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Abstract
The Hamming distance function Hamn,d returns 1 on all pairs of inputs x and y that di�er in at
most d coordinates and returns 0 otherwise. We initiate the study of the information complexity
of the Hamming distance function.

We give a new optimal lower bound for the information complexity of the Hamn,d function
in the small-error regime where the protocol is required to err with probability at most ‘ < d/n.
We also give a new conditional lower bound for the information complexity of Hamn,d that is
optimal in all regimes. These results imply the first new lower bounds on the communication
complexity of the Hamming distance function for the shared randomness two-way communication
model since Pang and El-Gamal (1986). These results also imply new lower bounds in the areas
of property testing and parity decision tree complexity.
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1 Introduction

The Hamming distance function Hamn,d : {0, 1}n ◊ {0, 1}n æ {0, 1} returns 1 on all pairs
of inputs x, y œ {0, 1}n that di�er in at most d coordinates and returns 0 otherwise. This
function is one of the fundamental objects of study in communication complexity. In this
setting, Alice receives x œ {0, 1}n, Bob receives y œ {0, 1}n, and their goal is to compute
the value of Hamn,d(x, y) while exchanging as few bits as possible.

The communication complexity of the Hamming distance function has been studied in
various communication models [25, 18, 26, 11, 13], leading to tight bounds on the communi-
cation complexity of Hamn,d in many settings. One notable exception to this state of a�airs
is in the shared randomness two-way communication model in which Alice and Bob share
a common source of randomness, they can both send messages to each other, and they are
required to output the correct value of Hamn,d(x, y) with probability at least 1 ≠ ‘ for each
pair of inputs x, y. This can be done with a protocol that uses O(min{n, d log d

‘ }) bits of
communication [13]. Furthermore, this protocol is quite simple: Alice and Bob simply take
a random hash of their strings of length O( d2

‘ ) and determine if the Hamming distance of
these hashes is at most d or not.

Pang and El-Gamal [18] showed that the hashing strategy is optimal when d = cn for
some constant 0 < c < 1 and 0 < ‘ < 1

2 is constant. With a simple padding argument, their
result gives a general lower bound of �(min{d, n≠d}) bits on the communication complexity
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of Hamn,d.1 Recently, there has been much interest in the Gap-Hamming Distance variant
GHDn,d of the Hamming distance function, where the inputs x and y are promised to be
at Hamming distance at most d ≠

Ô
d or at least d +

Ô
d of each other. This line of work

culminated in the recent proof that the �(min{d, n ≠ d}) lower bound also holds for the
GHDn,d function [7, 22, 21]. Since Pang and El-Gamal’s result, however, there has been no
further progress on lower bounds for the communication complexity of the Hamn,d function
and closing the gap between this lower bound and the upper bound of the simple hashing
protocol remains an open problem.

In this work, we give new lower bounds on the communication complexity of the Ham-
ming distance function by establishing new bounds on its information complexity. Infor-
mally, the information complexity of a function f is the amount of information that Alice
and Bob must learn about each other’s inputs when executing any protocol that computes
f . The idea of using information complexity to lower bound the communication complexity
of a function goes back to [8] and has since led to a number of exciting developments in
communication complexity and beyond ([1, 2, 5, 24] to name just a few).

Let ICµ(f, ‘) denote the minimum amount of information that Alice and Bob can reveal
to each other about their inputs while computing the function f with probability 1 ≠ ‘ (on
every input pair), when their inputs are drawn from the distribution µ. The information
complexity of f , denoted IC(f, ‘), is the maximum value of ICµ(f, ‘) over all distributions µ
on the domain of f . A natural extension of the simple hashing protocol that gives the best-
known upper bound on the communication complexity of Hamn,d also yields the best-known
upper bound on its information complexity.

I Proposition 1.1. For every 0 < d < n ≠ 1 and every 0 Æ ‘ < 1/2,

IC(Hamn,d, ‘) Æ O(min{log
!

n
d

"
, d log d

‘ }).

This bound on the information complexity of Hamn,d matches the communication com-
plexity bound of the function when ‘ is a constant, but is exponentially smaller (in n) when
d is small and ‘ tends to (or equals) 0.

By a reduction from a promise version of the Set Disjointness function and the known
lower bound on the information complexity of that function [1], the information complexity
of the Hamming distance problem is bounded below by

IC(Hamn,d, ‘) Ø �(min{d, n ≠ d}) (1)

for every 0 Æ ‘ < 1
2 . (In fact, Kerenidis et al. [15] have shown that the same lower bound

also holds for the information complexity of the Gap-Hamming Distance function.) This
result shows that the bound in Proposition 1.1 is optimal in the large distance regime, when
d = cn for some constant 0 < c < 1.

The bound in Proposition 1.1 is also optimal when d and ‘ are both constants. In this
case, the information complexity of Hamn,d is constant. There are two regimes, however,
where the information complexity of the Hamming distance function is not yet well un-
derstood: the small-error regime where ‘ = o(1), and the medium-distance regime where
Ê(1) Æ d Æ o(n). In this paper, we introduce new lower bounds on the information com-
plexity of Hamn,d for both of these regimes.

1
The same bound can also be obtained via a simple reduction from a promise version of the Set Disjoint-

ness function. The optimal lower bound for the communication complexity of this function, however,

was obtained later [14].
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464 The Information Complexity of Hamming Distance

1.1 Our results
1.1.1 Lower bound for the small-error regime.
Our first goal is to strengthen the lower bound on the information complexity of Hamn,d

in the small-error regimes where ‘ = o(1) and where ‘ = 0. It is reasonable to expect that
for every value 0 Æ d Æ n ≠ 1, the information complexity of every Hamn,d function should
depend on either n or ‘ in these regimes. Surprisingly, Braverman [5] showed that this is
not the case when d = 0. The Hamn,0 function corresponds to the Equality function, and
Braverman showed that for every ‘ Ø 0, IC(Equality, ‘) = O(1) is bounded above by an
absolute constant.

We show that the Equality function is in a sense a pathological example: it is the only
Hamming distance function whose information complexity is independent of both n and ‘.

I Theorem 1.2. For every 1 Æ d < n ≠ 1 and every 0 Æ ‘ < 1/2,

IC(Hamn,d, ‘) = �(min{log
!

n
d

"
, d log(1/‘)}).

The bound in the theorem matches that of Proposition 1.1 whenever ‘ < 1/n. This
shows that the lower bound is optimal in this regime and, notably, that the simple hashing
protocol for Hamn,d is optimal among all protocols with low error.

There are two main components in the proof of Theorem 1.2. The first is a lower bound
on the Hamn,1vs.3, the promise version of the Hamn,1 function where the protocol receives
the additional guarantee that the two inputs x and y have Hamming distance exactly 1 or
3. Let µ be the uniform distribution over pairs (x, y) at Hamming distance 1 of each other.
We show that every ‘-error protocol for Hamn,1vs.3 has large information cost over µ.

