described by the 
tuple of attribute values (a l ,  a2 . .  .a,) .  The learner is asked to predict the target 
value, or classification, for this new instance. 

The Bayesian approach to classifying the new instance is to assign the most 
probable target value, VMAP, given the attribute values ( a l ,  a2 . . . a,) that describe 
the instance. 

VMAP = argmax P(vj lal ,  a 2 .  . . a,) 
v j€v  

We can use Bayes theorem to rewrite this expression as 

Now we could attempt to estimate the two terms in Equation (6.19) based on 
the training data. It is easy to estimate each of the P(v j )  simply by counting the 
frequency with which each target value vj occurs in the training data. However, 
estimating the different P(al ,  a 2 . .  . a,lvj) terms in this fashion is not feasible 
unless we have a very, very large set of training data. The problem is that the 
number of these terms is equal to the number of possible instances times the 
number of possible target values. Therefore, we need to see every instance in 
the instance space many times in order to obtain reliable estimates. 

The naive Bayes classifier is based on the simplifying assumption that the 
attribute values are conditionally independent given the target value. In other 
words, the assumption is that given the target value of the instance, the probability 
of observing the conjunction al ,  a2 . .  .a,  is just the product of the probabilities 
for the individual attributes: P(a1, a2 . . . a, 1 v j )  = ni P(ai lvj) .  Substituting this 
into Equation (6.19), we have the approach used by the naive Bayes classifier. 

Naive Bayes classifier: 

VNB = argmax P (vj) n P (ai 1vj) (6.20) 
ujcv 

where V N B  denotes the target value output by the naive Bayes classifier. Notice 
that in a naive Bayes classifier the number of distinct P(ailvj)  terms that must 



be estimated from the training data is just the number of distinct attribute values 
times the number of distinct target values-a much smaller number than if we 
were to estimate the P(a1, a2 . . . an lvj) terms as first contemplated. 

To summarize, the naive Bayes learning method involves a learning step in 
which the various P(vj) and P(ai Jvj) terms are estimated, based on their frequen- 
cies over the training data. The set of these estimates corresponds to the learned 
hypothesis. This hypothesis is then used to classify each new instance by applying 
the rule in Equation (6.20). Whenever the naive Bayes assumption of conditional 
independence is satisfied, this naive Bayes classification VNB is identical to the 
MAP classification. 

One interesting difference between the naive Bayes learning method and 
other learning methods we have considered is that there is no explicit search 
through the space of possible hypotheses (in this case, the space of possible 
hypotheses is the space of possible values that can be assigned to the various P(vj) 
and P(ailvj) terms). Instead, the hypothesis is formed without searching, simply by 
counting the frequency of various data combinations within the training examples. 

6.9.1 An Illustrative Example 
Let us apply the naive Bayes classifier to a concept learning problem we consid- 
ered during our discussion of decision tree learning: classifying days according 
to whether someone will play tennis. Table 3.2 from Chapter 3 provides a set 
of 14 training examples of the target concept PlayTennis, where each day is 
described by the attributes Outlook, Temperature, Humidity, and Wind. Here we 
use the naive Bayes classifier and the training data from this table to classify the 
following novel instance: 

(Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong) 
Our task is to predict the target value (yes or no) of the target concept 

PlayTennis for this new instance. Instantiating Equation (6.20) to fit the current 
task, the target value VNB is given by 

= argrnax P(vj) P(0utlook = sunny)v,)P(Temperature = coolIvj) 
vj~(yes,no] 

Notice in the final expression that ai has been instantiated using the particular 
attribute values of the new instance. To calculate VNB we now require 10 proba- 
bilities that can be estimated from the training data. First, the probabilities of the 
different target values can easily be estimated based on their frequencies over the 
14 training examples 

P(P1ayTennis = yes) = 9/14 = .64 
P(P1ayTennis = no) = 5/14 = .36 
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Similarly, we can estimate the conditional probabilities. For example, those for 
Wind = strong are 

P(Wind = stronglPlayTennis = yes) = 319 = .33 
P(Wind = strongl PlayTennis = no) = 315 = .60 

Using these probability estimates and similar estimates for the remaining attribute 
values, we calculate V N B  according to Equation (6.21) as follows (now omitting 
attribute names for brevity) 

Thus, the naive Bayes classifier assigns the target value PlayTennis = no to this 
new instance, based on the probability estimates learned from the training data. 
Furthermore, by normalizing the above quantities to sum to one we can calculate 
the conditional probability that the target value is no, given the observed attribute 
values. For the current example, this probability is ,02$ym,, = -795. 

6.9.1.1 ESTIMATING PROBABILITIES 

Up to this point we have estimated probabilities by the fraction of times the event 
is observed to occur over the total number of opportunities. For example, in the 
above case we estimated P(Wind = strong] Play Tennis = no) by the fraction % 
where n = 5 is the total number of training examples for which PlayTennis = no, 
and n, = 3 is the number of these for which Wind = strong. 

While this observed fraction provides a good estimate of the probability in 
many cases, it provides poor estimates when n, is very small. To see the difficulty, 
imagine that, in fact, the value of P(Wind = strongl PlayTennis = no) is .08 and 
that we have a sample containing only 5 examples for which PlayTennis = no. 
Then the most probable value for n, is 0 .  This raises two difficulties. First, $ pro- 
duces a biased underestimate of the probability. Second, when this probability es- 
timate is zero, this probability term will dominate the Bayes classifier if the future 
query contains Wind = strong. The reason is that the quantity calculated in Equa- 
tion (6.20) requires multiplying all the other probability terms by this zero value. 

To avoid this difficulty we can adopt a Bayesian approach to estimating the 
probability, using the m-estimate defined as follows. 

m-estimate of probability: 

Here, n, and n are defined as before, p is our prior estimate of the probability 
we wish to determine, and m is a constant called the equivalent sample size, 
which determines how heavily to weight p relative to the observed data. A typical 
method for choosing p in the absence of other information is to assume uniform 



priors; that is, if an attribute has k possible values we set p = i. For example, in 
estimating P(Wind = stronglPlayTennis = no) we note the attribute Wind has 
two possible values, so uniform priors would correspond to choosing p = .5. Note 
that if m is zero, the m-estimate is equivalent to the simple fraction 2. If both n 
and m are nonzero, then the observed fraction 2 and prior p will be combined 
according to the weight m. The reason m is called the equivalent sample size is 
that Equation (6.22) can be interpreted as augmenting the n actual observations 
by an additional m virtual samples distributed according to p. 

