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Abstract

In the past thirty years, Communication Complexity has emerged as a foundational tool to
proving lower bounds in many areas of computer science. Its power comes from its generality,
but this generality comes at a price—no superlinear communication lower bound is possible,
since a player may communicate his entire input. However, what if the players are limited in
their ability to recall parts of their interaction?

We introduce memory models for 2-party communication complexity. Our general model
is as follows: two computationally unrestricted players, Alice and Bob, each have s(n) bits
of memory. When a player receives a bit of communication, he “compresses” his state. This
compression may be an arbitrary function of his current memory contents, his input, and the
bit of communication just received; the only restriction is that the compression must return
at most s(n) bits. We obtain memory hierarchy theorems (also comparing this general model
with its restricted variants), and show super-linear lower bounds for some explicit (non-boolean)
functions.

Our main conceptual and technical contribution concerns the following variant. The com-
munication is one-way, from Alice to Bob, where Bob controls two types of memory: (i) a
large, oblivious memory, where updates are only a function of the received bit and the current
memory content, and (ii) a smaller, non-oblivious/general memory, where updates can be a
function of the input given to Bob. We exhibit natural protocols where this semi-obliviousness
shows up. For this model we also introduce new techniques through which certain limitations
of space-bounded computation are revealed. One of the main motivations of this work is in un-
derstanding the difference in the use of space when computing the following functions: Equality
(EQ), Inner Product (IP), and connectivity in a directed graph (Reach). When viewed as com-
munication problems, EQ can be decided using 0 non-oblivious bits (and log2 n oblivious bits),
IP requires exactly 1 non-oblivious bit, whereas for Reach we obtain the same lower bound as
for IP and conjecture that the actual bound is Ω(log2 n). In fact, proving that 1 non-oblivious
bit is required becomes technically sophisticated, and the question even for 2 non-oblivious bits
for any explicit boolean function remains open.

Keywords: communication complexity, space-bounded, memory-bounded
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1 Introduction

In computer science research most lower bounds have an information theoretic nature, but for a few
exceptions (e.g. time/space hierarchy theorems, and the recent ACC0 lower bound [25]). These lower
bounds amount to showing that there is an “information cost we must pay” if we wish to correctly
complete the task. This is commonly proved either implicitly, or by a reduction an information
theoretic setting such as the communication complexity. The Communication Complexity model,
originally introduced by Yao [26], is almost information theoretic by definition. (In fact, establishing
a strong formal connection between communication complexity and information theory is itself an
active area of research; see e.g., [11, 4, 5] for more details.) In its simplest form two computationally
unbounded players, Alice (who holds an input x) and Bob (who holds y), aim to evaluate a function
f(x, y) by communicating as little as possible. This is an area of intense research activity, has
autonomous existence, and finds several applications in diverse areas such as circuit complexity
([16, 22]), VLSI design ([1, 27]), data structure lower bounds ([20, 21, 19]) streaming algorithms
([2, 15, 24, 12, 13]), and property testing ([7]) to name a just a few.

When lower bounds are derived by a reduction from communication complexity, the quality
of the lower bound is bounded by the corresponding communication lower bound. In particular,
in the classical communication complexity setting no super-linear communication lower bound is
possible, as one player may simply send his entire input to the other.

To put things in context, consider the following example from streaming algorithms. Let
Reach(G, s, t) be the problem that, given a directed graph G, determines if t is reachable from s.
For a graph of n vertices and a machine with working memory O(log n), classical communication
complexity techniques show that the number of passes must be Ω( n

logn). However, if one believes
the conjecture that Reach cannot be computed in logarithmic space, the actual lower bound on
the number of passes should be infinite.

What if we modify the original communication complexity model in a way that Alice and Bob
can use only a small amount, say O(log n), of memory between steps of communication? In this
setting, when players receive a bit of communication, they may spend an arbitrary amount of com-
putation deciding what to save in their memory; however, they still must compress the information
they know at each step; i.e., they must take their s(n) bits of memory and the communication
just received and again save only s(n) bits of memory. In this case super-linear communication
lower bounds are possible, and furthermore common reduction arguments (including the one men-
tioned above) go through intact. Being able to prove such lower bounds sounds too good to be
true. Simply restricting the memory of the players corresponds to a model at least as strong as
width-bounded branching programs and depth-bounded circuits. Although slightly super-linear
communication lower bounds is within the reach of known techniques, showing lower bounds that
shed actual light on the limitations of space-bounded computation seems non-trivial. In this paper
we obtain strong lower bounds for explicit non-boolean functions in the general model, and for
explicit boolean functions in a certain restricted model. We discuss this restriction in Section 1.2
and view it as an important part of our conceptual contribution.

1.1 Background

Lam, Tiwari and Tompa [18] were the first to study tradeoffs between communication and space re-
quirements when computing functions in the straight-line protocols model. Alternatively, a straight-
line protocol can be modeled as a pebble game on an arithmetic or boolean circuit. On the arith-
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metic model, they proved communication-space tradeoffs for matrix multiplication and polynomial
convolution, through a detailed analysis of the structure of arithmetic circuits computing bilinear
forms; i.e. the results rely heavily on the specifics of arithmetic circuits. On the other hand, the
tradeoff for matrix-vector multiplication in their one-way boolean model follows a more generic
information theoretic technical approach. Beame, Tompa and Yan [6] took a step further, intro-
ducing the more general communicating branching programs model. Adopting earlier techniques of
Borodin et al. [9, 8] on branching programs into the communication setting, they showed stronger
communication-space tradeoffs for matrix-vector multiplication and other functions.

In [18] and [6], techniques from classical computational complexity literature were modified to
find application in the more powerful communication setting. Our motivation is in the opposite di-
rection. We introduce a conceptually simple, purely information theoretic model. This choice of the
model is not only a matter of elegance. First, given that currently we understand very little about
computation itself it is not clear that there is any gain by bounding the players computationally.
Second, this level of generality makes more transparent possible applications.

Besides [18, 6], some recent papers appear to be relevant to our approach. Klauck et al. [17]
studied somewhat related communication-space tradeoffs in the randomized and quantum setting.
Impagliazzo and Williams [14] studied a variant of communication complexity where players share
synchronized access to a common clock. They showed that with the help of this synchronized clock,
it is sometimes possible to save communication. This clock resembles a special type of memory
we study in this paper called “oblivious memory”. The garden-hose model, introduced recently by
Buhrman et al. [10], also resembles several characteristics of the space-bounded communication
complexity model we study here.

1.2 Oblivious Memory Updates – Compressing Interaction Obliviously

In addition to considering communication problems where players have limited space, we wish to
understand an aspect of how space gets used in computing different functions of interest, e.g. the
equality function EQ, inner product IP, and Reach.