I Lemma 1.3. Fix ‘ Ø 0 and let µ be the uniform distribution over the pairs (x, y) ≥
{0, 1}n ◊ {0, 1}n at Hamming distance 1 of each other. Then

IC(Hamn,1vs.3, ‘) Ø ICµ(Hamn,1vs.3, ‘) = �(min{log n, log 1/‘}).

The second main component in the proof of Theorem 1.2 is a direct sum theorem (im-
plicitly) due to Bar-Yossef et al. [1].2 Roughly speaking, this direct sum theorem shows that
under appropriate conditions, the information cost of any protocol that computes the AND
of k copies of a function f is at least k times the information complexity of f . By observing
that every protocol for the Hamn,d function also is a valid protocol for the AND of d copies
of Hamn/d,1vs.3, we are able to combine the direct sum theorem and Lemma 1.3 to complete
the proof of Theorem 1.2.

1.1.2 Conditional lower bound.
Theorem 1.2 establishes the optimality of the information complexity bound of Proposi-
tion 1.1 in every setting except the medium-distance regime, where Ê(1) Æ d Æ o(n) and ‘
is (somewhat) large. We conjecture that the upper bound is optimal in this setting as well.

I Conjecture 1.4. For every 1 Æ d < n ≠ 1 and every 0 Æ ‘ < 1/2,

IC(Hamn,d, ‘) = �(min{log
!

n
d

"
, d log(d/‘)}).

2
The direct sum theorem in [1] is stated for a di�erent notion of information complexity but the proof

of this theorem can be extended to yield a direct sum theorem for our setting as well. See Section 3

for the details.
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A proof of the conjecture would have a number of interesting consequences. In particular,
as we describe in more detail in Section 1.2.1 below, it would yield tight bounds on the
communication complexity of Hamn,d, on the query complexity of fundamental problems in
property testing, and on the parity decision tree complexity of a natural Hamming weight
function. A proof of the conjecture would also show that the simple hashing protocol is
optimal and, in particular, since that protocol always accepts inputs at Hamming distance at
most d from each other, it would confirm that two-sided error does not reduce the information
or communication complexity of the Hamming distance function.

Finally, a proof of the conjecture would establish a notable separation between the com-
munication complexity of Hamming distance and set disjointness. Let Disjn denote the
function that returns 1 on the inputs x, y œ {0, 1}n i� for every coordinate i œ [n], xi = 0
or yi = 0. Let Disjn,k denote the variant on this problem where Alice and Bob’s inputs are
promised to have Hamming weight k. As mentioned briefly earlier, it is possible to get lower
bounds on the communication complexity of Hamn,d with a reduction from Disjn,(d+1)/2.
When d = cn, and 0 < c < 1 is a constant, this reduction is tight since both functions
have communication complexity �(n) in this setting. However, Håstad and Wigderson [12]
(see also [20]) showed that the communication complexity of Disjn,k is O(k), so a proof of
Conjecture 1.4 would show that the communication complexity of Hamn,d is asymptotically
larger than that of Disjn,(d+1)/2 when d = o(n).

We give a conditional proof of Conjecture 1.4. To describe the result, we need to introduce
a few notions related to parallel repetition. For a function f : {0, 1}n æ {0, 1} and k Ø 2, let
fk : {0, 1}nk æ {0, 1}k denote the function that returns the value of f on k disjoint inputs.
A protocol computes fk with error ‘ if it computes the value of f on all k of the disjoint
inputs with probability at least 1 ≠ ‘.

I Definition 1.5. A function f : X n ◊ Yn æ {0, 1} is majority-hard for the distribution µ
on X ◊ Y and for ‘ Ø 0 if there exists a constant c > 0 such that for any k Ø 2,

ICµk (Majk ¶ f, ‘) = �(ICµÂckÊ(fÂckÊ, ‘)).

The upper bound in the definition trivially holds: a protocol for Majk ¶ f can first
determine the value of the k instances of f in parallel so ICµk (Majk ¶f, ‘) Æ ICµk (fk, ‘). We
believe that the reverse inequality holds for the Hamn,1 function. In fact, we do not know
of any distribution µ and any function f that is balanced on µ which is not majority-hard
for µ. (Determining whether every such function is indeed majority-hard appears to be an
interesting question in its own right; see [23] and [17] for related results.)

Let µ1 and µ3 be the uniform distributions over the pairs (x, y) œ {0, 1}n ◊ {0, 1}n at
Hamming distance 1 and 3 of each other, respectively. Let µ = 1

2 µ1 + 1
2 µ3. We give a

conditional proof of Conjecture 1.4 assuming that Hamn,1 is a majority-hard function on µ.

I Theorem 1.6. If Hamn,1 is majority-hard over the distribution µ described above, then
for every 1 Æ d < n ≠ 1 and every 0 Æ ‘ < 1/2,

IC(Hamn,d, ‘) = �(min{log
!

n
d

"
, d log(d/‘)}).

The proof of Theorem 1.6 follows the same overall structure as the proof of Theorem 1.2:
we first establish a lower bound on the information complexity of Hamn,1 and then use
a direct sum theorem to derive the general lower bound from this result. Both of these
components of the proof, however, must be significantly extended to yield the stronger
lower bound.

APPROX/RANDOM’14
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In order to prove Theorem 1.6, we need to extend the result from Lemma 1.3 in two ways.
First, we need extend the lower bound on the information complexity to apply to protocols
in the average error model. In this model, a protocol has error ‘ under µ if the expected
error probability on inputs drawn from µ. (By contrast, until now we have only considered
protocols that must err with probability at most ‘ on every possible inputs; even those
outside the support of µ.) Second, we need a lower bound that also applies to protocols that
are allowed to abort with a constant probability ”. We denote the information complexity of
the function f over the distribution µ in the ‘-average-error ”-average-abortion-probability
model by ICavg

µ (f, ‘, ”).

I Lemma 1.7. Fix 0 Æ ‘ < 1
2 and 0 Æ ” < 1. Let µ be the distribution described above.

Then
ICavg

µ (Hamn,1vs.3, ‘, ”) = �(min{log n, log 1/‘}).

One significant aspect of the bound in Lemma 1.7 worth emphasizing is that the infor-
mation complexity is independent of the abortion probability ”.

