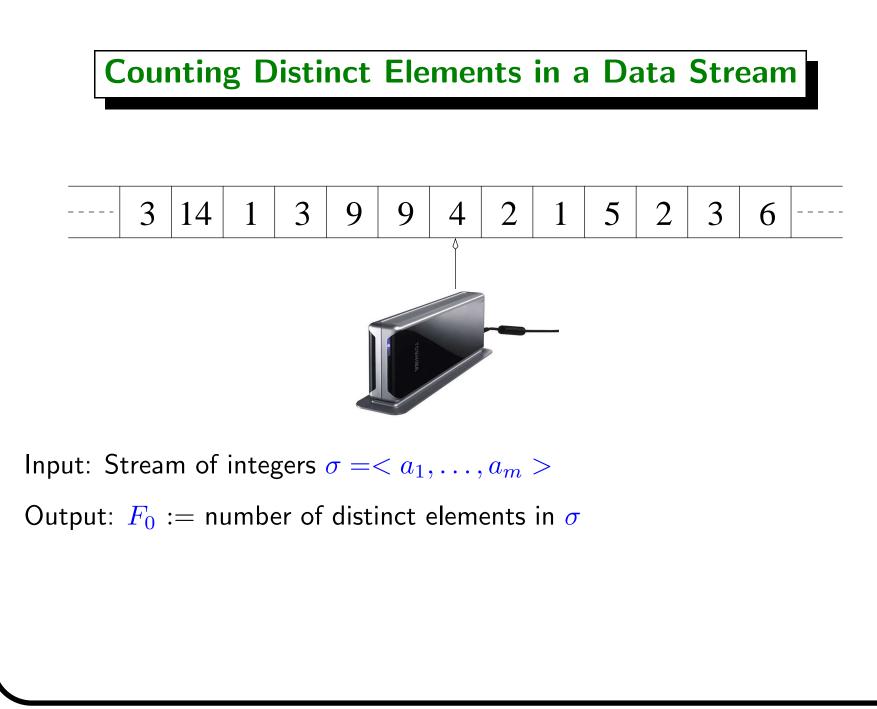
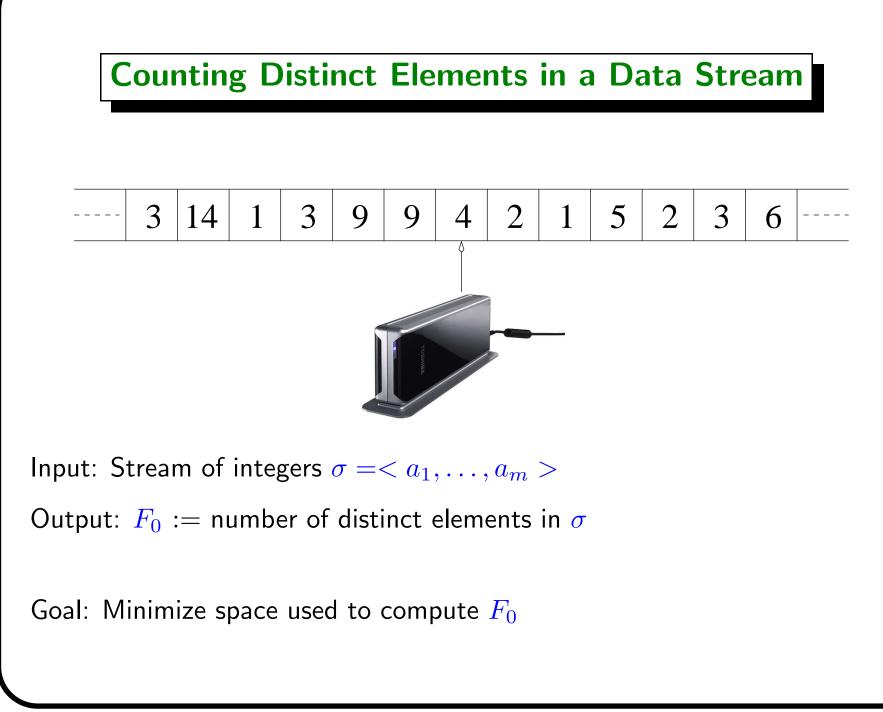


Joshua Brody and Amit Chakrabarti DARTMOUTH COLLEGE

24th CCC, 2009, Paris





Frequency Moments: $F_k = \sum_{i=1}^n \operatorname{freq}(i)^k$ [Alon-Matias-Szegedy '96]

Frequency Moments: $F_k = \sum_{i=1}^n \operatorname{freq}(i)^k$ [Alon-Matias-Szegedy '96]

- $\Omega(n)$ space unless randomization and approximation used
- Upper, lower bounds for randomized algorithms that approximate F_k
- Spawned lots of research, won 2005 Gödel Prize

