$\begin{array}{c} CS \ 31 \ Homework \ 2 \\ \text{Due on Friday, September 23^{rd} 2016} \end{array}$

The basic gates AND, OR, and NOT are a *universal gate set*, meaning that we can construct any combinational circuit using only these gates. By solving problems 1–3, you will demonstrate that NAND constitutes a universal gate set by itself.

1. Construct a NOT gate using only NAND gate(s).

2. Construct an AND gate using only NAND gate(s).

3. Construct an OR gate using only NAND gate(s). Hint: by De Morgan's law, $X \mid Y \equiv \neg(\neg X \And \neg Y)$.

x	у	z	$OP_1(x, y, z)$	$OP_2(x, y, z)$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

4. Fill in the truth table for the following circuit.

5. Construct a circuit that implements the following truth table. You may use any of the following one- or two-input gates: NOT, AND, OR, XOR, NAND, NOR, XNOR.

х	у	Z	$OP_1(x, y, z)$	$OP_2(x, y, z)$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	0
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1