6.10 AN EXAMPLE: LEARNING TO CLASSIFY TEXT 
To illustrate the practical importance of Bayesian learning methods, consider learn- 
ing problems in which the instances are text documents. For example, we might 
wish to learn the target concept "electronic news articles that I find interesting," 
or "pages on the World Wide Web that discuss machine learning topics." In both 
cases, if a computer could learn the target concept accurately, it could automat- 
ically filter the large volume of online text documents to present only the most 
relevant documents to the user. 

We present here a general algorithm for learning to classify text, based 
on the naive Bayes classifier. Interestingly, probabilistic approaches such as the 
one described here are among the most effective algorithms currently known for 
learning to classify text documents. Examples of such systems are described by 
Lewis (1991), Lang (1995), and Joachims (1996). 

The naive Bayes algorithm that we shall present applies in the following 
general setting. Consider an instance space X consisting of all possible text docu- 
ments (i.e., all possible strings of words and punctuation of all possible lengths). 
We are given training examples of some unknown target function f ( x ) ,  which 
can take on any value from some finite set V. The task is to learn from these 
training examples to predict the target value for subsequent text documents. For 
illustration, we will consider the target function classifying documents as interest- 
ing or uninteresting to a particular person, using the target values like and dislike 
to indicate these two classes. 

The two main design issues involved in applying the naive Bayes classifier 
to such rext classification problems are first to decide how to represent an arbitrary 
text document in terms of attribute values, and second to decide how to estimate 
the probabilities required by the naive Bayes classifier. 

Our approach to representing arbitrary text documents is disturbingly simple: 
Given a text document, such as this paragraph, we define an attribute for each word 
position in the document and define the value of that attribute to be the English 
word found in that position. Thus, the current paragraph would be described by 
11 1 attribute values, corresponding to the 11 1 word positions. The value of the 
first attribute is the word "our," the value of the second attribute is the word 
"approach," and so on. Notice that long text documents will require a larger 
number of attributes than short documents. As we shall see, this will not cause 
us any trouble. 
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Given this representation for text documents, we can now apply the naive 
Bayes classifier. For the sake of concreteness, let us assume we are given a set of 
700 training documents that a friend has classified as dislike and another 300 she 
has classified as like. We are now given a new document and asked to classify 
it. Again, for concreteness let us assume the new text document is the preceding 
paragraph. In this case, we instantiate Equation (6.20) to calculate the naive Bayes 
classification as 

-a- 

Vns = argmax P(Vj) n ~ ( a i  lvj) 
vj~{like,dislike} i=l 

- - argmax P(vj) P(a1 = "our"lvj)P(a2 = "approach"lvj) 
v, ~{like,dislike} 

To summarize, the naive Bayes classification VNB is the classification that max- 
imizes the probability of observing the words that were actually found in the 

I document, subject to the usual naive Bayes independence assumption. The inde- F pendence assumption P(al, . . . all l  lvj) = nfL1 P(ai lvj) states in this setting that 
the word probabilities for one text position are independent of the words that oc- 
cur in other positions, given the document classification vj. Note this assumption 
is clearly incorrect. For example, the probability of observing the word "learning" 
in some position may be greater if the preceding word is "machine." Despite the 
obvious inaccuracy of this independence assumption, we have little choice but to 
make it-without it, the number of probability terms that must be computed is 
prohibitive. Fortunately, in practice the naive Bayes learner performs remarkably 
well in many text classification problems despite the incorrectness of this indepen- 
dence assumption. Dorningos and Pazzani (1996) provide an interesting analysis 
of this fortunate phenomenon. 

To calculate VNB using the above expression, we require estimates for the 
probability terms P(vj) and P(ai = wklvj) (here we introduce wk to indicate the kth 
word in the English vocabulary). The first of these can easily be estimated based 
on the fraction of each class in the training data (P(1ike) = .3 and P(dis1ike) = .7 
in the current example). As usual, estimating the class conditional probabilities 
(e.g., P(al = "our"ldis1ike)) is more problematic because we must estimate one 
such probability term for each combination of text position, English word, and 
target value. Unfortunately, there are approximately 50,000 distinct words in the 
English vocabulary, 2 possible target values, and 11 1 text positions in the current 
example, so we must estimate 2 .  11 1 -50,000 = 10 million such terms from the 
training data. 

Fortunately, we can make an additional reasonable assumption that reduces 
the number of probabilities that must be estimated. In particular, we shall as- 
sume the probability of encountering a specific word wk (e.g., "chocolate") is 
independent of the specific word position being considered (e.g., a23 versus agg). 
More formally, this amounts to assuming that the attributes are independent and 
identically distributed, given the target classification; that is, P(ai = wk)vj) = 



P(a, = wkJvj) for all i, j, k, m. Therefore, we estimate the entire set of proba- 
bilities P(a1 = wk lvj), P(a2 = wk lv,) . . . by the single position-independent prob- 
ability P(wklvj), which we will use regardless of the word position. The net 
effect is that we now require only 2.50,000 distinct terms of the form P(wklvj). 
This is still a large number, but manageable. Notice in cases where training data 
is limited, the primary advantage of making this assumption is that it increases 
the number of examples available to estimate each of the required probabilities, 
thereby increasing the reliability of the estimates. 

To complete the design of our learning algorithm, we must still choose a 
method for estimating the probability terms. We adopt the m-estimate-Equa- 
tion (6.22)-with uniform priors and with rn equal to the size of the word vocab- 
ulary. Thus, the estimate for P(wklvj) will be 

where n is the total number of word positions in all training examples whose 
target value is vj, nk is the number of times word wk is found among these n 
word positions, and I Vocabulary I is the total number of distinct words (and other 
tokens) found within the training data. 