The second main component of the proof of Theorem 1.6 is another direct sum theorem.
In this proof, we use a slightly di�erent decomposition of Hamn,d: instead of relating it
to the composed function ANDd ¶ Hamn/d,1vs.3, we now use the fact that a protocol for
Hamn,d also is a valid protocol for Majd/2 ¶ Ham2n/d,1vs.3. If Hamn,1 is majority-hard over
the distribution µ, this decomposition shows that any protocol for Hamn,d has information
complexity at least ICµdÕ (HamdÕ

n,1vs.3, ‘, ”) for some dÕ = �(d). We can then apply a recent
strong direct sum theorem of Molinaro, Woodru�, and Yaroslavtsev [16] to obtain the desired
result.

1.2 Extensions and applications
1.2.1 Lower bounds in other settings.
The lower bounds on the information complexity of Hamn,d in Theorems 1.2 and 1.6 im-
mediately imply corresponding lower bounds on the communication complexity of the same
function.

I Corollary 1.8. Fix 1 Æ d < n≠1 and 0 Æ ‘ < 1
2 . Then Rpub(Hamn,d, ‘) = �(min{log

!
n
d

"
, d log 1

‘ }).
Furthermore, if Hamn,1 is majority-hard, then Rpub(Hamn,d, ‘) = �(min{log

!
n
d

"
, d log d

‘ }).

In turn, the lower bounds on the communication complexity of Hamn,d imply new lower
bounds on the query complexity of a number of di�erent property testing problems via the
connection introduced in [4].

I Corollary 1.9. Fix k Æ n
2 . At least �(min{k log n, k log 1

” }) queries are required to test k-
linearity and k-juntas with error ”. Furthermore, if Hamn,1 is majority-hard, then �(k log k)
queries are required to test k-linearity and k-juntas with constant error.

The best current lower bound on the query complexity for testing each property in
Corollary 1.9 is �(k), a result that was obtained via a reduction from the Set Disjointness
function [4]. Corollary 1.9 shows that replacing this reduction with one from the Hamming
distance function yields stronger lower bounds.

Theorems 1.2 and 1.6 also give new lower bounds on the decision tree complexity of
boolean functions. A parity decision tree is a tree where every internal node of the tree
branches according to the parity of a specified subset of the bits of the input x œ {0, 1}n and
every leaf is labelled with 0 or 1. The randomized ‘-error parity decision tree complexity
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of a function f : {0, 1}n æ {0, 1}, denoted Rü
‘ (f), is the minimum depth d such that there

exists a distribution D over parity decision trees of depth d where for every x œ {0, 1}n, the
path defined by x on a tree drawn from D leads to a leaf labelled by f(x) with probability
at least 1 ≠ ‘. For 0 Æ d Æ n, let Weightn,d : {0, 1}n æ {0, 1} be the function that returns
1 i� the input x has Hamming weight at most d.

I Corollary 1.10. Fix 0 < d < n≠1 and 0 Æ ‘ < 1
2 . Then Rü

‘ (Weightn,d) = �(min{log
!

n
d

"
, d log 1

‘ }).
Furthermore, if Hamn,1 is majority-hard, then Rü

‘ (Weightn,d) = �(min{log
!

n
d

"
, d log d

‘ }).

1.2.2 Symmetric XOR functions.
The Hamming distance functions Hamn,d are contained within a larger class of functions
called symmetric XOR functions. The function f : {0, 1}n ◊ {0, 1}n æ {0, 1} is a symmetric
XOR function if it can be expressed as f = h ¶ ün, where ün : {0, 1}n ◊ {0, 1}n æ {0, 1}n

is the entrywise XOR function and h : {0, 1}n æ {0, 1} is a symmetric boolean function.
The skip complexity of a symmetric XOR function f = h ¶ ün is defined as �+2(f) =

max{0 Æ d < n
2 : h(d) ”= h(d+2)‚h(n≠d) ”= h(n≠d≠2)}. This complexity measure is closely

related to the Paturi complexity of symmetric functions [19]. The proof of Theorem 1.2 can
be generalized to give a lower bound on the information complexity of every symmetric XOR
function in terms of its skip complexity.

I Theorem 1.11. Fix ‘ Ø 0. For every symmetric XOR function f : {0, 1}n ◊ {0, 1}n æ
{0, 1},

IC(f, ‘) Ø �(�+2(f) · min{log n, log 1/‘}).

The only symmetric XOR functions with skip complexity �+2(f) = 0 are the a�ne com-
binations of the Equality and Parity functions. Each of these functions has information
complexity O(1), so Theorem 1.11 yields a complete characterization of the set of functions
that have constant information complexity when ‘ = 0.

1.2.3 Direct sum violations.
In 1995, Feder et al. [10] showed that the Equality function violates the direct-sum theorem
in the randomized communication complexity model when ‘ = o(1). Braverman [5] noted
that an alternative proof of this fact follows from the fact that the information complexity
of the Equality function satisfies IC(Equality, ‘) = O(1).

The tight characterization of the information complexity of Hamn,1 obtained by the
bounds in Proposition 1.1 and Lemma 1.3 shows that Hamn,1 satisfies the direct-sum the-
orem for randomized communication complexity when n = poly(1/‘) and violates it oth-
erwise (i.e., when log n = o(log 1/‘). This result can be seen as further evidence of the
qualitative di�erence between the complexity of the Equality function and that of the
“almost-equality” function Hamn,1. See Section 7 for the details.

1.2.4 Composition of the Hamn,1 function.
One important di�erence between the proof of Theorem 1.2 and that of Theorem 1.6 is that
whereas the former is obtained by analyzing the composed function ANDd ¶ Hamn,1vs.3,
the latter is obtained by analyzing Majd/2 ¶ Hamn,1vs.3. It is natural to ask whether this
switch is necessary—whether the stronger lower bound of Theorem 1.6 could be obtained
by considering the composed function ANDd ¶ Hamn,1vs.3.

APPROX/RANDOM’14



468 The Information Complexity of Hamming Distance

The same question can be rephrased to ask whether the bound in Theorem 1.2 is optimal
for the function ANDd ¶Hamn,1vs.3. We show that it is. Furthermore, we show that a similar
upper bound also applies to the function ORk ¶ Hamn,1, so that in order to obtain the lower
bound in Theorem 1.6 via a reduction approach, we must consider another composition
function. See Section 8 for the details.

2 Information Complexity Preliminaries

We use standard information-theoretic notation and the following basic facts about entropy
and mutual information. See [9] for the basic definitions and the proofs of the following
facts.

I Fact 2.1. If X can be described with k bits given Y , then H(X|Y ) Æ k.

I Fact 2.2. I(X, Y |Z) = H(X|Z) ≠ H(X|Y, Z).

I Fact 2.3 (Chain rule for conditional mutual information). I(X1, X2; Y |Z) = I(X1; Y |Z) +
I(X2; Y |X1, Z).

I Fact 2.4 (Data processing inequality). If I(X; Z|Y, W ) = 0, then I(X; Y |W ) Ø I(X; Z|W ).