Frequency Moments: $F_k = \sum_{i=1}^n \operatorname{freq}(i)^k$ [Alon-Matias-Szegedy '96]

- $\Omega(n)$ space unless randomization and approximation used
- Upper, lower bounds for randomized algorithms that approximate F_k
- Spawned lots of research, won 2005 Gödel Prize

```
One-pass, randomized, \varepsilon-approximate:
```

$$\left. \frac{\mathsf{output}}{\mathsf{answer}} - 1 \right| \leq \varepsilon$$

Frequency Moments: $F_k = \sum_{i=1}^n \operatorname{freq}(i)^k$ [Alon-Matias-Szegedy '96]

- $\Omega(n)$ space unless randomization and approximation used
- Upper, lower bounds for randomized algorithms that approximate F_k
- Spawned lots of research, won 2005 Gödel Prize

One-pass, randomized, ε -approximate:

Status as of Jan 2009:

- Space upper bound: $\widetilde{O}(\varepsilon^{-2})$
- Space lower bound: $\widetilde{\Omega}(\varepsilon^{-2})$
- Also hold for other problems, e.g. empirical entropy

Do multiple passes help?

Joshua Brody

 $\left| \frac{\mathsf{output}}{\mathsf{answer}} - 1 \right| \leq \varepsilon$

Frequency Moments: $F_k = \sum_{i=1}^n \operatorname{freq}(i)^k$ [Alon-Matias-Szegedy '96]

- $\Omega(n)$ space unless randomization and approximation used
- Upper, lower bounds for randomized algorithms that approximate F_k

 $\left| \frac{\mathsf{output}}{\mathsf{answer}} - 1 \right| \leq \varepsilon$

• Spawned lots of research, won 2005 Gödel Prize

One-pass, randomized, ε -approximate:

Status as of Jan 2009:

- Space upper bound: $\widetilde{O}(\varepsilon^{-2})$
- Space lower bound: $\widetilde{\Omega}(\varepsilon^{-2})$
- Also hold for other problems, e.g. empirical entropy

Do multiple passes help? If not, why not?

The Gap-Hamming-Distance Problem

Input: Alice gets $x \in \{0,1\}^n$, Bob gets $y \in \{0,1\}^n$.

Output:

- $\operatorname{GHD}(x,y) = 1$ if $\Delta(x,y) > \frac{n}{2} + \sqrt{n}$
- $\operatorname{GHD}(x,y) = 0$ if $\Delta(x,y) < \frac{n}{2} \sqrt{n}$

Problem: Design randomized, constant error protocol to solve this Cost: Worst case number of bits communicated

The Reductions

E.g., Distinct Elements (Other problems: similar)

Alice:
$$x \mapsto \sigma = \langle (1, x_1), (2, x_2), \dots, (n, x_n) \rangle$$

Bob: $y \mapsto \tau = \langle (1, y_1), (2, y_2), \dots, (n, y_n) \rangle$
Notice: $F_0(\sigma \circ \tau) = n + \Delta(x, y) = \begin{cases} < \frac{3n}{2} - \sqrt{n}, \text{ or} \\ > \frac{3n}{2} + \sqrt{n}. \end{cases}$ Set $\varepsilon = \frac{1}{\sqrt{n}}$.

Communication to Streaming

p-pass streaming algorithm $\implies (2p-1)$ -round communication protocol

messages = memory contents of streaming algorithm

And Thus

Previous results [Indyk-Woodruff'03], [Woodruff'04], [C.-Cormode-McGregor'07]:

- For one-round protocols, $\mathrm{R}^{
 ightarrow}(\mathrm{GHD}) = \Omega(n)$
- Implies the $\widetilde{\Omega}(\varepsilon^{-2})$ streaming lower bounds

Communication to Streaming

p-pass streaming algorithm $\implies (2p-1)$ -round communication protocol

messages = memory contents of streaming algorithm

And Thus

Previous results [Indyk-Woodruff'03], [Woodruff'04], [C.-Cormode-McGregor'07]:

- For one-round protocols, $\mathrm{R}^{
 ightarrow}(\mathrm{GHD}) = \Omega(n)$
- Implies the $\widetilde{\Omega}(\varepsilon^{-2})$ streaming lower bounds

Key open questions:

- What is the unrestricted randomized complexity R(GHD)?
- Better algorithm for Distinct Elements (or F_k , or H) using two passes?