Consider a one-way space-bounded protocol for computing equality in the two-party commu-
nication setting. Alice sends her input x ∈ {0, 1}n bit-by-bit to Bob. Bob in turn compares each
bit xi to the corresponding bit yi of his input y ∈ {0, 1}n. If Bob discovers a mismatch he out-
puts 0 and the protocol halts. Otherwise Bob halts after n bits of communication and outputs 1.
We emphasize that in this protocol the players only need to maintain a counter which increases
independent of their inputs.

A similar strategy also applies to the inner product function IP, where players receive n-bit
strings and must compute their inner product modulo 2. Again, Alice and Bob keep counters
incremented at each step, and Alice sends x to Bob bit-by-bit. This time, Bob keeps an additional
bit to store the intermediate result. Namely, at step k Bob maintains a single bit containing the
value

∑k
i=1 xiyi.

While both functions can be computed with n+O(1) bits of communication and log2 n+O(1)
bits of work memory (optimal in the sense that both functions have deterministic communication
complexity n), there is a difference in the way Bob uses his work memory. In the protocol for
equality, the content of Bob’s memory remains independent of his input, while in the protocol for
inner product, the extra bit Bob uses depends on y. We will call the part of Bob’s work memory
whose content does not depend on y as “oblivious”, and the part of Bob’s work memory whose
content does depend on y as “non-oblivious” or “general”.

3



How about functions that have been conjectured to be hard for reasonably large space in the
Turing Machine world? For example, we conjecture that Reach(G, s, t) requires Ω(log2 n) non-
oblivious bits, unless the oblivious memory is large enough to hold Alice’s entire input. Interestingly,
so far we were only able to prove that at least 1 non-oblivious bit is required, and in fact just proving
such a bound becomes challenging.

Apart from the above natural semi-oblivious protocols there are more high-level reasons this
two-type memory merits consideration. By allowing a large enough oblivious memory we can realize
protocols where players are able to perform simple tasks such as counting and communicating small
parts of the information given in their input. This allows us to consider a weaker “type” of memory
and attempt to study the general one in isolation. Note that if we instead only had non-oblivious
memory then on one hand memory size lower bounds of e.g. log2 n

3 are trivial (even counting is
impossible in this amount of space), whereas lower bounds for slightly larger memory directly imply
strong circuit lower bounds. Even proving lower bounds for a smaller number of non-oblivious bits
turns out to be a daunting task. One reason is because oblivious bits are present, and oblivious
bits aren’t as weak as one might think. For instance, in Section 3, we show that you cannot replace
oblivious memory by a slightly smaller amount of non-oblivious memory.

1.3 Our Techniques and a Roadmap to Our Results

In this work, we define the space-bounded communication complexity model and give upper bounds
for many interesting problems. Importantly, we also provide lower bounds and create new proof
techniques tailored to space-bounded communication. Our results are organized as follows. In
Section 3 we give several robust memory hierarchy theorems. In particular, we show:

Theorem 1 (Memory Hierarchy Theorem, informally stated). For all s(n), there are functions
computable using a (s(n) + log(n))-space communication protocol that cannot be computed by any
s(n)-space communication protocol.

We also show a direct-sum type of upper bound, where oblivious protocols can be combined
without losing the oblivious nature of the protocol. For example, this shows that 2-output-bit
equality (where each player has two strings, and players must determine whether each pair is
equal) can be computed with a logarithmic amount of oblivious memory. We present additional
interesting examples of space-bounded protocols in Section 4.

In Section 5, we show a non-computability result for the general memory model for explicit
functions with large outputs. Our first such function, All-EQ, computes equality on every subset
of bits. The output of All-EQ is thus 2n bits long. By using ideas from combinatorial designs,
we create another function EQ-with-Designk whose output is polynomial in the number of input
bits. We show that computing this function is also hard in the space-bounded communicaion model.

Theorem 2 (Lower bounds for non-boolean functions, informally stated). Computing All-EQ
requires Ω(n) space in the space-bounded communication model. Computing EQ-with-Designk
requires Ω(k log n) space.

Both lower bounds are close to their respective known upper bounds. A significant part of this
work refers to new model-specific techniques we devised to prove lower bounds. The most involved
such technique is in the proof that computing Inner Product requires non-oblivious memory.

Theorem 3. Any one-way oblivious protocol for IP requires Ω(n) space.
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Proving this theorem using standard communication lower bound techniques is not possible, as
these techniques do not account for the space used by players. To that end, we develop a way to
combine the standard notion of a communication matrix with an accounting of the current state
of memory at any point in time in a space-bounded protocol. We analyze how the output decision
is made based on the changing state of memory through the course of a protocol and argue that
with limited space, little progress can be made. To show this, we introduce a geometric/covering
notion of progress. Making this precise, and quantifying the details is technical and involved. We
develop these concepts in depth in Section 6 and provide a full proof in Section D.

2 The Space-Bounded Communication Complexity Model

For this paper, we focus on two-player deterministic protocols. Unless otherwise specified, we
assume Alice and Bob receive inputs x, y ∈ {0, 1}n and wish to compute a boolean function f :
{0, 1}n × {0, 1}n → {0, 1}.

In this section, we formally define the space-bounded communication complexity model as well
as some variants. A player is space-bounded if he has a variable M ∈ {0, 1}s corresponding to a
limited amount of memory. A player’s actions are defined by a transition function

T : {0, 1} × {0, 1}n × {0, 1}s → {0, 1}s × {0, 1} × {0, 1,⊥} ,

where T (b, x,m) = T (m′, b′, h) means the player, given input x, old memory contents m, and after
receiving a bit of communication b, sets his memory contents to m′, sends b′ to the other player,
and if h 6= ⊥, the player halts and outputs h. A protocol is space-bounded when both players are
space-bounded. Thus, a protocol can be described by a tuple (TA, TB).

Definition 4. A space-bounded communication protocol P with s bits of memory is a tuple
(TA, TB) where TA, TB : {0, 1} × {0, 1}n × {0, 1}s → {0, 1}s × {0, 1} × {0, 1,⊥}, and in this paper,
we use MA,MB ∈ {0, 1}s to denote the content of Alice’s and Bob’s local memory, respectively.
We say that P computes f if for all x, y, both players halt and output f(x, y). The communication
cost of P is the maximum total number of bits communicated over all inputs.

Remark. Note that no restriction is placed on the computational power required to compute TA
and TB. In particular, players may use an arbitrary amount of time or space to compute TA or TB.
Nevertheless, between steps of communication, memory remains bounded.

It is helpful to consider how players interact during the course of a protocol. Initialily, Alice
and Bob receive inputs x and y and initialize their memory to zero. Communication proceeds in a
number of steps, where Alice receives bB from Bob and applies

(MA, bA, hA)← TA(bB, x,MA) .

Alice then sends bA to Bob, who computes

(MB, bB, hB)← TB(bA, y,MB) .

completing a step of communication. (Initially, Alice sets bB to zero.) Players proceed until each
halts and outputs f(x, y).