To summarize, the final algorithm uses a naive Bayes classifier together 
with the assumption that the probability of word occurrence is independent of 
position within the text. The final algorithm is shown in Table 6.2. Notice the al- 
gorithm is quite simple. During learning, the procedure LEARN~AIVEBAYES-TEXT 
examines all training documents to extract the vocabulary of all words and to- 
kens that appear in the text, then counts their frequencies among the different 
target classes to obtain the necessary probability estimates. Later, given a new 
document to be classified, the procedure CLASSINSAIVEJ~AYES-TEXT uses these 
probability estimates to calculate VNB according to Equation (6.20). Note that 
any words appearing in the new document that were not observed in the train- 
ing set are simply ignored by CLASSIFYSAIVEBAYES-TEXT. Code for this algo- 
rithm, as well as training data sets, are available on the World Wide Web at 
http://www.cs.cmu.edu/-tom/book.htrnl. 

6.10.1 Experimental Results 
How effective is the learning algorithm of Table 6.2? In one experiment (see 
Joachims 1996), a minor variant of this algorithm was applied to the problem 
of classifying usenet news articles. The target classification for an article in this 
case was the name of the usenet newsgroup in which the article appeared. One 
can think of the task as creating a newsgroup posting service that learns to as- 
sign documents to the appropriate newsgroup. In the experiment described by 
Joachims (1996), 20 electronic newsgroups were considered (listed in Table 6.3). 
Then 1,000 articles were collected from each newsgroup, forming a data set of 
20,000 documents. The naive Bayes algorithm was then applied using two-thirds 
of these 20,000 documents as training examples, and performance was measured 
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Examples is a set of text documents along with their target values. V is the set of all possible target 
values. This function learns the probability terms P(wk Iv,), describing the probability that a randomly 
drawn word from a document in class vj will be the English word wk. It also learns the class prior 
probabilities P(vj). 
1. collect all words, punctwtion, and other tokens that occur in Examples 

a Vocabulary c the set of all distinct words and other tokens occurring in any text document 
from Examples 

2. calculate the required P(vj) and P(wkJvj) probability terms 
For each target value vj in V do 

docsj t the subset of documents from Examples for which the target value is vj 
ldocs . I 

P(uj) + 1ExornLlesl 
a Texti c a single document created by concatenating all members of docsi 
a n +*total number of distinct word positions in ~ e x c  
0 for each word wk in Vocabulary 

0 nk c number of times word wk occurs in Textj 
P(wk lvj) + n+12LLoryl 

" Return the estimated target value for the document Doc. ai denotes the word found in the ith position 
within Doc. 

0 positions t all word positions in Doc that contain tokens found in Vocabulary 
a Return V N B ,  where 

V N B  = argmax ~ ( v j )  n P(ai 19) 
V, E V  ieposirions 

TABLE 6.2 
Naive Bayes algorithms for learning and classifying text. In addition to the usual naive Bayes as- 
sumptions, these algorithms assume the probability of a word occurring is independent of its position 
within the text. 

over the remaining third. Given 20 possible newsgroups, we would expect random 
guessing to achieve a classification accuracy of approximately 5%. The accuracy 
achieved by the program was 89%. The algorithm used in these experiments was 
exactly the algorithm of Table 6.2, with one exception: Only a subset of the words 
occurring in the documents were included as the value of the Vocabulary vari- 
able in the algorithm. In particular, the 100 most frequent words were removed 
(these include words such as "the" and "of '), and any word occurring fewer than 
three times was also removed. The resulting vocabulary contained approximately 
38,500 words. 

Similarly impressive results have been achieved by others applying similar 
statistical learning approaches to text classification. For example, Lang (1995) 
describes another variant of the naive Bayes algorithm and its application to 
learning the target concept "usenet articles that I find interesting." He describes 
the NEWSWEEDER system-a program for reading netnews that allows the user to 
rate articles as he or she reads them. NEWSWEEDER then uses these rated articles as 



TABLE 6.3 
Twenty usenet newsgroups used in the text classification experiment. After training on 667 articles 
from each newsgroup, a naive Bayes classifier achieved an accuracy of 89% predicting to which 
newsgroup subsequent articles belonged. Random guessing would produce an accuracy of only 5%. 

training examples to learn to predict which subsequent articles will be of interest 
to the user, so that it can bring these to the user's attention. Lang (1995) reports 
experiments in which NEWSWEEDER used its learned profile of user interests to 
suggest the most highly rated new articles each day. By presenting the user with 
the top 10% of its automatically rated new articles each day, it created a pool of 
articles containing three to four times as many interesting articles as the general 
pool of articles read by the user. For example, for one user the fraction of articles 
rated "interesting" was 16% overall, but was 59% among the articles recommended 
by NEWSWEEDER. 

Several other, non-Bayesian, statistical text learning algorithms are common, 
many based on similarity metrics initially developed for information retrieval (e.g., 
see Rocchio 197 1; Salton 199 1). Additional text learning algorithms are described 
in Hearst and Hirsh (1996). 

6.11 BAYESIAN BELIEF NETWORKS 
As discussed in the previous two sections, the naive Bayes classifier makes signif- 
icant use of the assumption that the values of the attributes a1 . . .a, are condition- 
ally independent given the target value v. This assumption dramatically reduces 
the complexity of learning the target function. When it is met, the naive Bayes 
classifier outputs the optimal Bayes classification. However, in many cases this 
conditional independence assumption is clearly overly restrictive. 

A Bayesian belief network describes the probability distribution governing a 
set of variables by specifying a set of conditional independence assumptions along 
with a set of conditional probabilities. In contrast to the naive Bayes classifier, 
which assumes that all the variables are conditionally independent given the value 
of the target variable, Bayesian belief networks allow stating conditional indepen- 
dence assumptions that apply to subsets of the variables. Thus, Bayesian belief 
networks provide an intermediate approach that is less constraining than the global 
assumption of conditional independence made by the naive Bayes classifier, but 
more tractable than avoiding conditional independence assumptions altogether. 
Bayesian belief networks are an active focus of current research, and a variety of 
algorithms have been proposed for learning them and for using them for inference. 
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In this section we introduce the key concepts and the representation of Bayesian 
belief networks. More detailed treatments are given by Pearl (1988), Russell and 
Norvig (1995), Heckerman et al. (1995), and Jensen (1996). 