Previous Results (Communication):

- One-round (one-way) lower bound: $\mathbb{R}^{\rightarrow}(GHD) = \Omega(n)$ [Woodruff'04]
- Simplification, clever reduction from INDEX [Jayram-Kumar-Sivakumar]
- Multi-round case: $R(GHD) = \Omega(\sqrt{n})$

[Folklore]

Previous Results (Communication):

- One-round (one-way) lower bound: $\mathbb{R}^{\rightarrow}(GHD) = \Omega(n)$ [Woodruff'04]
- Simplification, clever reduction from INDEX [Jayram-Kumar-Sivakumar] Hard distribution "contrived," non-uniform
- Multi-round case: $R(GHD) = \Omega(\sqrt{n})$

[Folklore]

Previous Results (Communication):

- One-round (one-way) lower bound: $\mathbb{R}^{\rightarrow}(GHD) = \Omega(n)$ [Woodruff'04]
- Simplification, clever reduction from INDEX [Jayram-Kumar-Sivakumar] Hard distribution "contrived," non-uniform
- Multi-round case: $R(GHD) = \Omega(\sqrt{n})$ [Folklore] Reduction from DISJOINTNESS using "repetition code" Hard distribution again far from uniform

Previous Results (Communication):

- One-round (one-way) lower bound: $\mathbb{R}^{\rightarrow}(GHD) = \Omega(n)$ [Woodruff'04]
- Simplification, clever reduction from INDEX [Jayram-Kumar-Sivakumar] Hard distribution "contrived," non-uniform
- Multi-round case: $R(GHD) = \Omega(\sqrt{n})$ [Folklore] Reduction from DISJOINTNESS using "repetition code" Hard distribution again far from uniform

What we show:

• Theorem 1: $\Omega(n)$ lower bound for any O(1)-round protocol Holds under uniform distribution

Previous Results (Communication):

- One-round (one-way) lower bound: $\mathbb{R}^{\rightarrow}(GHD) = \Omega(n)$ [Woodruff'04]
- Simplification, clever reduction from INDEX [Jayram-Kumar-Sivakumar] Hard distribution "contrived," non-uniform
- Multi-round case: $R(GHD) = \Omega(\sqrt{n})$ [Folklore] Reduction from DISJOINTNESS using "repetition code" Hard distribution again far from uniform

What we show:

- Theorem 1: $\Omega(n)$ lower bound for any O(1)-round protocol Holds under uniform distribution
- Theorem 2: one-round, deterministic: $D^{\rightarrow}(GHD) = n \Theta(\sqrt{n}\log n)$
- Theorem 3: $\mathbb{R}^{\rightarrow}(\text{GHD}) = \Omega(n)$ (simpler proof, uniform distrib)

(independently proved by [Woodruff'09])

Base Case Lemma: There is no "nice" **0**-round **GHD** protocol.

Round Elimination Lemma: If there is a "nice" k-round GHD protocol, then there is a "nice" (k - 1)-round GHD protocol.

Base Case Lemma: There is no 0-round GHD protocol with error $\varepsilon < \frac{1}{2}$.

Round Elimination Lemma: If there is a "nice" k-round GHD protocol, then there is a "nice" (k - 1)-round GHD' protocol.

Technique: Round Elimination

Base Case Lemma: There is no 0-round GHD protocol with error $\varepsilon < \frac{1}{2}$.

Round Elimination Lemma: If there is a "nice" k-round GHD protocol, then there is a "nice" (k - 1)-round GHD' protocol.

- The (k-1)-round protocol will be solving a "simpler" problem
- Parameters degrade with each round elimination step

Parametrized Gap-Hamming-Distance Problem

The problem:

$$\operatorname{GHD}_{c,n}(x,y) = \begin{cases} 1, & \text{if } \Delta(x,y) \ge n/2 + c\sqrt{n}, \\ 0, & \text{if } \Delta(x,y) \le n/2 - c\sqrt{n}, \\ \star, & \text{otherwise.} \end{cases}$$

.

otherwise.

Parametrized Gap-Hamming-Distance Problem

The problem:

$$\mathrm{GHD}_{c,n}(x,y) \ = \ \begin{cases} 1\,, & \text{ if } \Delta(x,y) \ge n/2 + c\sqrt{n}\,, \\ 0\,, & \text{ if } \Delta(x,y) \le n/2 - c\sqrt{n}\,, \\ \star\,, & \text{ otherwise.} \end{cases}$$

Hard input distribution:

 $\mu_{c,n}$: uniform over (x,y) such that $|\Delta(x,y) - n/2| \ge c\sqrt{n}$

Parametrized Gap-Hamming-Distance Problem

The problem:

$$\mathrm{GHD}_{c,n}(x,y) \ = \ \begin{cases} 1\,, & \text{ if } \Delta(x,y) \ge n/2 + c\sqrt{n}\,, \\ 0\,, & \text{ if } \Delta(x,y) \le n/2 - c\sqrt{n}\,, \\ \star\,, & \text{ otherwise.} \end{cases}$$

Hard input distribution:

 $\mu_{c,n}$: uniform over (x,y) such that $|\Delta(x,y) - n/2| \ge c\sqrt{n}$

Protocol assumptions (eventually, will lead to contradiction):