We are particularly interested in bounds on the minimum amount of space required to compute
a function, and in which classes of functions are computable in limited space.
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Definition 5. SPACECC(s) is the set of boolean functions computed by a space-bounded communi-
cation protocol using s bits of space.

2.1 One-Way Semi-Oblivious Protocols

As mentioned in the introduction, we believe it is interesting to consider memory that is oblivious
when communication is one-way.

Definition 6. In a one-way protocol, Alice feeds a stream of bits to Bob, but Bob cannot com-
municate back. Each of them has s bits of memory. SPACECC→(s) is the set of boolean functions
computable with one-way protocols using s bits of space.

In an oblivious protocol, Alice is space-bounded as before, but Bob’s memory is further re-
stricted.

Definition 7. In a one-way semi-oblivious protocol, Bob has two variables Mf
B ∈ {0, 1}sf and

Mo
B ∈ {0, 1}so and transition functions

T fB : {0, 1} × {0, 1}n × {0, 1}sf × {0, 1}so → {0, 1}sf × {0, 1,⊥}

and
T oB : {0, 1} × {0, 1}so → {0, 1}so

The total amount of space used by Bob is sf + so. The protocol is oblivious if sf = 0.
SPACECCo

→(s) is the set of all functions computable by oblivious protocols where each player
uses s bits of space.

Bob uses T f and T o in the natural way. Note that updates to a player’s oblivious memory
are independent of both his input and his nonoblivious memory. Also note that in an oblivious
protocol, the function T fB serves the purpose of deciding Bob’s final answer (and that purpose only).

2.2 Space-bounded communication as State Machines.

It is natural to view a space-bounded communication protocol as the interaction between commu-
nicating state machines. In this view, Alice and Bob construct state machinesMx andMy during
a preprocessing stage. Each machine has a state for each possible memory configuration, plus two
additional halt states yes and no. From each non-halt state, there are 0 and 1 edges corresponding
to the bit received from the other player. Each edge is further labeled by the output bit sent to the
other player. Note that players construct different state machines on different inputs, since their
behavior during a protocol differs on different inputs.

3 Basic Properties

We give a list of some basic properties of our space-bounded communication model and its variants.
Observe that, as in other common space-bounded computation models, if a protocol runs for long
enough then it repeats a configuration and does not halt.

Proposition 8. Let P be a communication protocol where the players have memory space s(n) and
the protocol halts. Then, on every input (x, y) ∈ {0, 1}n × {0, 1}n P runs in at most 22s(n)+1.

6



3.1 Memory Hierarchy Theorem

A natural, initial question for these memory models is whether more space can be used to compute
more functions.

Theorem 9. For any s(n) < n
5 , almost every boolean function (on two n-bit inputs) that can be

computed with one-way oblivious protocol of work memory size s(n) + log n, is not computable by
any protocol (not necessarily oblivious) of work memory size s(n).

To prove this theorem, we will first prove Lemma 10 and Lemma 11 below.

Lemma 10. The number of different boolean functions (on inputs from {0, 1}n×{0, 1}n) that can

be computed with protocols with memory size s(n) is at most 2(4+s(n))·2n+s(n)+2
.

Lemma 11. The number of different boolean functions (on inputs from {0, 1}n × {0, 1}n) that
can be computed with one-way oblivious protocols of work memory size s(n) (s(n) ≤ n) is at least

22n+s(n)
.

Proof of Theorem 9. This follows immediately by comparing the lower bound on the number of
boolean functions computable by one-way oblivious protocols of memory size s(n)+log n (Lemma 11)
and the upper bound on the number of boolean functions computable by two-way general protocols
of memory size s(n) (Lemma 10).

Note that this implies two hierarchy theorems, one for the general (not necessarily one-way or
oblivious) space-bounded communication model, and one for the one-way oblivious model.

Corollary 12. For any s(n) < n
5 , SPACECC(s(n)) ( SPACECC(s(n) + log n).

Corollary 13. For any s(n) < n
5 , SPACECCo

→(s(n)) ( SPACECCo
→(s(n) + log n).

3.2 Parallel repetitions of one-way Oblivious Protocols

Let us revisit the one-way oblivious protocol for equality (Section 1.2). First, observe that the
protocol may halt at different steps for different input pairs (x, y). This can be shown to be
essential (see Section E). Now, consider the question of computing the non-boolean “2-bit EQ”. In
this problem Alice is given two n-bit strings x1, x2, and Bob is given y1, y2, and we want to find out
if x1 is equal to y1, and simultaneously, if x2 is equal to y2. Interestingly, we do not need an extra
non-oblivious bit to compute this 2-bit EQ. In fact, there is a more general property according to
which we can compose “parallel” oblivious protocols on independent inputs.

Proposition 14. For a pair of boolean functions f1 and f2, if each is a function on two n-bit
inputs, f1, f2 : {0, 1}n × {0, 1}n → {0, 1}, and can be computed by a one-way oblivious protocol
with space-bound s1(n), s2(n) and communication cost c1(n), c2(n), then the composite function
f(x, y) = (f1(x, y), f2(x, y)) can be computed with a one-way oblivious protocol with space-bound
s1(n) + 3s2(n) + 1 and communication cost c1(n) · (c2(n) + 2).

4 Example Protocols

In this section, we briefly present some space-bounded protocols for two natural problems on
directed graphs. We defer proofs of the theorems in this section to Section B.
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Depth First Search on a Tree. The input to this problem is a directed binary tree T = (V,E)
with distinguished vertices s, t ∈ V , and we wish to determine which vertex is reached first in
a depth-first lexicographic traversal of T . We refer to this problem as DFS-Tree and define
DFS-Tree(T, s, t) = 1 if and only if s precedes t. In the space-bounded communication version,
Alice and Bob are given different sides of a fixed vertex cut A ] B = V . Alice receives all edges
leaving vertices in A, and Bob receives all edges leaving vertices in B.

Theorem 15. DFS-Tree ∈ SPACECC(log n+ log log n+O(1)).

Note that while the space in the protocol achieving Theorem 15 is extremely limited, it requires
worst-case communication Ω(n2 log(n)), close to the theoretical maximum of Θ(n2 log2 n) given by
Proposition 8 and Theorem 15. We are interested in knowing if this is required, or if in general it is
possible to compress communication close to this maximal bound. More generally we ask if there
is a general scheme to bring the worst case communication cost of a space-bounded communication
protocol down to 2s+o(s) (from 22s).

Reachability. The input for this problem is again a directed graph G = (V,E), with distin-
guished vertices s, t. Define Reach(G, s, t) = 1 if there exists an s ; t path in G; otherwise,
Reach(G, s, t) = 0.

In the space-bounded communication version of this problem, players are again given different
sides of a fixed vertex cut A]B = V . Alice gets as input all edges in A; Bob gets as input all edges
in B, and both players see all crossing edges. Let CA denote the set of vertices in A adjacent to
some vertex in B. Define CB analogously. CA ∪ CB thus defines the boundary of the cut. Finally,
let C := {s, t} ∪ CA ∪ CB, and let c = |C|. The performance of all of our protocols highly depend
on c.