I Fact 2.5. If I(X; W |Y, Z) = 0, then I(X; Y |Z) Ø I(X; Y |Z, W ).

I Definition 2.6 (Kullback–Leibler divergence). The Kullback–Leibler (KL) divergence be-
tween two distributions µ, ‹ is DKL(µ Î ‹) =

q
x µ(x) log µ(x)

‹(x) .

I Fact 2.7 (Gibbs’ inequality). For every distributions µ and ‹, DKL(µ Î ‹) Ø 0.

I Fact 2.8. For any distribution µ on X ◊ Y with marginals µX and µY , the mutual
information of the random variables (A, B) ≥ µ satisfies I(A; B) = D(µ Î µXµY ).

I Fact 2.9 (Log-sum inequality). Let n œ N and a1, . . . , an, b1, . . . , bn be non-negative real

numbers. Define A :=
nÿ

i=1
ai and B :=

nÿ

i=1
bi. Then,

nÿ

i=1
ai log(ai/bi) Ø A log(A/B).

I Definition 2.10 (Information cost). Let µ be a distribution with support {0, 1}n ◊ {0, 1}n

and let (X, Y ) ≥ µ where X is Alice’s input and Y is Bob’s input. The information cost of a
protocol � with respect to µ is defined by ICµ(�) := Iµ(�(X, Y ); X|Y ) + Iµ(�(X, Y ); Y |X).

I Definition 2.11 (Prior-free information complexity). Let f : {0, 1}n ◊ {0, 1}n æ {0, 1} be
a function and let ‘ > 0. The prior-free information complexity of f with error rate ‘ is
defined by IC(f, ‘) := min� maxµ ICµ(�) where � ranges over all protocols computing f
with error probability at most ‘ on each input pair in {0, 1}n ◊ {0, 1}n and µ ranges over all
distributions with support {0, 1}n ◊ {0, 1}n.

I Remark. Braverman [5] distinguished between internal information measures that quantify
the amount of information that Alice and Bob reveal to each other and external information
measures that quantify the amount of information that Alice and Bob reveal to an external
observer. Definitions 2.10 and 2.11 refer to the internal information cost and internal prior-
free information complexity respectively.
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3 Lower bound for the small-error regime

In this section, we complete the proof of Theorem 1.2, giving an unconditional lower bound
on the information complexity of Hamn,d. In fact, we do more: we show that the same
information complexity lower bound holds even for protocols that receive the additional
promise that every block of n/d coordinates in [n] contains exactly 1 or 3 coordinates on
which x and y di�er. Furthermore, we show that our information complexity lower bound
holds under the distribution where we choose the inputs x and y uniformly at random from
all such pairs of inputs that have Hamming distance exactly 1 on each block.

The proof has two main components. The first is our lower bound on the information
complexity of the Hamn,1vs.3 function, which is the more technically challenging component
of the proof and which we defer to the next subsection. The second is a direct sum theorem
for information complexity. In order to state this theorem, we must first introduce a bit
more notation. We use [n] to denote the set {1, . . . , n}. For X = X1X2 · · · Xn œ X n and
i < k < n, let X[k] and X[i:k] denote the strings X1 · · · Xk and Xi · · · Xk respectively. For
i œ [n], we use ei to denote the n-bit string z œ {0, 1}n with zi = 1 and all other bits zj = 0.

I Definition 3.1 (Composed function). The composition of the functions f : {0, 1}k æ {0, 1}
and g : X ◊ Y æ {0, 1} is the function f ¶ g : X k ◊ Yk æ {0, 1} defined by (f ¶ g)(x, y) =
f

!
g(x1, y1), . . . , g(xk, yk)

"
.

I Definition 3.2. For a vector x œ X k, an index j œ [k], and an element u œ X , define
xjΩu to be the vector in X k obtained by replacing the jth coordinate of x with u.

I Definition 3.3 (Collapsing distributions). A distribution µ over X ◊ Y is a collapsing
distribution for the composed function f ¶ g : X k ◊ Yk æ {0, 1} if every point (x, y) in the
support of µ, every j œ [k], and every (u, v) œ X ◊ Y satisfy f ¶ g(xjΩu, yjΩv) = g(u, v).

We use the following direct-sum theorem, which is essentially due to Bar-Yossef et al. [1]
and to Braverman and Rao [6]. We include the proof for the convenience of the reader.

I Theorem 3.4 (Direct-sum theorem). Let µk be a collapsing distribution for the composed
function f ¶ g : X k ◊ Yk æ {0, 1}. For every ‘ Ø 0, ICµk (f ¶ g, ‘) Ø k ICµ(g, ‘).

Proof. Consider an ‘-error protocol P for f ¶ g with optimal information cost over µk.
Let �(x, y) be a random variable (over the private randomness of the protocol) denoting
the transcript of the protocol on inputs x, y œ X k ◊ Yk. By the optimality of P and two
applications of the chain rule for mutual information in opposite directions,

ICµk (f ¶ g, ‘) = I(X; �(X, Y ) | Y ) + I(Y ; �(X, Y ) | X)

=
kÿ

i=1
I(Xi; �(X, Y ) | Y, X[i≠1]) + I(Yi; �(X, Y ) | X, Y[i+1,k]).

Since I(Xi; Y[i≠1] | X[i≠1], Y[i,k]) = 0, we have I(Xi; �(X, Y ) | Y, X[i≠1]) Ø I(Xi; �(X, Y ) |
X[i≠1], Y[i,k]). Similarly, I(Yi; �(X, Y ) | X, Y[i+1,k]) Ø I(Yi; �(X, Y ) | X[i], Y[i+1,k]). So

ICµk (f ¶ g, ‘) Ø
kÿ

i=1
I(Xi; �(X, Y ) | X[i≠1]Y[i,k]) + I(Yi; �(X, Y ) | X[i]Y[i+1,k]).