- Deterministic k-round protocol for $GHD_{c,n}$
- Each message is $s \ll n$ bits
- Error probability $\leq \varepsilon$, under distribution $\mu_{c,n}$

Main Construction: Given *k*-round protocol \mathcal{P} for $_{\text{GHD}_{c,n}}$, construct (k-1)-round protocol \mathcal{Q} for $_{\text{GHD}_{c',n'}}$

Main Construction: Given k-round protocol \mathcal{P} for $_{\text{GHD}_{c,n}}$, construct (k-1)-round protocol \mathcal{Q} for $_{\text{GHD}_{c',n'}}$

First Attempt:

• Fix Alice's first message m in \mathcal{P} , suitably

Main Construction: Given k-round protocol \mathcal{P} for $_{\text{GHD}_{c,n}}$, construct (k-1)-round protocol \mathcal{Q} for $_{\text{GHD}_{c',n'}}$

First Attempt:

- Fix Alice's first message m in \mathcal{P} , suitably
- Protocol Q_1 :
 - Input: $x', y' \in \{0, 1\}^A$ where $A \subseteq [n], |A| = n'$
 - Extend $x' \rightarrow x$ s.t. Alice sends m on input x
 - Extend $y' \rightarrow y$ uniformly at random
 - Output $\mathcal{P}(x, y)$; Note: first message unnecessary

Main Construction: Given k-round protocol \mathcal{P} for $GHD_{c,n}$, construct (k-1)-round protocol \mathcal{Q} for $GHD_{c',n'}$

First Attempt:

- Fix Alice's first message m in \mathcal{P} , suitably
- Protocol Q_1 :
 - Input: $x', y' \in \{0, 1\}^A$ where $A \subseteq [n], |A| = n'$
 - Extend $x' \rightarrow x$ s.t. Alice sends m on input x
 - Extend $y' \rightarrow y$ uniformly at random
 - Output $\mathcal{P}(x, y)$; Note: first message unnecessary
- Errors: Q_1 correct, unless
 - $BAD_1: \operatorname{GHD}_{c',n'}(x',y') \neq \operatorname{GHD}_{c,n}(x,y).$
 - BAD_2 : $GHD_{c,n}(x,y) \neq \mathcal{P}(x,y)$.

Main Construction: Given k-round protocol \mathcal{P} for $GHD_{c,n}$, construct (k-1)-round protocol \mathcal{Q} for $GHD_{c',n'}$

First Attempt:

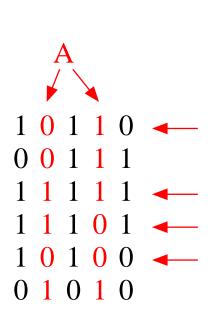
- Fix Alice's first message m in \mathcal{P} , suitably
- Protocol Q_1 :
 - Input: $x', y' \in \{0, 1\}^A$ where $A \subseteq [n], \ |A| = n'$
 - Extend $x' \rightarrow x$ s.t. Alice sends m on input x (why possible?)
 - Extend $y' \rightarrow y$ uniformly at random
 - Output $\mathcal{P}(x, y)$; Note: first message unnecessary
- Errors: Q_1 correct, unless
 - $BAD_1: \operatorname{GHD}_{c',n'}(x',y') \neq \operatorname{GHD}_{c,n}(x,y).$
 - BAD_2 : $GHD_{c,n}(x,y) \neq \mathcal{P}(x,y)$.

Fixing Alice's first message:

- Call x good if $\Pr_{y}[\mathcal{P}(x, y) \neq \operatorname{GHD}_{c,n}(x, y)] \leq 2\varepsilon$ Then $\#\{\operatorname{good} x\} \geq 2^{n-1}$ (Markov)
- Let $M = M_{\mathsf{m}} = \{ \text{good } x : \text{Alice sends } \mathsf{m} \text{ on input } x \}.$
- Fix **m** to maximize |M|; then $|M| \ge 2^{n-1-s}$.

Fixing Alice's first message:

- Call x good if $\Pr_{y}[\mathcal{P}(x, y) \neq \operatorname{GHD}_{c,n}(x, y)] \leq 2\varepsilon$ Then $\#\{\operatorname{good} x\} \geq 2^{n-1}$ (Markov)
- Let $M = M_{m} = \{ \text{good } x : \text{Alice sends } m \text{ on input } x \}.$
- Fix **m** to maximize |M|; then $|M| \ge 2^{n-1-s}$.