Theorem 16. Reach(G, s, t) can be computed (i) using O(log2 c) space and 2O(log2 c) communica-
tion, (ii) using O(c) space and O(c2) communication, (iii) with a one-way protocol that uses O(c2)
space and O(c2) communication, and (iv) with a one-way protocol that uses O(c) space and O(c3)
communication.

5 Lower Bound for explicit non-boolean functions

We give lower bounds for two explicit non-boolean functions f : {0, 1}n × {0, 1}n → {0, 1}m. Note
that some care must be made when discussing space-bounded communication for such functions.
When the number of output bits is large, space lower bounds become trivial if we require players
to output the entire function at once. Instead, we modify the model so players can output a subset
of the output bits at any step. As long as the entire function is eventually output, and the answers
are consistent, we say the protocol computes f .

Definition 17. A space-bounded communication protocol P computing f : {0, 1}n × {0, 1}n →
{0, 1}m using s bits of space is a tuple (TA, OA, TB, OB), with

• transition functions TA, TB : {0, 1} × {0, 1}n × {0, 1}s → {0, 1}s × {halt,⊥},

• output functions OA, OB : {0, 1} × {0, 1}n × {0, 1}s → {0, 1, ∗}m.
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We use MA,MB ∈ {0, 1}s to denote Alice and Bob’s memory, respectively. P computes f if (i)
both players halt on all inputs, (ii) for all j ∈ [m], some player correctly outputs fj(x, y), and (iii)
no player incorrectly outputs fj(x, y).

In this definition, if, e.g., the jth bit of OA(b, x,m) is b 6= ∗, then Alice outputs fj(x, y) = b.
Note that we allow players to (correctly) output bits of f multiple times. This allows players to
compute f without having to remember which bits have already been computed.

Our first non-boolean function All-EQ : {0, 1}n × {0, 1}n → {0, 1}2n computes equality on all
subsets of bits. Let {I1, . . . , I2n} enumerate all possible subsets of {1, . . . , n}. Then, the ith output
bit of All-EQ is defined as:

All-EQi(x, y) :=

{
1 if ∀j ∈ Ii, xj = yj
0 otherwise

The function EQ-with-Designk is similarly defined, except that instead of using all 2n the
subsets of {1, 2, . . . , n}, we use a combinatorial design containing only pk many such subsets, where
p is a prime number satisfying p2 = n,1 and k is any positive integer. This family of subsets satisfies
the following two properties: each subset has size p, and the intersection of any two subsets has
size at most k.2

Theorem 18. For any s(n) < log2 (1.5) · n − log2 6, All-EQ /∈ SPACECC(s(n)). All-EQ ∈
SPACECC(n+O(1)).

Theorem 19. For any constant positive integer k, positive number ε, and any s(n) <
(1

2 − ε)k log (n), we have EQ-with-Designk /∈ SPACECC(s(n)) and EQ-with-Designk ∈
SPACECC

(
1
2(k + 1) log (n) +O(1)

)
.

In this section, we sketch the proof of Theorem 18, which is technically simpler. The proof of
Theorem 19 uses similar techniques and appears in Section C.

As explained in Section 2.2, given a space-bounded communication protocol P, for every pos-
sible input x to Alice, she has a corresponding state machine Mx, and for every possible input
y to Bob, he has a corresponding state machine My. Connecting Mx and My, let π(Mx,My)
denote the resulting computational history, and π(Mx,My)|out the outputs of Alice and Bob. Let
‖πA(Mx,My)|out‖1 and ‖πB(Mx,My)|out‖1 denote the number of 1 output bits produced by Alice
and Bob respectively.

Lemma 20. If there is a protocol P that correctly computes All-EQ, then among the state ma-
chines {Mx}x∈{0,1}n and {My}y∈{0,1}n, one of the following things must be true

• ∃x ∈ {0, 1}n, such that
∑

y∈{0,1}n ‖πA(Mx,My)|out‖1 ≥ 3n

2

• ∃y ∈ {0, 1}n, such that
∑

x∈{0,1}n ‖πB(Mx,My)|out‖1 ≥ 3n

2

1We assume for simplicity that n is always the square of some prime number. Strictly speaking, it suffices to
choose a prime number between d

√
ne and 2d

√
ne. Bertrand’s postulate guarantees this is possible.

2A specific construction utilizes the one-to-one correspondence between Fp × Fp (Fp being the prime field of
size p) and {1, 2, . . . , n}. Consider all polynomials of degree at most k − 1 on Fp, they are all of the form q(x) =
ak−1x

k−1 +ak−2x
k−2 + . . .+a1x+a0. There are pk such polynomials, each of them can determine a subset of Fp×Fp

of size p, namely {(0, q(0)), (1, q(1)), . . . , (p− 1, q(p− 1))}. These corresponds to a family {Ii}i=1,2,...,pk of subsets of
{1, 2, . . . , n} which we can use to define EQ-with-Designk.
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Proof of Theorem 18. We show the contrapositive. Suppose that there is a protocol P with memory
size bound s(n) that correctly computes All-EQ. Assume without loss of generality that the clause
of x in Lemma 20 is true, and the input value that makes this condition true is x0 = 0n.

Consider the states in Mx0 , for every state γ ∈ {0, 1}s(n) and every possible communication
bit b ∈ {0, 1}, denote the edge leading out of γ labelled b as e(γ, b), denote the number of 1
output bits produced at e(γ, b) as o1(γ, b), and denote the set of y ∈ {0, 1}n such that π(Mx0 ,My)
passes through edge e(γ, b) as Y (γ, b). For every y ∈ Y (γ, b), ‖All-EQ(x0, y)‖1 ≥ o1(γ, b), thus
2D(x0,y) ≥ o1(γ, b), D(x0, y) ≥ log2 o

1(γ, b). That means ‖Y (γ, b)‖1 ≤ 2n/o1(γ, b).
On the other hand,∑

y∈{0,1}n
‖πA(Mx0 ,My)‖1 =

∑
γ∈{0,1}s(n)

∑
b∈{0,1}

∑
y∈Y (γ,b)

o1(γ, b)

=
∑

γ∈{0,1}s(n)

∑
b∈{0,1}

‖Y (γ, b)‖1 · o1(γ, b)

≤ 2s(n) · 3 · 2n

Therefore 3n/2 ≤ 2s(n) · 3 · 2n, which implies s(n) ≥ log2 (1.5) · n− log2 6.

6 Equality, Inner Product, Reachability, and beyond...

When not viewed as communication problems, the computational complexity for equality (EQ) is
EQ ∈ AC0, for inner product IP ∈ NC1 but not in AC0, and for Reach we know that it can be
done non-deterministically in O(log n) space (see e.g. [3] for definitions and conjectures). A famous
conjecture states that Reach /∈ NC1, in fact Reach /∈ LogSPACE. We wish to understand (at least
partly) the difference in the use of space when computing these three functions, and we ask this
question in our semi-oblivious model. We have already seen the following protocols.