In general, a Bayesian belief network describes the probability distribution 
over a set of variables. Consider an arbitrary set of random variables Yl . . . Y,, 
where each variable Yi can take on the set of possible values V(Yi). We define 
the joint space of the set of variables Y to be the cross product V(Yl) x V(Y2) x 
. . . V(Y,). In other words, each item in the joint space corresponds to one of the 
possible assignments of values to the tuple of variables (Yl . . . Y,). The probability 
distribution over this joint' space is called the joint probability distribution. The 
joint probability distribution specifies the probability for each of the possible 
variable bindings for the tuple (Yl . . . Y,). A Bayesian belief network describes 
the joint probability distribution for a set of variables. 

6.11.1 Conditional Independence i Let us begin our discussion of Bayesian belief networks by defining precisely 
the notion of conditional independence. Let X ,  Y, and Z be three discrete-valued 
random variables. We say that X is conditionally independent of Y given Z if 
the probability distribution governing X is independent of the value of Y given a 
value for 2; that is, if 

where xi E V(X), yj E V(Y), and z k  E V(Z). We commonly write the above 
expression in abbreviated form as P(XIY,  Z )  = P(X1Z).  This definition of con- 
ditional independence can be extended to sets of variables as well. We say that 
the set of variables X1 . . . Xi is conditionally independent of the set of variables 
Yl . . . Ym given the set of variables 2 1  . . . Z, if 

P ( X 1  ... XIJY1 ... Ym, z1 ... Z,) = P ( X l  ... X1]Z1 ... Z,) 

Note the correspondence between this definition and our use of conditional , 
independence in the definition of the naive Bayes classifier. The naive Bayes 
classifier assumes that the instance attribute A1 is conditionally independent of 
instance attribute A2 given the target value V. This allows the naive Bayes clas- 
sifier to calculate P ( A l ,  A21V) in Equation (6.20) as follows 

Equation (6.23) is just the general form of the product rule of probability from 
Table 6.1. Equation (6.24) follows because if A1 is conditionally independent of 
A2 given V, then by our definition of conditional independence P (A1 IA2, V )  = 
P(A1IV). 



S,B S,-B 7S.B 1s.-B 

-C 0.6 0.9 0.2 

Campfire 

FIGURE 6.3 
A Bayesian belief network. The network on the left represents a set of conditional independence 
assumptions. In particular, each node is asserted to be conditionally independent of its nondescen- 
dants, given its immediate parents. Associated with each node is a conditional probability table, 
which specifies the conditional distribution for the variable given its immediate parents in the graph. 
The conditional probability table for the Campjire node is shown at the right, where Campjire is 
abbreviated to C,  Storm abbreviated to S,  and BusTourGroup abbreviated to B. 

6.11.2 Representation 
A Bayesian belief network (Bayesian network for short) represents the joint prob- 
ability distribution for a set of variables. For example, the Bayesian network in 
Figure 6.3 represents the joint probability distribution over the boolean variables 
Storm, Lightning, Thunder, ForestFire, Campjre, and BusTourGroup. In general, 
a Bayesian network represents the joint probability distribution by specifying a 
set of conditional independence assumptions (represented by a directed acyclic 
graph), together with sets of local conditional probabilities. Each variable in the 
joint space is represented by a node in the Bayesian network. For each variable two 
types of information are specified. First, the network arcs represent the assertion 
that the variable is conditionally independent of its nondescendants in the network 
given its immediate predecessors in the network. We say Xjis a descendant of 

, Y if there is a directed path from Y to X. Second, a conditional probability table 
is given for each variable, describing the probability distribution for that variable 
given the values of its immediate predecessors. The joint probability for any de- 
sired assignment of values (y l ,  . . . , y,) to the tuple of network variables (YI . . . Y,) 
can be computed by the formula 

n 

~ ( Y I , .  . . , yd = n p ( y i ~ p a r e n t s ( ~ i ) )  
i = l  

where Parents(Yi) denotes the set of immediate predecessors of Yi in the net- 
work. Note the values of P(yiJ Parents(Yi)) are precisely the values stored in the 
conditional probability table associated with node Yi. 

To illustrate, the Bayesian network in Figure 6.3 represents the joint prob- 
ability distribution over the boolean variables Storm, Lightning, Thunder, Forest- 
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Fire, Campfire, and BusTourGroup. Consider the node Campjire. The network 
nodes and arcs represent the assertion that CampJire is conditionally indepen- 
dent of its nondescendants Lightning and Thunder, given its immediate parents 
Storm and BusTourGroup. This means that once we know the value of the vari- 
ables Storm and BusTourGroup, the variables Lightning and Thunder provide no 
additional information about Campfire. The right side of the figure shows the 
conditional probability table associated with the variable Campfire. The top left 
entry in this table, for example, expresses the assertion that 

P(Campfire = TruelStorm = True, BusTourGroup = True) = 0.4 

Note this table provides only the conditional probabilities of Campjire given its 
parent variables Storm and BusTourGroup. The set of local conditional probability 
tables for all the variables, together with the set of conditional independence as- 
sumptions described by the network, describe the full joint probability distribution 
for the network. 

One attractive feature of Bayesian belief networks is that they allow a con- 
venient way to represent causal knowledge such as the fact that Lightning causes 
Thunder. In the terminology of conditional independence, we express this by stat- 
ing that Thunder is conditionally independent of other variables in the network, 
given the value of Lightning. Note this conditional independence assumption is 
implied by the arcs in the Bayesian network of Figure 6.3. 

6.11.3 Inference 
We might wish to use a Bayesian network to infer the value of some target 
variable (e.g., ForestFire) given the observed values of the other variables. Of 
course, given that we are dealing with random variables it will not generally be 
correct to assign the target variable a single determined value. What we really 
wish to infer is the probability distribution for the target variable, which specifies 
the probability that it will take on each of its possible values given the observed 
values of the other variables. This inference step can be straightforward if values 
for all of the other variables in the network are known exactly. In the more 
general case we may wish to infer the probability distribution for some variable 
(e.g., ForestFire) given observed values for only a subset of the other variables 
(e.g., Thunder and BusTourGroup may be the only observed values available). In 
general, a Bayesian network can be used to compute the probability distribution 
for any subset of network variables given the values or distributions for any subset 
of the remaining variables. 