To complete the proof, we want to show that each summand is the information cost of an
‘-error protocol for g over µ. Fix an index i œ [k]. Let P ú

i be a protocol that uses the

APPROX/RANDOM’14
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public randomness to draw X Õ
1, . . . , X Õ

i≠1 from the marginal of µ on X and Y Õ
i+1, . . . , Y Õ

k

from the marginal of µ on Y. Alice draws X Õ
i+1, . . . , X Õ

k using her private randomness so
that (X Õ

i+1, Y Õ
i+1), . . . , (X Õ

k, Y Õ
k) ≥ µ. Similarly, Bob uses his private randomness to draw

Y Õ
1 , . . . , Y Õ

i≠1 such that (X Õ
1, Y Õ

1), . . . , (X Õ
i≠1, Y Õ

i≠1) ≥ µ. They then set X Õ
i Ω Xi and Y Õ

i Ω Yi.
The protocol P ú

i then simulates P on (X Õ, Y Õ) and returns the value of f ¶ g(X Õ, Y Õ). Since
µk is a collapsing distribution, g(Xi, Yi) = f ¶ g(X Õ, Y Õ) and P ú

i is a valid ‘-error protocol
for g. In turn, this implies that

ICµk (f ¶ g, ‘) Ø
kÿ

i=1
I(Xi; �(X, Y ) | X[i≠1]Y[i,k]) + I(Yi; �(X, Y ) | X[i]Y[i+1,k])

Ø
kÿ

i=1
ICµ(g, ‘) = k ICµ(g, ‘). J

Let µ be the uniform distribution on pairs (x, y) œ {0, 1}n ◊{0, 1}n at Hamming distance
one from each other. In the following subsection, we show that every protocol for Hamn,1vs.3
must have information complexity �(min{log n, log 1

‘ }) under this distribution. We can then
apply the direct sum theorem to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Any protocol for Hamn,d also is a valid protocol for the composed
function ANDd ¶ Hamn/d,1vs.3. So for every ‘ Ø 0,

IC(Hamn,d, ‘) Ø IC(ANDd ¶ Hamn/d,1vs.3, ‘).

Let µ be the uniform distribution on pairs (x, y) œ {0, 1}n/d ◊ {0, 1}n/d with Hamming
distance 1. By definition, IC(ANDd ¶ Hamn/d,1vs.3, ‘) Ø ICµd(ANDd ¶ Hamn/d,1vs.3, ‘).
Moreover, since the support of µ is on pairs x, y at Hamming distance 1 from each other,
µd is a collapsing distribution for ANDd ¶ Hamn/d,1vs.3. So by Theorem 3.4,

ICµd(ANDd ¶ Hamn/d,1vs.3, ‘) Ø d ICµ(Hamn/d,1vs.3, ‘)

and the theorem follows from Lemma 1.3. J

3.1 Proof of Lemma 1.3
In this section, we give a lower bound on the information complexity of protocols for
Hamn,1vs.3 under the distribution µ that is uniform over the pairs of vectors (x, y) œ
{0, 1}n ◊ {0, 1}n at Hamming distance 1 from each other.

I Fact 3.5 (Rectangle bound [1]). For any protocol whose transcript on inputs x, y (resp.,
xÕ, yÕ) is the random variable �(x, y) (resp., �(xÕ, yÕ)) and for any possible transcript t,

Pr[�(x, y) = t] Pr[�(xÕ, yÕ) = t] = Pr[�(x, yÕ) = t] Pr[�(xÕ, y) = t].

I Fact 3.6 (Extension of Gibbs’ inequality). For every distributions µ and ‹ on X , and every
subset S ™ X ,

q
xœS µ(x) log µ(x)

‹(x) Ø ln 2 (µ(S) ≠ ‹(S)).

Proof. Using the inequality log x Æ ln 2(x ≠ 1), we obtain

ÿ

xœS

µ(x) log µ(x)
‹(x) = ≠

ÿ

xœS

µ(x) log ‹(x)
µ(x) Ø

ÿ

xœS

µ(x) ln 2 (1 ≠ ‹(x)
µ(x) ) Ø ln 2 (µ(S) ≠ ‹(S)).J
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I Lemma 3.7. Let � be a randomized protocol and let T be the set of all possible transcripts
of �. Let µ be the uniform distribution on pairs (x, y) œ {0, 1}n ◊ {0, 1}n at Hamming
distance 1 from each other. Then

ICµ(�(X, Y )) = E
zœ{0,1}n,iœ[n]

ÿ

tœT

Pr[�(züei, z) = t] log Pr[�(z ü ei, z) = t]
Ej,¸œ[n] Pr[�(z ü ei ü ej , z ü e¸) = t] .

Proof. The mutual information of X and �(X, Y ) given Y satisfies

I(X; �(X, Y ) | Y ) = E
y
[I(X; �(X, y) | Y = y)]

= E
y

[DKL(X, �(X, y) Î X, �(X Õ, y))]

= E
y

S

U
ÿ

xœ{0,1}n

ÿ

tœT

Pr[X = x] Pr[�(x, y) = t] log Pr[X = x] Pr[�(x, y) = t]
Pr[X = x] Pr[�[X Õ, y] = t]

T

V

= E
z,i

C
ÿ

tœT

Pr[�(z ü ei, z) = t] log Pr[�(z ü ei, z) = t]
E¸œ[n] Pr[�(z ü e¸, z) = t]

D

Similarly,

I(Y ; �(X, Y ) | X) = E
z,i

C
ÿ

tœT

Pr[�(z ü ei, z) = t] log Pr[�(z ü ei, z) = t]
E¸œ[n] Pr[�(z ü ei, z ü ei ü ej) = t]

D

Summing those two expressions, we obtain

ICµ(�(X, Y )) = E
z,i

C
ÿ

tœT

Pr[�(z ü ei, z) = t] log Pr[�(z ü ei, z) = t]2
Ej,¸œ[n] Pr[�(z ü e¸, z) = t] Pr[�(z ü ei, z ü ei ü ej) = t]

D

By the rectangle bound (Fact 3.5),

Pr[�(züe¸, z) = t] Pr[�(züei, züeiüej) = t] = Pr[�(züei, z) = t] Pr[�(züe¸, züeiüej) = t]

and the lemma follows. J

Proof of Lemma 1.3. Fix any ‘-error protocol for Hamn,1vs.3. Let �(x, y) denote (a random
variable representing) its transcript on inputs x, y. Let T 1 denote the set of transcripts for
which the protocol outputs 1. By Lemma 3.7 and the extended Gibbs’ inequality (Fact 3.6),

ICµ(�(X, Y )) Ø E
zœ{0,1}n,iœ[n]

ÿ

tœT 1

Pr[�(züei, z) = t] log Pr[�(z ü ei, z) = t]
Ej,¸œ[n] Pr[�(z ü ei ü ej , z ü e¸) = t]≠ln 2

The correctness of the protocol guarantees that when i, j, ¸ are all disjoint, then
q

tœT 1

Pr[�(zü
ei ü ej , z ü e¸) = t] Æ ‘. For any z œ {0, 1}n and i œ [n], the probability that i, j, ¸ are all
disjoint is (n ≠ 1)(n ≠ 2)/n2 > 1 ≠ 3/n. Therefore,

ÿ

tœT 1

E
j,¸œ[n]

Pr[�(z ü ei ü ej , z ü e¸) = t] Æ 3/n + ‘

and by the log-sum inequality and the fact that x log2(x) Ø ≠0.6 for all x œ [0, 1],

ICµ(�(X, Y )) Ø Pr[�(z ü ei, z) œ T 1] log Pr[�(z ü ei, z) œ T 1]
Ej,¸ Pr[�(z ü ei ü ej , z ü e¸) œ T 1]

Ø (1 ≠ ‘) log 1 ≠ ‘

3/n + ‘
≠ ln 2 Ø (1 ≠ ‘) log 1

3/n + ‘
≠ O(1). J
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4 Conditional lower bound

In this section, we prove Theorem 1.6. We will need the following notion of information
complexity.