Theorem 21. EQ ∈ SPACECCo
→(log2 n), IP is computable with 1 non-oblivious bit and dlog2 ne

oblivious bits, and Reach ∈ SPACECC(O(log2 n)).

The most involved technical contribution of our work is the following theorem, which states
that the IP protocol is space-optimal; i.e. we need this one non-oblivious bit.

Theorem 22. IP 6∈ SPACECCo
→(n/8).

We observe that IP can be reduced to Reach through local preprocessing, implying that Reach
also requires 1 non-oblivious bit. We conjecture that Reach requires Ω(log2 n) non-oblivious bits.
Even the more modest goal of showing that Reach requires 2 non-oblivious bits is open.

The proof of Theorem 22 is given in Section D. Below we attempt to flesh-out a more general,
model-specific technique, which also serves as a high-level description of this argument.

Overview of the IP lower bound Let us first recall the concept of communication matrix
from classical communication complexity. We organize the correct answers of the function being
computed on all possible input pairs (x, y) in a matrix where rows are associated with x and
columns with y, and the (x, y) position contains the value of f(x, y). A monochromatic rectangle
is a sub-matrix where f has the same value for each entry.
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The only property of IP that our proof technique uses is the fact that all the monochromatic
rectangles in the communication matrix of IP have a relatively small size bound (for two n-bit
inputs, ths bound is 2n+1). In fact, the same proof works for every function enjoying this property.

The Progress Measure. We use the number of columns that are “partially solved” after a certain
number of steps as a progress measure. A column is called “partially solved” after t steps if after t
steps the protocol has output the correct value and halted on at least one position in this column.
Since the number of steps in a halting protocol is bounded, if we obtain an upper bound on the
amount of progress in a single step then we can conclude that at the end of the protocol run, the
number of “partially solved” columns can not reach 2n (the number of columns in the matrix).
Handling this progress measure appropriately is a subtle technical issue.

Bands and the protocol matrix. Note that in a one-way oblivious protocol we can think of Alice as
uploading Bob’s memory.3 If we fix the value Alice uploads to Bob’s memory in a particular step
(plus the one bit of communication of that step), we are actually fixing a subset of possible value
of x, and therefore a subset of rows in the communication matrix. We call such a subset of rows as
a “band”. That means to capture the current state of Bob’s memory, we only need to look at those
“bands”. In each step, Bob makes his output decision based solely on his current memory state,
communication bit (which collectively correspond to a “band” in the communication matrix) and
his input y (which corresponds to a column in the matrix).

The Stepwise Upper Bound on Progress. If a “band” is too “narrow” (containing too few rows),
we can somehow ignore it as being insignificant. On the other hand, if a “band” is too “wide”
(containing too many rows), its contribution to the progress measure we discussed above is limited,
due to the monochromatic rectangle size bound. That limit implies the desired upper bound on
progress to complete the proof. Note that without excluding the narrow bands (and showing that
there can’t be too many) the argument breaks down.

What’s left to be done? Conceptually, we introduce memory models for communication com-
plexity, and technically we give model-specific, non-trivial arguments giving leverage to these new
models. Many questions raised in this work are left open. Closing the log n gap between the levels
of the memory hierarchies is one such question.

An important open question is towards devising a technique for showing explicit space lower
bounds for 2 or more non-oblivious bits. How far can we push such a lower bound for Reach?

One issue we haven’t touched at the current stage of development is what happens in the pres-
ence of randomness. Studying such variants opens the possibility for answering some restricted
forms of open questions in Communication Complexity itself; e.g. proving strong direct-sum theo-
rems but in a space-bounded setting.

Finally, there are all sorts of questions relating these new models to open problems in Compu-
tational Complexity. How does the semi-oblivious model relate to circuit complexity classes such
as AC and P/poly? We know that oblivious refinements of the Karchmer-Wigderson games do not
provide something meaningful (a discussion about this will appear in the full version), but other
possibilities are open. In general we would like to know if there are any other, genuine applications
of the semi-oblivious model in other areas? One can easily devise not-so-natural settings where
oblivious memory is relevant, but how about the natural settings people actually care about?

3See Lemma 23 in Section D.
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A Proofs of the Basic Properties

Proof of Proposition 8. With the two players in protocol P combined (both MA and MB), they
have 2s(n) bits of memory, plus the bit received by Alice at the beginning of a step, the system
would have at most 22s(n)+1 different configurations in total. Therefore, if P makes more than
22s(n)+1 a configuration is repeated and P never halts.

Proof of Lemma 10. According to Definition 4, a space-bounded protocol P is defined by functions
TA and TB. For input size n and space-bound s(n), the number of such function tuples is at most

2(4+s(n))·2n+s(n)+2
, each corresponds to one protocol. Each protocol can correctly compute at most

one boolean function if any. Hence the conclusion.

Proof of Lemma 11. Any boolean function that only depends on the first s(n) bits of Alice’s input

x is computable by such protocols. 4 The number of such boolean functions is 22n+s(n)
. This gives

a lower bound on the number of boolean functions computable by such class of protocols.

Proof of Proposition 14. Suppose the protocols for solving f1 and f2 are P1 = (TA,1, T
o
B,1, T

f
B,1)

(with Alice and Bob’s memory denoted as MA,1 and MB,1 respectively), and P2 = (TA,2, T
o
B,2, T

f
B,2)

(with Alice and Bob’s memory denoted as MA,2 and MB,2 respectively), respectively. Now we
construct a protocol P for solving f . In this protocol, Alice has a s1(n)-bit memory that corresponds
to MA,1, a s2(n)-bit memory that corresponds to MA,2, and an additional counter CA of 2s2(n) + 1
bits long. Similarly for Bob, we have s1(n)-bit MB,1, s2(n)-bit Mo

B,2, 2s2(n) + 1-bit CB. And the
protocol P works as follows (shown in Algorith 1 and 2):

Algorithm 1: Algorithm for solving f(x, y) = (f1(x, y), f2(x, y)), Alice’s part

MA,1 ←− 0n;
while yes do

Alice simulate one step of P1 by carrying out TA,1, sending the computed bit to Bob;
MA,2 ←− 0n;
CA ←− 0;
while CA ≤ c2(n) + 1 do

Alice simulate one step of P2 by carrying out TA,2, sending the computed bit to Bob;
increment CA;

end

end

It’s easy to verify that if both P1 and P2 are one-way oblivious protocols with the specified
parameters, P presented above is also a one-way oblivious protocol with the required parameters.
Note that according to Proposition 8, if CA and CB are both 2s2(n) + 1 bits long, they can count
to c2(n) + 1.