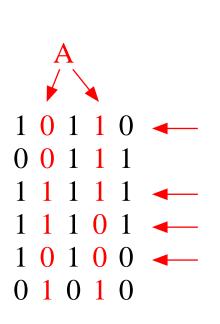


Shattering:

- Say $S \subseteq \{0,1\}^n$ shatters $A \subseteq [n]$ if $\#\{x|_A : x \in S\} = 2^{|A|}$
- VCD(S) := size of largest A shattered by S

Fixing Alice's first message:

- Call x good if $\Pr_{y}[\mathcal{P}(x, y) \neq \operatorname{GHD}_{c,n}(x, y)] \leq 2\varepsilon$ Then $\#\{\operatorname{good} x\} \geq 2^{n-1}$ (Markov)
- Let $M = M_{m} = \{ \text{good } x : \text{Alice sends } m \text{ on input } x \}.$
- Fix **m** to maximize |M|; then $|M| \ge 2^{n-1-s}$.



Shattering:

- Say $S \subseteq \{0,1\}^n$ shatters $A \subseteq [n]$ if $\#\{x|_A : x \in S\} = 2^{|A|}$
- VCD(S) := size of largest A shattered by S

Sauer's Lemma: If $VCD(S) < \alpha n$ then $|S| < 2^{nH(\alpha)}$.

Fixing Alice's first message:

- Call x good if $\Pr_{y}[\mathcal{P}(x, y) \neq \operatorname{GHD}_{c,n}(x, y)] \leq 2\varepsilon$ Then $\#\{\operatorname{good} x\} \geq 2^{n-1}$ (Markov)
- Let $M = M_{m} = \{ \text{good } x : \text{Alice sends } m \text{ on input } x \}.$
- Fix **m** to maximize |M|; then $|M| \ge 2^{n-1-s}$.

Shattering:

- Say $S \subseteq \{0,1\}^n$ shatters $A \subseteq [n]$ if $\#\{x|_A : x \in S\} = 2^{|A|}$
- VCD(S) := size of largest A shattered by S

Sauer's Lemma: If $VCD(S) < \alpha n$ then $|S| < 2^{nH(\alpha)}$. Corollary: $VCD(M) \ge n' := n/3$ (Because $s \ll n$)

Fixing Alice's first message:

- Call x good if $\Pr_{y}[\mathcal{P}(x, y) \neq \operatorname{GHD}_{c,n}(x, y)] \leq 2\varepsilon$ Then $\#\{\operatorname{good} x\} \geq 2^{n-1}$ (Markov)
- Let $M = M_{m} = \{ \text{good } x : \text{Alice sends } m \text{ on input } x \}.$
- Fix **m** to maximize |M|; then $|M| \ge 2^{n-1-s}$.

A $1 \ 0 \ 1 \ 1 \ 0$ $0 \ 0 \ 1 \ 1 \ 1$ $1 \ 1 \ 1 \ 1 \ 1 \ 1$ $1 \ 1 \ 0 \ 1$ $1 \ 0 \ 1 \ 0 \ 0$ $0 \ 1 \ 0 \ 1 \ 0$

Shattering:

- Say $S \subseteq \{0,1\}^n$ shatters $A \subseteq [n]$ if $\#\{x|_A : x \in S\} = 2^{|A|}$
- VCD(S) := size of largest A shattered by S

Sauer's Lemma: If $VCD(S) < \alpha n$ then $|S| < 2^{nH(\alpha)}$. Corollary: $VCD(M) \ge n' := n/3$ (Because $s \ll n$)

Extend $x' \to x$: pick $x \in M$ such that $x' = x|_A$

The First Bad Event

Recall BAD_1 : $GHD_{c',n'}(x',y') \neq GHD_{c,n}(x,y)$.

Notation: $x = x' \circ \bar{x}$, $y = y' \circ \bar{y}$, $n = n' + \bar{n}$.

The First Bad Event

Recall BAD_1 : $GHD_{c',n'}(x',y') \neq GHD_{c,n}(x,y)$.

Notation: $x = x' \circ \overline{x}$, $y = y' \circ \overline{y}$, $n = n' + \overline{n}$.

Definition: \bar{x}, \bar{y} nearly orthogonal if $|\Delta(\bar{x}, \bar{y}) - \bar{n}/2| < 2\sqrt{\bar{n}}$.

The First Bad Event

Recall BAD_1 : $GHD_{c',n'}(x',y') \neq GHD_{c,n}(x,y)$.

Notation: $x = x' \circ \overline{x}$, $y = y' \circ \overline{y}$, $n = n' + \overline{n}$.

Definition: \bar{x}, \bar{y} nearly orthogonal if $|\Delta(\bar{x}, \bar{y}) - \bar{n}/2| < 2\sqrt{\bar{n}}$.

Lemma: $\Pr_{\bar{y}}[\bar{x}, \bar{y} \text{ nearly orthogonal}] > 7/8.$ (Binom distrib tail)

The First Bad Event

Recall BAD_1 : $GHD_{c',n'}(x',y') \neq GHD_{c,n}(x,y)$.

Notation: $x = x' \circ \overline{x}$, $y = y' \circ \overline{y}$, $n = n' + \overline{n}$.