Exact inference of probabilities in general for an arbitrary Bayesian net- 
work is known to be NP-hard (Cooper 1990). Numerous methods have been 
proposed for probabilistic inference in Bayesian networks, including exact infer- 
ence methods and approximate inference methods that sacrifice precision to gain 
efficiency. For example, Monte Carlo methods provide approximate solutions by 
randomly sampling the distributions of the unobserved variables (Pradham and 
Dagum 1996). In theory, even approximate inference of probabilities in Bayesian 



networks can be NP-hard (Dagum and Luby 1993). Fortunately, in practice ap- 
proximate methods have been shown to be useful in many cases. Discussions of 
inference methods for Bayesian networks are provided by Russell and Norvig 
(1995) and by Jensen (1996). 

6.11.4 Learning Bayesian Belief Networks 
Can we devise effective algorithms for learning Bayesian belief networks from 
training data? This question is a focus of much current research. Several different 
settings for this learning problem can be considered. First, the network structure 
might be given in advance, or it might have to be inferred from the training data. 
Second, all the network variables might be directly observable in each training 
example, or some might be unobservable. 

In the case where the network structure is given in advance and the variables 
are fully observable in the training examples, learning the conditional probability 
tables is straightforward. We simply estimate the conditional probability table 
entries just as we would for a naive Bayes classifier. 

In the case where the network structure is given but only some of the variable 
values are observable in the training data, the learning problem is more difficult. 
This problem is somewhat analogous to learning the weights for the hidden units in 
an artificial neural network, where the input and output node values are given but 
the hidden unit values are left unspecified by the training examples. In fact, Russell 
et al. (1995) propose a similar gradient ascent procedure that learns the entries in 
the conditional probability tables. This gradient ascent procedure searches through 
a space of hypotheses that corresponds to the set of all possible entries for the 
conditional probability tables. The objective function that is maximized during 
gradient ascent is the probability P(D1h) of the observed training data D given 
the hypothesis h. By definition, this corresponds to searching for the maximum 
likelihood hypothesis for the table entries. 

6.11.5 Gradient Ascent Training of Bayesian Networks 
The gradient ascent rule given by Russell et al. (1995) maximizes P(D1h) by 
following the gradient of In P(D Ih) with respect to the parameters that define the 
conditional probability tables of the Bayesian network. Let wi;k denote a single 
entry in one of the conditional probability tables. In particular, let wijk denote 
the conditional probability that the network variable Yi will take on the value yi, 
given that its immediate parents Ui take on the values given by uik. For example, 
if wijk is the top right entry in the conditional probability table in Figure 6.3, then 
Yi is the variable Campjire, Ui is the tuple of its parents (Stomz, BusTourGroup), 
yij = True, and uik = (False, False). The gradient of In P(D1h) is given by 
the derivatives for each of the toijk. As we show below, each of these 
derivatives can be calculated as 
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For example, to calculate the derivative of In P(D1h) with respect to the upper- 
rightmost entry in the table of Figure 6.3 we will have to calculate the quan- 
tity P(Campf ire = True,  Storm = False,  BusTourGroup = Falseld) for each 
training example d in D .  When these variables are unobservable for the training 
example d ,  this required probability can be calculated from the observed variables 
in d using standard Bayesian network inference. In fact, these required quantities 
are easily derived from the calculations performed during most Bayesian network 
inference, so learning can be performed at little additional cost whenever the 
Bayesian network is used for inference and new evidence is subsequently obtained. 

Below we derive Equation (6.25) following Russell et al. (1995). The re- 
mainder of this section may be skipped on a first reading without loss of continuity. 
To simplify notation, in this derivation we will write the abbreviation Ph(D) to 
represent P ( D J h ) .  Thus, our problem is to derive the gradient defined by the set 
of derivatives for all i ,  j, and k .  Assuming the training examples d in the 
data set D are drawn independently, we write this derivative as 

This last step makes use of the general equality 9 = 1- f ( ~ )  ax . W can now 
introduce the values of the variables Yi and Ui = Parents(Yi) ,  by summing over 
their possible values yijl and uiu. 

This last step follows from the product rule of probability, Table 6.1. Now consider 
the rightmost sum in the final expression above. Given that Wijk = Ph(yijl~ik), the 
only term in this sum for which & is nonzero is the term for which j' = j and 
i' = i .  Therefore 



Applying Bayes theorem to rewrite Ph (dlyi j ,  uik) ,  we have 

Thus, we have derived the gradient given in Equation (6.25). There is one more 
item that must be considered before we can state the gradient ascent training 
procedure. In particular, we require that as the weights wijk are updated they 
must remain valid probabilities in the interval [0,1]. We also require that the 
sum xj wijk remains 1 for all i ,  k. These constraints can be satisfied by updating 
weights in a two-step process. First we update each wijk by gradient ascent 

where q is a small constant called the learning rate. Second, we renormalize 
the weights wijk to assure that the above constraints are satisfied. As discussed 
by Russell et al., this process will converge to a locally maximum likelihood 
hypothesis for the conditional probabilities in the Bayesian network. 

As in other gradient-based approaches, this algorithm is guaranteed only to 
find some local optimum solution. An alternative to gradient ascent is the EM 
algorithm discussed in Section 6.12, which also finds locally maximum likelihood 
solutions. 

6.11.6 Learning the Structure of Bayesian Networks 
Learning Bayesian networks when the network structure is not known in advance 
is also difficult. Cooper and Herskovits (1992) present a Bayesian scoring metric 
for choosing among alternative networks. They also present a heuristic search 
algorithm called K2 for learning network structure when the data is fully observ- 
able. Like most algorithms for learning the structure of Bayesian networks, K2 
performs a greedy search that trades off network complexity for accuracy over the 
training data. In one experiment K2 was given a set of 3,000 training examples 
generated at random from a manually constructed Bayesian network containing 
37 nodes and 46 arcs. This particular network described potential anesthesia prob- 
lems in a hospital operating room. In addition to the data, the program was also 
given an initial ordering over the 37 variables that was consistent with the partial 
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ordering of variable dependencies in the actual network. The program succeeded 
in reconstructing the correct Bayesian network structure almost exactly, with the 
exception of one incorrectly deleted arc and one incorrectly added arc. 

Constraint-based approaches to learning Bayesian network structure have 
also been developed (e.g., Spirtes et al. 1993). These approaches infer indepen- 
dence and dependence relationships from the data, and then use these relation- 
ships to construct Bayesian networks. Surveys of current approaches to learning 
Bayesian networks are provided by Heckerman (1995) and Buntine (1994). 