4The protocol works as follows: Alice and Bob both increment the content of their respective memory simulta-
neously step by step. Alice sends 0 to Bob until the content of Alice’s memory coincides the first s(n) bits of x, at
which time Alice sends 1. Upon receiving a 1, Bob computes the final answer.
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Algorithm 2: Algorithm for solving f(x, y) = (f1(x, y), f2(x, y)), Bob’s part

MB,1 ←− 0n;
while yes do

Bob simulate one step of P1 by receiving one bit from Alice and carrying out T oB,1;

MB,2 ←− 0n;
CB ←− 0;
while CB ≤ c2(n) + 1 do

Bob simulate one step of P2 by receiving one bit from Alice and carrying out T oB,2;

if both T fB,1 and T fB,2 give definitive output answers (not ⊥) then

Bob gives the answer and halts;
end
increment CB;

end

end

B Example Protocols

Proof of Theorem 15. First, we consider an algorithm for solving this problem within 2 log (n) +
O(1) bits of memory (see Algorithm 3). We emphasize that this algorithm is not the standard DFS
algorithm. Later, we convert this algorithm into a space-bounded communication protocol.

In this algorithm, we only need to remember at any point in time the value of s′, t′ and
sd. In the space-bounded communication model, we construct a protocol where each player has
log(n) + log(log(n)) +O(1) space, divided into three parts.

• Each player uses dlog(n)e bits of memory to store s′ or t′. When ever Alice maintains s′,
Bob keeps t′, and vice versa. Whenever say, Alice needs to perform some operation on s′ but
currently holds t′, she will inform Bob that she wants to exchange for s′ with t′, and they will
exchange with the help of the second chunk of memory.

• Alice and Bob use the second chunk of dlog (dlog (n)e)e bits of memory for an index into the
first dlog (n)e bits of memory. When they need to exchange or compare s′ and t′, they do so
bitwise, using the index to remember which bit they are exchanging or comparing.

• An additional O(1) bits per player is for housekeeping; e.g., to remember which step of the
algorithm they are executing, who hold s′ and who holds t′, etc.

In the worst case scenario, the tree is highly imbalanced. Both s′ and t′ traverse Ω(n) vertices
before they meet near the root of the tree, and furthermore, their traversal bounces back and
forth between A and B, and so Alice and Bob end up exchange s′ and t′ in every step. In this
case, the communication complexity of the protocol is Θ(n2 log (n)). Given the space bound s(n) =
log (n)+log (log (n))+O(1), this communication complexity is close to the theoretical upper bound
given by Proposition 8, which is 22s(n)+2 = Θ(n2 log2 n). We are very interested to know if this close
to 22s(n)+2 worst case communication cost is “compressible”, meaning the worst case communication
cost can be brought down.
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Algorithm 3: Space Efficient Algorithm for Solving the Decision Version of DFS

if s = t then output 0;
s′ ←− s;
sd ←− 0;
while s′ 6= r do

if s′ = t then output 1;
t′ ←− t;
repeat

t′ ←− ParentOf(t’);
if t′ = s′ then output sd;

until t′ = r;
if s′ = LeftChildOf(ParentOf(s’)) then

sd ←− 0;
else

sd ←− 1;
end
s′ ←− ParentOf(s’);

end
output sd

Proof of Theorem 16. We give several different protocols for Reach(G, s, t). Recall that in this
problem, the inputs consists of a directed graphG = (V,E) and distinguished vertices s, t. Reach(G, s, t)
outputs 1 if there exists an s; t path in G.

In the communication version of this problem, Alice and Bob are again given different sides of
a fixed vertex cut A ]B = V . Alice gets as input all edges in A; Bob gets as input all edges in B,
and both players see all crossing edges. Let CA denote the set of vertices in A adjacent to some
vertex in B. Define CB analogously. CA ∪ CB thus defines the boundary of the cut. Finally, let
C := {s, t} ∪ CA ∪ CB, and let c = |C|. Given an instance G, s, t, let c denote the total number of
vertices on the boundary of the cut. The performance of all of our protocols highly depend on c.

Our first protocol Savitch emulates Savitch’s Theorem [23]. Note that if s and t are indeed
connected in G, then trivially, there exists a path from s to t that uses at most c crossing edges.
The key intuition in Savitch’s Theorem is the following

If u, v are connected using at most k crossing edges, then there exists w such that (i) u
and w are connected using at most k/2 crossing edges and (ii) w and v are connected
using at most k/2 crossing edges.

This intuition leads to a recursive algoirthm at the heart of Savitch’s Theorem—determine if u, v
are reachabile using at most k edges by recursively deciding if e.g. u,w are reachable using at
most k/2 edges. In the protocol that emulates this theorem, Alice and Bob recursively implement
this algorithm. This algorithm has log(c) depth. At each level of the algorithm, Alice and Bob
use O(log c) space to iterate through w. At the bottom level of recursion, O(c) communication
occurs as players communicate whether e.g. w is reachable from u by crossing the cut zero times.
The performance of Savitch is captured by the following theorem. Thus, Savitch costs O(log2 c)
space and uses cO(log c) total communication.
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In our second protocol BitVector, Alice and Bob iteratively maintain a vector V ∈ {0, 1}c,
which represents which vertices on the boundary of the cut are reachable by s. For example,
suppose s ∈ A. Alice then initializes Vu to be 1 for all u on her side of the cut boundary that
are reachable from s. She sets Vu := 0 for all u on Bob’s side of the cut boundary and for all u
on her side that are not directly reachable from s. Bob then sets Vw := 1 for all w on his side of
the cut boundary that are reachable from some u such that Vu = 1, again using only the vertices
he sees. This proceeds iteratively until wither players learn that Reach(G, s, t) = 1, or until V
doesn’t change between messages. At this point, players output Reach(G, s, t) = 0 and halt the
protocol. Overall, BitVector uses O(c) space and O(c2) total communication.

This protocol is called Matrix and is similar to BitVector. This time, Alice constructs the
“induced adjacency matrix” of C. Specifically, she sets (u, v) = 1 if v is reachable from u using
only edges seen by Alice. Bob updates this matrix in a similar way—he sets (u, v) = 1 if there is
a u, v path using only (i) the edges seen by Bob and (ii) paths seen by Alice. Note that this gives
Bob enough information to compute Reach(G, s, t) directly. In particular, Matrix uses a single
round of communication. Matrix is a one-way protocol that uses O(c2) space and O(c2) total
communication.

Our last reachability protocol is called MatrixMult. MatrixMult is a one-way protcol that
is similar in spirit to Matrix, but uses less space, albeit the cost of a blowup in total communication.