Definition: \bar{x}, \bar{y} nearly orthogonal if $|\Delta(\bar{x}, \bar{y}) - \bar{n}/2| < 2\sqrt{\bar{n}}$.

Lemma: $\Pr_{\bar{y}}[\bar{x}, \bar{y} \text{ nearly orthogonal}] > 7/8.$ (Binom distrib tail) **Lemma:** If \bar{x}, \bar{y} nearly orthogonal and $c' \ge 2c$, then

- $\operatorname{GHD}_{c',n'}(x',y') = 1 \implies \operatorname{GHD}_{c,n}(x,y) = 1$
- $\operatorname{GHD}_{c',n'}(x',y') = 0 \implies \operatorname{GHD}_{c,n}(x,y) = 0$

The First Bad Event

Recall BAD_1 : $GHD_{c',n'}(x',y') \neq GHD_{c,n}(x,y)$.

Notation: $x = x' \circ \overline{x}$, $y = y' \circ \overline{y}$, $n = n' + \overline{n}$.

Definition: \bar{x}, \bar{y} nearly orthogonal if $|\Delta(\bar{x}, \bar{y}) - \bar{n}/2| < 2\sqrt{\bar{n}}$.

Lemma: $\Pr_{\bar{y}}[\bar{x}, \bar{y} \text{ nearly orthogonal}] > 7/8.$ (Binom distrib tail) **Lemma:** If \bar{x}, \bar{y} nearly orthogonal and $c' \ge 2c$, then

- $\operatorname{GHD}_{c',n'}(x',y') = 1 \implies \operatorname{GHD}_{c,n}(x,y) = 1$
- $\operatorname{GHD}_{c',n'}(x',y') = 0 \implies \operatorname{GHD}_{c,n}(x,y) = 0$

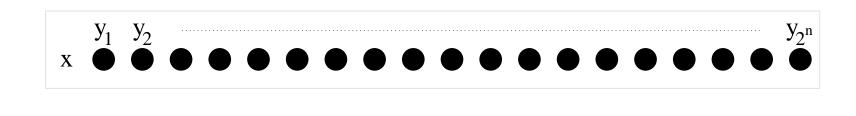
Corollary: $\Pr[BAD_1] < 1/8$.

Joshua Brody

Recall BAD_2 : $GHD_{c,n}(x,y) \neq \mathcal{P}(x,y)$.

Bounding $\Pr[BAD_2]$ is subtle:

- x is good, so $\Pr[\mathcal{P} \text{ errs} \mid x] \leq 2\varepsilon$
 - But this requires $(x,y) \sim \mu_{c,n}$
- Random extension $(x', y') \rightarrow (x, y)$ is not $\sim \mu_{c,n}$.



Recall BAD_2 : $GHD_{c,n}(x,y) \neq \mathcal{P}(x,y)$.

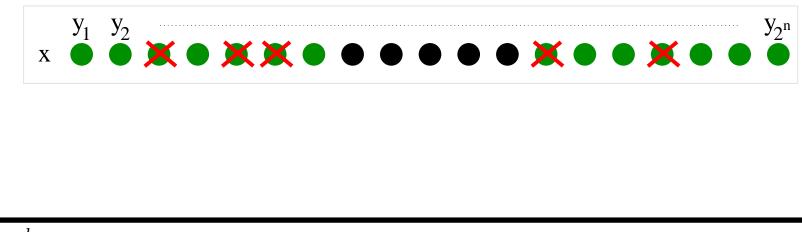
Bounding $\Pr[BAD_2]$ is subtle:

- x is good, so $\Pr[\mathcal{P} \text{ errs} \mid x] \leq 2\varepsilon$
 - But this requires $(x,y) \sim \mu_{c,n}$
- Random extension $(x', y') \rightarrow (x, y)$ is not $\sim \mu_{c,n}$.

Recall BAD_2 : $GHD_{c,n}(x,y) \neq \mathcal{P}(x,y)$.

Bounding $\Pr[BAD_2]$ is subtle:

- x is good, so $\Pr[\mathcal{P} \text{ errs} \mid x] \leq 2\varepsilon$
 - But this requires $(x,y) \sim \mu_{c,n}$
- Random extension $(x', y') \rightarrow (x, y)$ is not $\sim \mu_{c,n}$.