I Definition 4.1 (Information complexity with average-case abortion and error). Let f : X ◊
Y æ Z. Then, ICµ,”,‘(f |‹) is the minimum conditional information cost of a randomized
protocol that computes f with abortion probability at most ” and error probability at most ‘,
where the probabilities are taken over both the internal (public and private) randomness of
the protocol � and over the randomness of the distribution µ.

We now give the slight generalization of the MWY theorem that we will use to prove
Theorem 1.6.

I Theorem 4.2 (Slight generalization of the direct-sum theorem of [16]). Let X œ X , Y œ Y
and ⁄ be a distribution on (X, Y, D) with marginals µ over (X, Y ) and ‹ over D such that
for every value d of D, X and Y are conditionally independent given D = d. For any
f : X ◊ Y æ Z, k œ N and ‘ Æ 1/3, ICµk,‘(fk|‹k) = k · �(ICµ,O(‘),O(‘/k)(f |‹)).

Proof. See appendix A for the proof and the comparison to the direct-sum theorem of
[16]. J

We will lower bound the information revealed by any protocol computing Hamn,1 with
small error and abortion with respect to some hard input distribution. Here, the error and
abortion probabilities are over both the hard input distribution and the public and private
randomness of the protocol. We handle abortion probabilities and allow such average-
case guarantees in order to be able to apply Theorem 4.2. We first define our hard input
probability distribution. We define the distribution ⁄ over tuples (B, D, Z, I, J, L, X, Y ) as
follows: To sample (B, D, Z, I, J, L, X, Y ) ≥ ⁄, we sample B, D œR {0, 1}, Z œR {0, 1}n,
I, J, L œR [n] and:

If B = 0,
If D = 0, set (X, Y ) = (Z, Z ü eI).
If D = 1, set (X, Y ) = (Z ü eI , Z).

If B = 1,
If D = 0, set (X, Y ) = (Z ü eI ü eJ , Z ü eL).
If D = 1, set (X, Y ) = (Z ü eL, Z ü eI ü eJ).

We let µ be the marginal of ⁄ over (X, Y ) (and ‹ be the marginal of ⁄ over (B, D, Z)).
Note that conditioned on B, D and Z taking any particular values, X and Y are independent.
That is, we have a mixture of product distributions. We will prove the following lemma
(which is a stronger version of Lemma 1.7).

I Lemma 4.3. Let � be a randomized protocol that computes Hamn,1 with abortion proba-
bility at most ” and error probability at most ‘, where the probabilities are taken over both
the internal (public and private) randomness of the protocol � and over the randomness of
our marginal distribution µ. Let q and w be such that 4/q + 4(” + ‘)/w Æ 1 and w Æ 1.
Then, we have that

I((X, Y ); �(X, Y )|Z, D, B = 0) Ø (1 ≠ 4
q

≠ 4(” + ‘)
w

) (1 ≠ w)
2 log2( 1

3/n + q‘
) ≠ O(1). (2)

For ” Æ 1/32 and ‘ Æ 1/32, setting w = 16(” + ‘) and q = 16 in inequality (2) yields

I((X, Y ); �(X, Y )|Z, D, B) = �(I((X, Y ); �(X, Y )|Z, D, B = 0)) = �(min(log n, log(1/‘)))≠O(1).
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Given Lemma 4.3, we can now complete the proof of Theorem 1.6.

Proof of Theorem 1.6. Since Hamn,d = Hamn,n≠d, it su�ces to prove the bound for d Æ
n/2. Applying Theorem 4.2 with f = Hamn/d,1, k = d and the distributions µ and ‹ given
above, we get that

ICµd,‘((Hamn/d,1)d|‹d) = d · �(ICµ,O(‘),O(‘/d)(Hamn/d,1|‹)).

By Lemma 4.3, we also have that

ICµ,O(‘),O(‘/d)(Hamn/d,1|‹) = �(min(log(n/d), log(d/‘))) ≠ O(1).

Hence,
ICµd,‘((Hamn/d,1)d|‹d) = d · �(min(log(n/d), log(d/‘))) ≠ O(d).

Using the assumption that Hamn/d,1 is majority-hard, Theorem 1.6 now follows. J

Given Lemma 4.3, we can also complete the proof of Lemma 1.7.

Proof of Lemma 1.7. Let � be a randomized protocol that computes Hamn,1 with abortion
probability at most ” and error probability at most ‘, where the probabilities are taken over
both the internal (public and private) randomness of the protocol � and over the randomness
of our marginal distribution µ. We have that

ICµ(�) = Iµ(�(X, Y ); X|Y ) + Iµ(�(X, Y ); Y |X)
(a)
Ø I⁄(�(X, Y ); X|Y, D, B) + I⁄(�(X, Y ); Y |X, D, B)

Ø 1
4(I⁄(�(X, Y ); X|Y, D = 1, B = 0) + I⁄(�(X, Y ); Y |X, D = 0, B = 0))

= 1
4(I⁄(�(X, Y ); X|Z, D = 1, B = 0) + I⁄(�(X, Y ); Y |Z, D = 0, B = 0))

= 1
2I⁄(�(X, Y ); X|Z, D, B = 0)

(b)= �(min(log n, log(1/‘))) ≠ O(1).

where (a) follows from Fact 2.5 and the fact that I(�(X, Y ); (D, B)|X, Y ) = 0 and (b)
follows from Lemma 4.3. J

4.1 Proof of Lemma 4.3
We start by sketching the idea of the proof of Lemma 4.3 before giving the full proof.
We first note that the conditional information cost that we want to lower bound can be
expressed as an average, over a part of the input distribution, of a quantity that still carries
the randomness of the protocol. We show that most distance-1 input pairs are computed
correctly and have an expected error probability over their distance-3 “cousin pairs”3 of
at most O(‘). We can thus average over only such distance-1 input pairs at the cost of
a multiplicative constant-factor decrease in the lower bound. At this point, the remaining
randomness is due solely to the protocol. It turns out that we can deal with the corresponding
quantity in a similar way to how we dealt with the randomness in the proof of Lemma 1.3,
i.e., using the extended Gibbs’ inequality and the log-sum inequality. We now give the full
proof.

3
For a distance-1 input pair (züei, z), its distance-3 “cousin pairs” are those of the form (züeiüej , züe¸)

for j, ¸ œ [n]. Note that this step uses the two-sided nature of our new distribution.