6.12 THE EM ALGORITHM 
In many practical learning settings, only a subset of the relevant instance features 
might be observable. For example, in training or using the Bayesian belief network 
of Figure 6.3, we might have data where only a subset of the network variables 
Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup have been 
observed. Many approaches have been proposed to handle the problem of learning 
in the presence of unobserved variables. As we saw in Chapter 3, if some variable / is sometimes observed and sometimes not, then we can use the cases for which 
it has been observed to learn to predict its values when it is not. In this section 
we describe the EM algorithm (Dempster et al. 1977), a widely used approach 
to learning in the presence of unobserved variables. The EM algorithm can be 
used even for variables whose value is never directly observed, provided the 
general form of the probability distribution governing these variables is known. 
The EM algorithm has been used to train Bayesian belief networks (see Heckerman 
1995) as well as radial basis function networks discussed in Section 8.4. The EM 
algorithm is also the basis for many unsupervised clustering algorithms (e.g., 
Cheeseman et al. 1988), and it is the basis for the widely used Baum-Welch 
forward-backward algorithm for learning Partially Observable Markov Models 
(Rabiner 1989). 

6.12.1 Estimating Means of k Gaussians 
The easiest way to introduce the EM algorithm is via an example. Consider a 
problem in which the data D is a set of instances generated by a probability 
distribution that is a mixture of k distinct Normal distributions. This problem 
setting is illustrated in Figure 6.4 for the case where k = 2 and where the instances 
are the points shown along the x axis. Each instance is generated using a two-step 
process. First, one of the k Normal distributions is selected at random. Second, 
a single random instance xi is generated according to this selected distribution. 
This process is repeated to generate a set of data points as shown in the figure. To 
simplify our discussion, we consider the special case where the selection of the 
single Normal distribution at each step is based on choosing each with uniform 
probability, where each of the k Normal distributions has the same variance a2, and 
where a2 is known. The learning task is to output a hypothesis h = (FI, . . . pk) 
that describes the means of each of the k distributions. We would like to find 



FIGURE 6.4 
Instances generated by a mixture of two Normal distributions with identical variance a. The instances 
are shown by the points along the x axis. If the means of the Normal distributions are unknown, the 
EM algorithm can be used to search for their maximum likelihood estimates. 

a maximum likelihood hypothesis for these means; that is, a hypothesis h that 
maximizes p ( D  lh). 

Note it is easy to calculate the maximum likelihood hypothesis for the mean 
of a single Normal distribution given the observed data instances XI, x2, . . . , xm 
drawn from this single distribution. This problem of finding the mean of a single 
distribution is just a special case of the problem discussed in Section 6.4, Equa- 
tion (6.6), where we showed that the maximum likelihood hypothesis is the one 
that minimizes the sum of squared errors over the m training instances. Restating 
Equation (6.6) using our current notation, we have 

In this case, the sum of squared errors is minimized by the sample mean 

Our problem here, however, involves a mixture of k different Normal dis- 
tributions, and we cannot observe which instances were generated by which dis- 
tribution. Thus, we have a prototypical example of a problem involving hidden 
variables. In the example of Figure 6.4, we can think of the full description of 
each instance as the triple (xi, zil , ziz), where xi is the observed value of the ith 
instance and where zil and zi2 indicate which of the two Normal distributions was 
used to generate the value xi. In particular, zij has the value 1 if xi was created by 
the jth Normal distribution and 0 otherwise. Here xi is the observed variable in 
the description of the instance, and zil and zi2 are hidden variables. If the values 
of zil and zi2 were observed, we could use Equation (6.27) to solve for the means 
p1 and p2. Because they are not, we will instead use the EM algorithm. 

Applied to our k-means problem the EM algorithm searches for a maximum 
likelihood hypothesis by repeatedly re-estimating the expected values of the hid- 
den variables zij given its current hypothesis (pI . . . pk), then recalculating the 
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maximum likelihood hypothesis using these expected values for the hidden vari- 
ables. We will first describe this instance of the EM algorithm, and later state the 
EM algorithm in its general form. 

' 

Applied to the problem of estimating the two means for Figure 6.4, the 
EM algorithm first initializes the hypothesis to h = (PI, p2), where p1 and p2 are 
arbitrary initial values. It then iteratively re-estimates h by repeating the following 
two steps until the procedure converges to a stationary value for h. 

Step 1: Calculate the expected value E[zi j ]  of each hidden variable zi,, assuming 
the current hypothesis h = (p1, p2) holds. 

Step 2: Calculate a new maximum likelihood hypothesis h' = (pi, p;), assuming 
the value taken on by each hidden variable zij is its expected value E[z i j ]  
calculated in Step 1. Then replace the hypothesis h = (pl, p2) by the 
new hypothesis h' = (pi, pi) and iterate. 

Let us examine how both of these steps can be implemented in practice. / Step 1 must calculate the expected value of each zi,. This E [ 4 ]  is just the prob- 
ability that instance xi was generated by the jth Normal distribution 

Thus the first step is implemented by substituting the current values (pl, p2) and 
the observed xi into the above expression. 

In the second step we use the E[zij]  calculated during Step 1 to derive a 
new maximum likelihood hypothesis h' = (pi, pi). AS we will discuss later, the 
maximum likelihood hypothesis in this case is given by 

Note this expression is similar to the sample mean from Equation (6.28) that is 
used to estimate p for a single Normal distribution. Our new expression is just 
the weighted sample mean for pj ,  with each instance weighted by the expectation 
E[z,j]  that it was generated by the jth Normal distribution. 

The above algorithm for estimating the means of a mixture of k Normal 
distributions illustrates the essence of the EM approach: The current hypothesis 
is used to estimate the unobserved variables, and the expected values of these 
variables are then used to calculate an improved hypothesis. It can be proved that 
on each iteration through this loop, the EM algorithm increases the likelihood 
P(Dlh)  unless it is at a local maximum. The algorithm thus converges to a local 
maximum likelihood hypothesis for (pl, w2) .  