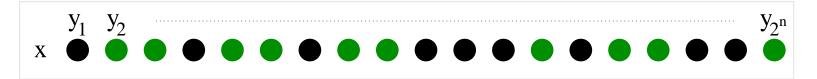


Recall BAD_2 : $GHD_{c,n}(x, y) \neq \mathcal{P}(x, y)$. Bounding $\Pr[BAD_2]$ is subtle:

- x is good, so $\Pr[\mathcal{P} \text{ errs} \mid x] \leq 2\varepsilon$
 - But this requires $(x,y) \sim \mu_{c,n}$
- Random extension $(x', y') \rightarrow (x, y)$ is not $\sim \mu_{c,n}$.
- Actual distrib (fixed *x*, random *y*):
 - $(x, y) \sim (\mu_{c', n'} \mid x) \otimes \mathsf{Unif}_{\bar{n}}$
 - -y uniform over a subset of $\{0,1\}^n$, just like in $\mu_{c,n}$

Recall BAD_2 : $GHD_{c,n}(x, y) \neq \mathcal{P}(x, y)$. Bounding $\Pr[BAD_2]$ is subtle:

- x is good, so $\Pr[\mathcal{P} \text{ errs} \mid x] \leq 2\varepsilon$
 - But this requires $(x,y) \sim \mu_{c,n}$
- Random extension $(x', y') \rightarrow (x, y)$ is not $\sim \mu_{c,n}$.
- Actual distrib (fixed x, random y):
 - $(x, y) \sim (\mu_{c', n'} \mid x) \otimes \mathsf{Unif}_{\bar{n}}$
 - -y uniform over a subset of $\{0,1\}^n$, just like in $\mu_{c,n}$

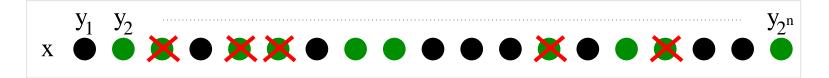


Recall BAD_2 : $GHD_{c,n}(x, y) \neq \mathcal{P}(x, y)$. Bounding $\Pr[BAD_2]$ is subtle:

- x is good, so $\Pr[\mathcal{P} \text{ errs} \mid x] \leq 2\varepsilon$
 - But this requires $(x,y) \sim \mu_{c,n}$
- Random extension $(x', y') \rightarrow (x, y)$ is not $\sim \mu_{c,n}$.
- Actual distrib (fixed x, random y):
 - $(x, y) \sim (\mu_{c', n'} \mid x) \otimes \mathsf{Unif}_{\bar{n}}$
 - -y uniform over a subset of $\{0,1\}^n$, just like in $\mu_{c,n}$

Recall BAD_2 : $GHD_{c,n}(x, y) \neq \mathcal{P}(x, y)$. Bounding $\Pr[BAD_2]$ is subtle:

- x is good, so $\Pr[\mathcal{P} \text{ errs} \mid x] \leq 2\varepsilon$
 - But this requires $(x,y) \sim \mu_{c,n}$
- Random extension $(x', y') \rightarrow (x, y)$ is not $\sim \mu_{c,n}$.
- Actual distrib (fixed x, random y):
 - $(x,y) \sim (\mu_{c',n'} \mid x) \otimes \mathsf{Unif}_{\bar{n}}$
 - -y uniform over a subset of $\{0,1\}^n$, just like in $\mu_{c,n}$



Lemma: $\Pr[BAD_2] = O(\varepsilon).$

Round Elimination, First Attempt (Recap)

Putting it together:

- \mathcal{P} is k-round ε -error protocol for $_{\mathrm{GHD}_{c,n}}$
- \mathcal{Q}_1 is (k-1)-round ε' -error protocol for $_{\mathrm{GHD}_{c',n'}}$ with
 - -c' = 2c, n' = n/3
 - $-\varepsilon' = 1/8 + O(\varepsilon)$

Round Elimination, First Attempt (Recap)

Putting it together:

- \mathcal{P} is k-round ε -error protocol for $_{\mathrm{GHD}_{c,n}}$
- \mathcal{Q}_1 is (k-1)-round ε' -error protocol for $_{\mathrm{GHD}_{c',n'}}$ with
 - -c' = 2c, n' = n/3
 - $-\varepsilon' \leq 1/8 + 16\varepsilon \quad \longleftarrow$ Can't repeat this argument!

Round Elimination, Second Attempt

Putting it together:

- \mathcal{P} is k-round ε -error protocol for $_{\mathrm{GHD}_{c,n}}$
- \mathcal{Q}_1 is (k-1)-round ε' -error protocol for $_{\mathrm{GHD}_{c',n'}}$ with
 - -c' = 2c, n' = n/3
 - $-\varepsilon' \leq 1/8 + 16\varepsilon \quad \longleftarrow$ Can't repeat this argument!

Second attempt: protocol Q:

- Repeat $Q_1 \ 2^{O(k)}$ times in parallel, take majority
- Blows up communication by $2^{O(k)}$
- Error analysis even more subtle: not just a Chernoff bound

Round Elimination, Second Attempt

Putting it together:

- \mathcal{P} is *k*-round ε -error protocol for $_{\mathrm{GHD}_{c,n}}$
- \mathcal{Q}_1 is (k-1)-round ε' -error protocol for $_{\mathrm{GHD}_{c',n'}}$ with
 - -c' = 2c, n' = n/3
 - $-\varepsilon' \leq 1/8 + 16\varepsilon \quad \longleftarrow$ Can't repeat this argument!