Let MA,MB be the reachability matricies given Alice and Bob’s inputs; e.g., Auv = 1 if there is
a u; v path using only edges Alice sees. Let M := MA∨MB be the bitwise OR of these matrices.
Alice and Bob solve Reach by computing the matrix product M∗ := M c+1 and outputting M∗st.
This value is 1 if there is an s, t path that crosses the cut only c times. The intuition behind the
MatrixMult protocol is that M∗st can be computed in a space-efficient manner. Specifically, Alice
first sends the row of MA containing s. Then, she sends all of A to Bob, column by column. This
allows Bob to comput the row s of M2. If Bob had enough space to store all of A, we would be
done. Instead, Alice sends A to Bob O(c) times, each time sending the elements column by column.
In this way, Bob iteratively computes only row s of M∗. Thus, MatrixMult is a one-way protocol
that uses O(c) space and O(c3) total communication.

C Proofs for Lower Bound Result of All-EQ and EQ-with-Design

Proof of Lemma 20. First let’s introduce some notation, for two n-bit strings x and y, we denote
the hamming distance between x and y as H(x, y), and D(x, y) = n − H(x, y), is the number of
positions at which the corresponding bits are the same. ‖x‖1 is the number of 1 bits in x.

It’s easy to see that
‖All-EQ(x, y)‖1 = 2D(x,y)

By definition, if a protocol P correctly computes All-EQ, then for every possible pair of inputs
(x, y), ‖πA(Mx,My)|out‖1 + ‖πB(Mx,My)|out‖1 = ‖All-EQ(x, y)‖1.

Since P correctly computes All-EQ, then we have∑
x∈{0,1}n

∑
y∈{0,1}n

(‖πA(Mx,My)|out‖1 + ‖πB(Mx,My)|out‖1) =
∑

x∈{0,1}n

∑
y∈{0,1}n

|All-EQ(x, y)|
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On the other hand

∑
x∈{0,1}n

∑
y∈{0,1}n

‖All-EQ(x, y)‖1 =
∑

x∈{0,1}n

∑
y∈{0,1}n

2D(x,y) =
∑

x∈{0,1}n

n∑
j=0

 ∑
y∈{y0|D(x,y)=j}

2D(x,y)


=

∑
x∈{0,1}n

n∑
j=0

(
n

j

)
2j =

∑
x∈{0,1}n

3n = 2n · 3n

Thus ∑
x∈{0,1}n

∑
y∈{0,1}n

‖πA(Mx,My)|out‖1 +
∑

y∈{0,1}n

∑
x∈{0,1}n

‖πB(Mx,My)|out‖1 = 2n · 3n

Therefore

• either
∑

x∈{0,1}n
∑

y∈{0,1}n ‖πA(Mx,My)|out‖1 ≥ 2n−1 · 3n

• or,
∑

y∈{0,1}n
∑

x∈{0,1}n ‖πB(Mx,My)|out‖1 ≥ 2n−1 · 3n

Then, by averaging, we have

• either ∃x ∈ {0, 1}n, such that
∑

y∈{0,1}n ‖πA(Mx,My)|out‖1 ≥ 3n

2

• or, ∃y ∈ {0, 1}n, such that
∑

x∈{0,1}n ‖πB(Mx,My)|out‖1 ≥ 3n

2

Proof of Theorem 19. For the upper bound part, we give the following straightforward protocol:
Alice and Bob each has two counters, one dk log pe bits long, to enumerate through the pk subsets in
the function definition; another one, dlog pe bits long, to enumerate through the bits in a particular
subset. In each step, they look at the counters, and compare the corresponding bits in their inputs
x and y.

For the lower bound part, we show the contrapositive. Suppose that there is a protocol P with
memory size bound s(n) that correctly computes EQ-with-Design. Using the notation introduced
in the previous proof, we have∑
x∈{0,1}n

∑
y∈{0,1}n

(‖πA(Mx,My)|out‖1 + ‖πB(Mx,My)|out‖1) =
∑

x∈{0,1}n

∑
y∈{0,1}n

|EQ-with-Design(x, y)|

Suppose the family of subsets of {1, 2, . . . , n} we use to define EQ-with-Design is {Ii}i=1,2,...,pk .
We have∑

y∈{0,1}n

∑
x∈{0,1}n

|EQ-with-Design(x, y)| =
∑

y∈{0,1}n

∑
x∈{0,1}n

|{i | EQIi(x, y) = 1}|

=
∑

y∈{0,1}n

∑
i∈{1,2,...,pk}

|{x | EQIi(x, y) = 1}|

=
∑

y∈{0,1}n

∑
i∈{1,2,...,pk}

2p
2−p

= 2n · pk · 2p2−p

By averaging like we did in the proof of Lemma 20, we have
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• either ∃x ∈ {0, 1}n, such that
∑

y∈{0,1}n ‖πA(Mx,My)|out‖1 ≥ 2p
2−p−1 · pk

• or, ∃y ∈ {0, 1}n, such that
∑

x∈{0,1}n ‖πB(Mx,My)|out‖1 ≥ 2p
2−p−1 · pk

Again, like we did in the proof of Theorem 18, we assume, without loss of generality, that the
clause of x above is true, and the input value that makes this condition true is x0 = 0n.∑

y∈{0,1}n
‖πA(Mx0 ,My)|out‖1 ≥ 2p

2−p−1 · pk (1)

And for every state γ ∈ {0, 1}s(n) in the corresponding state machine Mx0 , and for every
possible communication bit b ∈ {0, 1}, we likewise denote the edge leading out of γ labelled b as
e(γ, b), denote the number of 1 output bits produced at e(γ, b) as o1(γ, b), and denote the set of
y ∈ {0, 1}n such that π(Mx0 ,My) passes through edge e(γ, b) as Y (γ, b).

∑
y∈{0,1}n

‖πA(Mx0 ,My)|out‖1 =
∑

γ∈{0,1}s(n)

∑
b∈{0,1}

∑
y∈Y (γ,b)

o1(γ, b) (2)

=
∑

γ∈{0,1}s(n)

∑
b∈{0,1}

|Y (γ, b)| · o1(γ, b) (3)

In addition, we define α(t) = min i1,i2,...,it∈{1,2,...,pk}
i1,i2,...,it are all different

|
⋃t
j=1 Iij |, then

∀γ ∈ {0, 1}s(n), ∀b ∈ {0, 1} o1(γ, b) · |Y (γ, b)| ≤ max
t∈{1,2,...,pk}

t · 2p2−α(t) (4)

And clearly we have clearly we have

• α(t) is non-decreasing for t ∈ {1, 2, . . . , pk}. In particular, for t ∈ {1, 2, . . . , p/2k}, α(t) is
strictly increasing

• ∀t ∈ {1, 2, . . . , pk} α(t) ≥ tp−
(
t
2

)
k

therefore for t ∈ {1, 2, . . . , p/2k}, t · 2p2−α(t) is strictly decreasing

max
t∈{1,2,...,pk}

t · 2p2−α(t) = max ( max
t∈{1,2,...,p/2k}

t · 2p2−α(t), max
t∈{p/2k,p/2k+1,...,pk}

t · 2p2−α(t))

≤ max (t · 2p2−α(t)|t=1,

(
max

t∈{p/2k,p/2k+1,...,pk}
t

)
·
(

max
t∈{p/2k,p/2k+1,...,pk}

2p
2−α(t)

)
)

= max(2p
2−p, pk ·

(
2p

2−α(t)
)
|t=p/2k)

≤ max(2p
2−p, pk · 2p2(1−7/16k))

= 2p
2−p
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Combine this with (1), (3), and (4), we have

2s(n)+1 · 2p2−p ≥ 2s(n)+1 · max
t∈{1,2,...,pk}

t · 2p2−α(t)

≥
∑

γ∈{0,1}s(n)

∑
b∈{0,1}

|Y (γ, b)| · o1(γ, b)

=
∑

y∈{0,1}n
‖πA(Mx0 ,My)|out‖1

≥ 2p
2−p−1 · pk

Therefore 2s(n)+1 ≥ pk/2, s(n) ≥ (1
2 − ε)k log (n) for any positive number ε and p =

√
n.