6.12.2 General Statement of EM Algorithm 
Above we described an EM algorithm for the problem of estimating means of a 
mixture of Normal distributions. More generally, the EM algorithm can be applied 
in many settings where we wish to estimate some set of parameters 8 that describe 
an underlying probability distribution, given only the observed portion of the full 
data produced by this distribution. In the above two-means example the parameters 
of interest were 8 = (PI, p2), and the full data were the triples (xi, zil, zi2) of 
which only the xi were observed. In general let X = {xl, . . . , x,} denote the 
observed data in a set of m independently drawn instances, let Z = {zl, . . . , z,} 
denote the unobserved data in these same instances, and let Y = X U Z denote 
the full data. Note the unobserved Z can be treated as a random variable whose 
probability distribution depends on the unknown parameters 8 and on the observed 
data X. Similarly, Y is a random variable because it is defined in terms of the 
random variable Z. In the remainder of this section we describe the general form 
of the EM algorithm. We use h to denote the current hypothesized values of the 
parameters 8, and h' to denote the revised hypothesis that is estimated on each 
iteration of the EM algorithm. 

The EM algorithm searches for the maximum likelihood hypothesis h' by 
seeking the h' that maximizes E[ln P(Y (h' ) ] .  This expected value is taken over 
the probability distribution governing Y ,  which is determined by the unknown 
parameters 8. Let us consider exactly what this expression signifies. First, P(Ylhl)  
is the likelihood of the full data Y given hypothesis h'. It is reasonable that we wish 
to find a h' that maximizes some function of this quantity. Second, maximizing 
the logarithm of this quantity In P(Ylhl)  also maximizes P(Ylhl) ,  as we have 
discussed on several occasions already. Third, we introduce the expected value 
E[ln P(Ylhl)]  because the full data Y is itself a random variable. Given that 
the full data Y is a combination of the observed data X and unobserved data 
Z, we must average over the possible values of the unobserved Z, weighting 
each according to its probability. In other words we take the expected value 
E[ln P(Y  lh')] over the probability distribution governing the random variable Y .  
The distribution governing Y is determined by the completely known values for 
X, plus the distribution governing Z. 

What is the probability distribution governing Y ?  In general we will not 
know this distribution because it is determined by the parameters 0 that we are 
trying to estimate. Therefore, the EM algorithm uses its current hypothesis h in 
place of the actual parameters 8 to estimate the distribution governing Y .  Let us 
define a function Q(hllh) that gives E[ln P(Y lh')] as a function of h', under the 
assumption that 8 = h and given the observed portion X of the full data Y .  

We write this function Q in the form Q(hllh) to indicate that it is defined in part 
by the assumption that the current hypothesis h is equal to 8. In its general form, 
the EM algorithm repeats the following two steps until convergence: 
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Step 1: Estimation (E) step: Calculate Q(hllh) using the current hypothesis h and 
the observed data X to estimate the probability distribution over Y .  

Q(hf (h)  t E[ln P(Ylhl)lh, XI 
Step 2: Maximization (M)  step: Replace hypothesis h by the hypothesis h' that 

maximizes this Q function. 
h t argmax Q (hf 1 h) 

h' 

When the function Q is continuous, the EM algorithm converges to a sta- 
tionary point of the likelihood function P(Y(h l ) .  When this likelihood function 
has a single maximum, EM will converge to this global maximum likelihood es- 
timate for h'. Otherwise, it is guaranteed only to converge to a local maximum. 
In this respect, EM shares some of the same limitations as other optimization 
methods such as gradient descent, line search, and conjugate gradient discussed 
in Chapter 4. 

11 6.12.3 Derivation of the k Means Algorithm 
To illustrate the general EM algorithm, let us use it to derive the algorithm given in 
Section 6.12.1 for estimating the means of a mixture of k Normal distributions. As 
discussed above, the k-means problem is to estimate the parameters 0 = ( P I .  . . pk)  
that define the means of the k Normal distributions. We are given the observed 
data X = { ( x i ) } .  The hidden variables Z = { ( z i l ,  . . . , z i k ) }  in this case indicate 
which of the k Normal distributions was used to generate xi. 

To apply EM we must derive an expression for Q(h(hf )  that applies to 
our k-means problem. First, let us derive an expression for 1np(Y(h1).  Note the 
probability p(yi (h') of a single instance yi = (x i ,  Z i l ,  . . . ~ i k )  of the full data can 
be written 

To verify this note that only one of the zij  can have the value 1, and all others must 
be 0. Therefore, this expression gives the probability distribution for xi generated 
by the selected Normal distribution. Given this probability for a single instance 
p(yi(hl) ,  the logarithm of the probability In P(Y(hl)  for all m instances in the 
data is 

m 

lnP(Ylhf)  = l n n p ( , l h l )  
i = l  



Finally we must take the expected value of this In P(Ylhl) over the probability 
distribution governing Y or, equivalently, over the distribution governing the un- 
observed components zij of Y. Note the above expression for In P(Ylhl) is a linear 
function of these zij. In general, for any function f (z) that is a linear function of 
z, the following equality holds 

E[f (z)l = f (Ek.1) 
This general fact about linear functions allows us to write 

To summarize, the function Q(hllh) for the k means problem is 

where h' = (pi ,  . . . ,p i )  and where E[zij] is calculated based on the current 
hypothesis h and observed data X. As discussed earlier 

e - & ( x ' - ~ ) 2  

E[zij] = - --+ - - P " ) ~  
(6.29) 

EL1 e 2 
Thus, the first (estimation) step of the EM algorithm defines the Q function 

based on the estimated E[zij] terms. The second (maximization) step then finds 
the values pi,  . . . , pi that maximize this Q function. In the current case 

1 1 argmax Q(hllh) = argmax - - - 
h' 

C E[zijI(xi - 
h1 i=l  &2 2u2 j=l 

Thus, the maximum likelihood hypothesis here minimizes a weighted sum of 
squared errors, where the contribution of each instance xi to the error that defines 
pj is weighted by E[zij]. The quantity given by Equation (6.30) is minimized by 
setting each pi to the weighted sample mean 

Note that Equations (6.29) and (6.31) define the two steps in the k-means 
algorithm described in Section 6.12.1. 
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6.13 SUMMARY AND FURTHER READING 
The main points of this chapter include: 

0 Bayesian methods provide the basis for probabilistic learning methods that 
accommodate (and require) knowledge about the prior probabilities of alter- 
native hypotheses and about the probability of observing various data given 
the hypothesis. Bayesian methods allow assigning a posterior probability to 
each candidate hypothesis, based on these assumed priors and the observed 
data. 