APPROX/RANDOM’14
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Proof of Lemma 4.3. Let T be the set of all possible transcripts of �. By Lemma 3.7, we
have that4

I((X, Y ); �|Z, D, B = 0) = 1
2 E

zœ{0,1}n,iœ[n]

ÿ

tœT

Pr[�(z ü ei, z) = t] log Pr[�(z ü ei, z) = t]
Ej,¸œ[n] Pr[�(z ü ei ü ej , z ü e¸) = t]

= 1
2 E

zœ{0,1}n,iœ[n]
Ÿz,i

with

Ÿz,i :=
ÿ

tœT

Pr[�(z ü ei, z) = t] log Pr[�(z ü ei, z) = t]
Ej,¸œ[n] Pr[�(z ü ei ü ej , z ü e¸) = t] .

By the log-sum inequality, we have:

I Fact 4.4. For every (z, i) œ {0, 1}n ◊ [n], Ÿz,i Ø 0.

Let q and w be such that 4/q + 4(” + ‘)/w Æ 1 and w Æ 1.

I Definition 4.5 (Nice (z, i)-pairs). A pair (z, i) œ {0, 1}n ◊[n] is said to be nice if it satisfies
the following two conditions:
1. Pr�,j,lœ[n][�(z ü ei ü ej , z ü e¸) ”= Hamn,1(z ü ei ü ej , z ü e¸) and �(z ü ei ü ej , z ü

e¸) does not abort] is at most q‘.
2. Pr�[�(z ü ei, z)] ”= Hamn,1(z ü ei, z)] Æ w

The following lemma shows that most (z, i)-pairs are nice:

I Lemma 4.6. The fraction of pairs (z, i) œ {0, 1}n ◊ [n] that are nice is at least 1 ≠ 4/q ≠
4(” + ‘)/w.

Proof of Lemma 4.6. We have that

E
z,i

[ Pr
�,j,l

[�(z ü ei ü ej , z ü e¸) ”= Hamn,1(z ü ei ü ej , z ü e¸) and �(z ü ei ü ej , z ü e¸) does not abort]]

= Pr
z,i,�,j,l

[�(z ü ei ü ej , z ü e¸) ”= Hamn,1(z ü ei ü ej , z ü e¸) and �(z ü ei ü ej , z ü e¸) does not abort]

Æ 4 Pr
�,(x,y)≥µ

[�(x, y) ”= Hamn,1(x, y) and �(x, y) does not abort]

Æ 4‘.

Thus, by Markov’s inequality, the fraction of (z, i)-pairs for which

Pr
�,j,l

[�(züeiüej , züe¸) ”= Hamn,1(züeiüej , züe¸) and �(züeiüej , züe¸) does not abort] > q‘

is at most 4/q. Moreover, we have that

E
z,i

[Pr
�

[�(z ü ei, z) ”= Hamn,1(z ü ei, z)]] = Pr
�,z,i

[�(z ü ei, z) ”= Hamn,1(z ü ei, z)]

Æ 4 Pr
�,(x,y)≥µ

[�(x, y) ”= Hamn,1(x, y)]

Æ 4(” + ‘).

4
Note that given B = 0, (X, Y ) is a uniformly-random distance-1 pair. Thus,

I((X, Y ); �(X, Y )|Z, D, B = 0) is equal to the internal information complexity ICµ(�(X, Y )) in Lemma

3.7 up to a multiplicative factor of 2.
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Applying Markov’s inequality once again, we get that the fraction of (z, i)-pairs for which

Pr
�

[�(z ü ei, z) ”= Hamn,1(z ü ei, z)] Ø w

is at most 4(” + ‘)/w. By the union bound, we conclude that the fraction of (z, i)-pairs that
are nice is at least 1 ≠ 4/q ≠ 4(” + ‘)/w. J

Let N ™ {0, 1}n ◊ [n] be the set of all nice (z, i)-pairs. Using the fact that Ÿz,i Ø 0 for all z
and i (Fact 4.4), we get that:

I((X, Y ); �(X, Y )|Z, D, B = 0) Ø 1
2

|N |
n2n

E
(z,i)œN

#
Ÿz,i

$
. (3)

We have the following lemma:

I Lemma 4.7. For every (z, i) œ N , Ÿz,i Ø (1 ≠ w) log2( 1
3/n+q‘ ) ≠ O(1).

Proof of Lemma 4.7. Fix (z, i) œ N . Let T (=1) ™ T be the set of all transcripts that
declare the input pair to be at distance 1. Using the extended Gibbs’ inequality (Fact 3.6),

Ÿz,i =
ÿ

tœT (=1)

Pr[�(z ü ei, z) = t] log Pr[�(z ü ei, z) = t]
Ej,¸œ[n] Pr[�(z ü ei ü ej , z ü e¸) = t] ≠ ln 2.

Using the log-sum inequality, Definition 4.5 and the fact that x log2(x) Ø ≠0.6 for all
x œ [0, 1], we have that

Ÿz,i Ø (1 ≠ w) log2( 1 ≠ w

3/n + q‘
) ≠ ln 2 = (1 ≠ w) log2( 1

3/n + q‘
) ≠ O(1). J

Using Lemma 4.7 and Equation (3), we get

I((X, Y ); �(X, Y )|Z, D, B = 0) Ø |N |
n2n

(1 ≠ w)
2 log2( 1

3/n + q‘
) ≠ O(1)

Ø (1 ≠ 4
q

≠ 4(” + ‘)
w

) (1 ≠ w)
2 log2( 1

3/n + q‘
) ≠ O(1).

where the last inequality follows from Lemma 4.6. The second part of Lemma 4.3 follows
from that the fact that

I((X, Y ); �(X, Y )|Z, D, B) = 1
2

1
I((X, Y ); �(X, Y )|Z, D, B = 0)

+ I((X, Y ); �(X, Y )|Z, D, B = 1)
2

. J

5 Upper bounds on the complexity of Hamming distance

5.1 Information complexity upper bound
In this section, we describe and analyze the protocol that establishes the upper bound on
the information complexity of Hamn,d stated in Proposition 1.1. The protocol is described
in Protocol 1. The analysis of the protocol relies on some basic inequalities that follow from
a simple balls-and-bins lemma.

I Definition 5.1 (Dot product). The dot product between vectors in {0, 1}n is defined by
setting x · y =

qn
i=1 xiyi (mod 2).

APPROX/RANDOM’14
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Algorithm 1 Protocol for Hamn,d

Input. Alice is given x œ {0, 1}n and Bob is given y œ {0, 1}n.
Parameters. ‘ Ø 0, shared random string r.
Output. Hamn,d(x, y).