D Proof of the Inner Product Non-Computability Result

Lemma 23. Given a one-way semi-oblivious protocol P with Bob’s oblivious work memory of size
s(n), there is a family of functions {Ki}i∈N+ : {0, 1}n → {0, 1}s(n) × {0, 1}, such that for any
positive integer i ∈ N+, and x ∈ {0, 1}n, Ki(x) correctly computes the value of (Mo

B, bA) at step i,
in which Mo

B is the content of Bob’s oblivious work memory if Alice and Bob executes P on input
x and some y ∈ {0, 1}n, bA is the bit Alice sends to Bob in such an execution.

Proof. This follows immediately by Definition 7, where the value of Mo
B and bA rely only on

functions TA and T oB. Both functions operate only on input x, independent of y. We conclude with
an obvious induction.

Proof of Theorem 22. We show that if a correct protocol for IP has no non-oblivious bits then the
number of oblivious bits s(n) ≥ n

8 . Let P be a one-way oblivious protocol for IP of memory size

s(n). By definition only Bob using T fB is able to compute the correct answer to the given input.
By Lemma 23 there’s a family of functions {Ki} on x ∈ {0, 1}n that would affect Bob’s decision

(in the sense that Bob’s final output only depends on y and the output of Ki, if we denote the

output of Ki(x) as t, then T fB can be written as T fB(y, t)).
We construct a set X ⊆ {0, 1}n through the following process (Algorithm 4)

Algorithm 4: Construct X ⊆ {0, 1}n

X ←− {0, 1}n;

while ∃t ∈ {0, 1}s(n)+1, i ∈ {1, 2, . . . , 22s(n)+2} such that |K−1
i (t) ∩ X | < 24s(n) do

X ←− X \K−1
i (t);

end

It is not hard to see that this process terminates with an non-empty X if s(n) < n/8. Here is
why. The following observations are obvious

• Any pair of (t, i) would be chosen at most once, (t, i) ∈ {0, 1}s(n)+1×{1, 2, . . . , 22s(n)+2}, thus
there would be at most 2s(n)+1(1 + 22s(n)+2) iterations of the loop.

• During each iteration of the loop, the cardinality of X would decrease by at most 24s(n), since
X \K−1

i (t) = X \ (K−1
i (t) ∩ X ) and |K−1

i (t) ∩ X | < 24s(n).
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That means in the end the cardinality of set X is at least 2n − 24s(n)2s(n)+1(1 + 22s(n)+2), which is
positive given s(n) < n

8 and n is large enough.
Since P computes IP on {0, 1}n×{0, 1}n then it also computes IP on inputs from X×{0, 1}n. By

inspection on the process which constructs X , for every t ∈ {0, 1}s(n)+1 and i ∈ {1, 2, . . . , 22s(n)+2},
we have either |K−1

i (t) ∩ X | ≥ 24s(n) or |K−1
i (t) ∩ X | = 0, define

Γ := {(i, t) | |K−1
i (t) ∩ X | ≥ 24s(n)}

Now consider the execution of the the protocol P on domain X×{0, 1}n. For i ∈ {1, 2, . . . , 22s(n)+2},
define

Yi := {y | ∃x ∈ X such that P have halted on (x, y) before step i}

For (i, t) ∈ Γ, j ∈ {0, 1}, define

L
(j)
i,t := {y | y /∈ Yi and T fB(y, t) = j}

By definition we have

|Yi+1| ≤ |Yi|+
∑

t∈{t′|(i,t′)∈Γ}, j∈{0,1}

|L(j)
i,t | (5)

Since P gives correct answer for every pair (x, y) ∈ X ×{0, 1}n, this means that for every (i, t) ∈ Γ

and every y ∈ L(0)
i,t , we know y /∈ Yi, then

x ⊥ y, for every x ∈ K−1
i (t) ∩ X

In linear algebra terms, every vector in L
(0)
i,t is orthogonal to a set of at least 24s(n) different

non-zero vectors (in a n-dimensional space), thus |L(0)
i,t | ≤ 2n−4s(n).

Similarly for any y ∈ L(1)
i,t , we have

∀x ∈ K−1
i (t) ∩ X IP(x, y) = 1

We know that K−1
i (t) ∩ X 6= ∅, choose some x0 ∈ K−1

i (t) ∩ X , we have

∀x ∈ (K−1
i (t) ∩ X ) \ {x0} x− x0 ⊥ y

Thus |L(1)
i,t | ≤

2n

24s(n)−1
.

Substitute the upper bound we just obtained for |L(0)
i,t | and |L(1)

i,t | into equation (5) and consid-
ering the fact that |Y0| = 0, we have

|Yi| ≤ i ·
2n

24s(n) − 1
· 2 · 2s(n)+1

|Y22s(n)+1| ≤ (22s(n)+2 + 1) · 2n

24s(n) − 1
· 2 · 2s(n)+1 < 2n

That is, after 22s(n)+2 + 1 steps, Y22s(n)+2+1 6= {0, 1}n, there exist input pairs (x, y) ∈ X × {0, 1}n
on which the protocol P has not halted, and therefore (Proposition 8) it never halts.
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Proposition 24. There is no one-way oblivious protocol that can correctly solve EQ within space
size s(n) < n− 1 and halt at the same step for all input pairs (x, y) ∈ {0, 1}n × {0, 1}n.

Proof. We prove this by contradiction. Suppose there is such a protocol P, which halts at some
step i0 for every input pair (x, y) and correctly computes EQ. As we have shown in Lemma 23
in Section D, Alice has this “upload function” Ki0 for step i0. Since Ki0 takes a n-bit input,
but gives a (s(n) + 1)-bit output, s(n) + 1 < n, there must be two different x1 6= x2, such that
Ki0(x1) = Ki0(x2).

On the other hand, P correctly computes EQ, that means

T fB(x1,Ki0(x1)) = EQ(x1, x1) = 1

T fB(x1,Ki0(x2)) = EQ(x1, x2) = 0

This contradicts with the fact that T fB is a deterministic function and Ki0(x1) = Ki0(x2).
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