0 Bayesian methods can be used to determine the most probable hypothesis 
given the data-the maximum a posteriori (MAP) hypothesis. This is the 
optimal hypothesis in the sense that no other hypothesis is more likely. 

0 The Bayes optimal classifier combines the predictions of all alternative hy- 
potheses, weighted by their posterior probabilities, to calculate the most 
probable classification of each new instance. 

i 0 The naive Bayes classifier is a Bayesian learning method that has been found 
to be useful in many practical applications. It is called "naive" because it in- 
corporates the simplifying assumption that attribute values are conditionally 
independent, given the classification of the instance. When this assumption 
is met, the naive Bayes classifier outputs the MAP classification. Even when 
this assumption is not met, as in the case of learning to classify text, the 
naive Bayes classifier is often quite effective. Bayesian belief networks pro- 
vide a more expressive representation for sets of conditional independence 
assumptions among subsets of the attributes. 

0 The framework of Bayesian reasoning can provide a useful basis for ana- 
lyzing certain learning methods that do not directly apply Bayes theorem. 
For example, under certain conditions it can be shown that minimizing the 
squared error when learning a real-valued target function corresponds to 
computing the maximum likelihood hypothesis. 

0 The Minimum Description Length principle recommends choosing the hy- 
pothesis that minimizes the description length of the hypothesis plus the 
description length of the data given the hypothesis. Bayes theorem and ba- 
sic results from information theory can be used to provide a rationale for 
this principle. 

0 In many practical learning tasks, some of the relevant instance variables 
may be unobservable. The EM algorithm provides a quite general approach 
to learning in the presence of unobservable variables. This algorithm be- 
gins with an arbitrary initial hypothesis. It then repeatedly calculates the 
expected values of the hidden variables (assuming the current hypothesis 
is correct), and then recalculates the maximum likelihood hypothesis (as- 
suming the hidden variables have the expected values calculated by the first 
step). This procedure converges to a local maximum likelihood hypothesis, 
along with estimated values for the hidden variables. 



There are many good introductory texts on probability and statistics, such 
as Casella and Berger (1990). Several quick-reference books (e.g., Maisel 1971; 
Speigel 1991) also provide excellent treatments of the basic notions of probability 
and statistics relevant to machine learning. 

Many of the basic notions of Bayesian classifiers and least-squared error 
classifiers are discussed by Duda and Hart (1973). Domingos and Pazzani (1996) 
provide an analysis of conditions under which naive Bayes will output optimal 
classifications, even when its independence assumption is violated (the key here 
is that there are conditions under which it will output optimal classifications even 
when the associated posterior probability estimates are incorrect). 

Cestnik (1990) provides a discussion of using the m-estimate to estimate 
probabilities. 

Experimental results comparing various Bayesian approaches to decision tree 
learning and other algorithms can be found in Michie et al. (1994). Chauvin and 
Rumelhart (1995) provide a Bayesian analysis of neural network learning based 
on the BACKPROPAGATION algorithm. 

A discussion of the Minimum Description Length principle can be found in 
Rissanen (1983, 1989). Quinlan and Rivest (1989) describe its use in avoiding 
overfitting in decision trees. 

EXERCISES 
6.1. Consider again the example application of Bayes rule in Section 6.2.1. Suppose the 

doctor decides to order a second laboratory test for the same patient, and suppose 
the second test returns a positive result as well. What are the posterior probabilities 
of cancer and -cancer following these two tests? Assume that the two tests are 
independent. 

6.2. In the example of Section 6.2.1 we computed the posterior probability of cancer by 
normalizing the quantities P (+(cancer) . P (cancer) and P (+I-cancer) . P (-cancer) 
so that they summed to one, Use Bayes theorem and the theorem of total probability 
(see Table 6.1) to prove that this method is valid (i.e., that normalizing in this way 
yields the correct value for P(cancerl+)). 

6.3. Consider the concept learning algorithm FindG, which outputs a maximally general 
consistent hypothesis (e.g., some maximally general member of the version space). 
( a )  Give a distribution for P(h)  and P(D1h) under which FindG is guaranteed to 

output a MAP hypothesis. 
(6) Give a distribution for P(h)  and P(D1h) under which FindG is not guaranteed 

to output a MAP .hypothesis. 
( c )  Give a distribution for P(h) and P(D1h) under which FindG is guaranteed to 

output a ML hypothesis but not a MAP hypothesis. 
6.4. In the analysis of concept learning in Section 6.3 we assumed that the sequence of 

instances (x l  . . . x,) was held fixed. Therefore, in deriving an expression for P ( D ( h )  
we needed only consider the probability of observing the sequence of target values 
( d l . .  . dm)  for this fixed instance sequence. Consider the more general setting in 
which the instances are not held fixed, but are drawn independently from some 
probability distribution defined over the instance space X. The data D must now 
be described as the set of ordered pairs { ( x i ,  di)}, and P(D1h) must now reflect the 
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probability of encountering the specific instance X I ,  as well as the probability of 
the observed target value di. Show that Equation (6.5) holds even under this more 
general setting. Hint: Consider the analysis of Section 6.5. 

6.5. Consider the Minimum Description Length principle applied to the hypothesis space 
H consisting of conjunctions of up to n boolean attributes (e.g., Sunny A Warm).  
Assume each hypothesis is encoded simply by listing the attributes present in the 
hypothesis, where the number of bits needed to encode any one of the n boolean at- 
tributes is log, n.  Suppose the encoding of an example given the hypothesis uses zero 
bits if the example is consistent with the hypothesis and uses log, m bits otherwise 
(to indicate which of the m examples was misclassified-the correct classification 
can be inferred to be the opposite of that predicted by the hypothesis). 
( a )  Write down the expression for the quantity to be minimized according to the 

Minimum Description Length principle. 
(b)  Is it possible to construct a set of training data such that a consistent hypothesis 

exists, but MDL chooses a less consistent hypothesis? If so, give such a training 
set. If not, explain why not. 

( c )  Give probability distributions for P ( h )  and P(D1h) such that the above MDL 
algorithm outputs MAP hypotheses. 

6.6. Draw the Bayesian belief network that represents the conditional independence as- 
sumptions of the naive Bayes classifier for the PlayTennis problem of Section 6.9.1. 
Give the conditional probability table associated with the node Wind. 
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