Second attempt: protocol Q:

- Repeat $Q_1 \ 2^{O(k)}$ times in parallel, take majority
- Blows up communication by $2^{O(k)}$
- Error analysis even more subtle: not just a Chernoff bound

Lemma: $\Pr[Q \text{ errs}] = O(\varepsilon).$

Eventual Round Elimination Lemma

Lemma: If there is a k-round, ε -error protocol for $\operatorname{GHD}_{c,n}$ in which each player sends $s \ll n$ bits, then there is a (k-1)-round, $O(\varepsilon)$ -error protocol for $\operatorname{GHD}_{2c,n/3}$ in which each player sends $2^{O(k)}s$ bits.

Recall Base Case Lemma: There is no zero-round protocol with error < 1/2.

Eventual Round Elimination Lemma

Lemma: If there is a k-round, ε -error protocol for $\operatorname{GHD}_{c,n}$ in which each player sends $s \ll n$ bits, then there is a (k-1)-round, $O(\varepsilon)$ -error protocol for $\operatorname{GHD}_{2c,n/3}$ in which each player sends $2^{O(k)}s$ bits.

Recall Base Case Lemma: There is no zero-round protocol with error < 1/2.

Consequence: Main Theorem

Theorem: There is no o(n)-bit, $\frac{1}{3}$ -error, O(1)-round randomized protocol for $GHD_{c,n}$. In other words, $\mathbb{R}^{O(1)}(GHD) = \Omega(n)$.

Eventual Round Elimination Lemma

Lemma: If there is a k-round, ε -error protocol for $\operatorname{GHD}_{c,n}$ in which each player sends $s \ll n$ bits, then there is a (k-1)-round, $O(\varepsilon)$ -error protocol for $\operatorname{GHD}_{2c,n/3}$ in which each player sends $2^{O(k)}s$ bits.

Recall Base Case Lemma: There is no zero-round protocol with error < 1/2.

Consequence: Main Theorem

Theorem: There is no o(n)-bit, $\frac{1}{3}$ -error, O(1)-round randomized protocol for $GHD_{c,n}$. In other words, $\mathbb{R}^{O(1)}(GHD) = \Omega(n)$.

More Specific: $\mathbb{R}^{k}(\text{GHD}) = n/2^{O(k^{2})}$.

Multi-pass lower bounds for Distinct Elements and F_k has been an important open question since at least 2003. Why did it remain open for so long?

Multi-pass lower bounds for Distinct Elements and F_k has been an important open question since at least 2003. Why did it remain open for so long?

Underlying communication problem thorny!

- Rectangle-based methods (discrepancy/corruption)
- Approximate polynomial degree
- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07]
- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.'02]

- Rectangle-based methods (discrepancy/corruption) Matrix has large near-monochromatic rectangles
- Approximate polynomial degree
- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07]
- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.'02]

- Rectangle-based methods (discrepancy/corruption) Matrix has large near-monochromatic rectangles
- Approximate polynomial degree Underlying predicate has approx degree $\widetilde{O}(\sqrt{n})$
- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07]
- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.'02]

- Rectangle-based methods (discrepancy/corruption) Matrix has large near-monochromatic rectangles
- Approximate polynomial degree Underlying predicate has approx degree $\widetilde{O}(\sqrt{n})$
- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07] Quantum communication upper bound $O(\sqrt{n}\log n)$
- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.'02]

- Rectangle-based methods (discrepancy/corruption) Matrix has large near-monochromatic rectangles
- Approximate polynomial degree Underlying predicate has approx degree $\widetilde{O}(\sqrt{n})$
- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07] Quantum communication upper bound $O(\sqrt{n}\log n)$
- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.'02] Hmm! Can't see a concrete obstacle

- Rectangle-based methods (discrepancy/corruption) Matrix has large near-monochromatic rectangles
- Approximate polynomial degree Underlying predicate has approx degree $\widetilde{O}(\sqrt{n})$
- Pattern matrix, Factorization norms [Sherstov'08], [Linial-Shraibman'07] Quantum communication upper bound $O(\sqrt{n}\log n)$
- Information complexity [C.-Shi-Wirth-Yao'01], [BarYossef-J.-K.-S.'02] Hmm! Can't see a concrete obstacle We're biased (Amit helped invent it, so it's his pet technique)

- 1. The key problem here: Settle R(GHD).
- 2. More generally: Understand communication complexity of "gap problems" better.
- 3. This should help with other streaming problems, e.g., longest increasing subsequence.

Questions? Comments? Post-Doc/Job offers? Contact jbrody@cs.dartmouth.edu