1: Alice and Bob use r to define a random k-partition P of [n].
2: Alice sets a Ω hP (x).
3: Bob sets b Ω hP (y).
4: Alice and Bob initialize c = 0.
5: for i = 1, . . . , n do
6: Alice and Bob exchange ai and bi.
7: If ai ”= bi, they both update c Ω c + 1.
8: If c > d, return 0.
9: end for

10: return 1.

I Definition 5.2 (Random partition). For any k < n, a random k-partition P of [n] is
obtained by defining k sets S1, . . . , Sk and putting each element i œ [n] in one of those sets
independently and uniformly at random. For k Ø n, we simply define P to be the complete
partition {1}, . . . , {n} of [n]. We associate the partition P with a family of k elements
–1, . . . , –k in {0, 1}n by setting the ith coordinate of –j to 1 i� i œ Sj.

I Definition 5.3 (Hashing operator). For any k Æ n, the k-hashing operator hP : {0, 1}n æ
{0, 1}k corresponding to the partition P = (–1, . . . , –k) of [n] is the map defined by hP : x ‘æ
(x · –1, . . . , x · –k).

I Lemma 5.4. Fix d Ø 1. If we throw at least d+1 balls into (d+2)2/” buckets independently
and uniformly at random, then the probability that at most d buckets contain an odd number
of balls is bounded above by ”.

Proof. Toss the balls one at a time until the number r of remaining balls and the number
t of buckets that contain an odd number of balls satisfy r + t Æ d + 2. If we toss all the
balls without this condition being satisfied, then in the end we have more than d + 2 > d + 1
buckets with an odd number of balls and the lemma holds. Otherwise, fix r, t be the values
when the condition r + t Æ d + 2 is first satisfied. Since r decreases by 1 everytime we toss a
ball and t can only go up or down by 1 for each ball tossed, and since originally r Ø d + 1,
we have d + 1 Æ r + t Æ d + 2. This implies that r Æ d + 2, that t Æ d + 2 and that if each of
the r remaining balls land in one of the (d+2)2/” ≠ t buckets that currently contain an even
number of balls, the conclusion of the lemma hold. The probability that this event does not
hold is at most

t

(d + 2)2/”
+ t + 1

(d + 2)2/”
+· · ·+ t + r ≠ 1

(d + 2)2/”
Æ rt + r(r ≠ 1)/2

(d + 2)2/”
Æ ”

( d+2
2 )2 + (d + 2)(d + 1)/2

(d + 2)2 Æ ”J

I Corollary 5.5. For every x, y œ {0, 1}n, the hashes a = hP (x) and b = hP (y) correspond-
ing to a random ((d + 2)2/‘)-partition P of [n] satisfy Hamn,d(a, b) = Hamn,d(x, y) with
probability at least 1 ≠ ‘.

Proof. Let S ™ [n] denote the set of coordinates i œ [n] on which xi ”= yi. The number
of coordinates j œ [(d + 2)2/‘] on which aj ”= bj corresponds to the number of parts of
the random partition P that receive an odd number of coordinates from S. This number
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corresponds to the number of buckets that receive an odd number of balls when |S| balls
are thrown uniformly and independently at random. When |S| Æ d, at most d buckets can
contain a ball (and thus an odd number of balls) and so the corollary always holds. When
|S| Ø d + 1, then by Lemma 5.4, the number of parts with an odd number of is also at least
d + 1 except with probability at most ‘. J

We are now ready to complete the proof of Proposition 1.1.

Proof of Proposition 1.1. Let us first examine the correctness of the protocol. When
‘ < n/(d + 2)2, the protocol never errs since the players output 1 only when they verify (de-
terministically) that their strings have Hamming distance at most d. When ‘ Ø n/(d + 2)2,
the protocol is always correct when Ham(d+2)2/‘,d(a, b) = Hamn,d(x, y). This identity al-
ways holds when the Hamming distance of x and y is at most d. And when the Hamming
distance of x and y is greater than d, the identity is satisfied with probability at least 1 ≠ ‘
by Corollary 5.4.

Let us now analyze the information cost of the protocol. Write m = min{n, (d + 2)2/‘}
to denote the length of the vectors a and b. Let �(x, y) denote the transcript of the protocol
on inputs x, y. Let µ be any distribution on {0, 1}n ◊ {0, 1}n. Let (X, Y ) be drawn from µ
and define A = hP (X), B = hP (Y ). By the data processing inequality, since I(�(X, Y ); X |
Y, A) = 0, the mutual information of �(X, Y ) and X given Y satisfies

I(�(X, Y ); X | Y ) Æ I(�(X, Y ); A | Y ) = I(�(A, B); A | B).

Furthermore, with d log m bits we can identify the first d coordinates i œ [m] for which
ai ”= bi and thereby completely determine �(A, B). So by Fact 2.1,

H(�(X, Y ) | Y ) Æ d log m.

The same argument also yields I(�(X, Y ); Y | X) Æ d log m, showing that the information
cost of the protocol is at most 2d log m. J

5.2 Communication complexity
Huang et al. [13], building on previous results by Yao [26] and by Gavinsky et al. [11], showed
that the randomized communication complexity of Hamn,d in the simultaneous message
passing (SMP) model is bounded above by RÎ,pub

1/3 (Hamn,d) = O(d log d). We simplify
their protocol and refine this analysis to give a general upper bound on the communication
complexity for arbitrary values of ‘.

I Theorem 5.6. Fix ‘ > 0. The randomized communication complexity of Hamn,d in the
simultaneous message passing model is bounded above by

RÎ,pub
‘ (Hamn,d) = O(min{d log n + log 1/‘, d log d/‘).

The proof of the theorem uses the following results.

I Lemma 5.7. RÎ,pub
‘ (Hamn,d) = O(d log n + log 1/‘).

Proof. Alice and Bob can generate q = log
!

n
Æd

"
+ log 1

‘ random vectors r1, . . . , rq œ {0, 1}n

and send the dot products x · r1, . . . , x · rq and y · r1, . . . , y · rq to the verifier, respectively.
The verifier then returns 1 i� there is a vector z œ {0, 1}n of Hamming weight at most d
such that x · rj = y · rj ü z · rj for every j œ [q]. When Ham(x, y) Æ d, the verifier always
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returns 1 since in this case x · rj = (y ü z) · rj = y · rj ü z · rj for some vector z of Hamming
weight at most d. And for any z œ {0, 1}n, when x ”= y ü z, the probability that the identity
x · rj = y · rj ü z · rj holds for every j œ [q] is 2≠q. So, by the union bound, the overall
probability that the verifier erroneously outputs 1 is at most

!
n

Æd

"
2≠q = ‘. J

I Lemma 5.8. RÎ,pub
‘ (Hamn,d) Æ RÎ,pub

‘/2 (Ham(d+2)2/‘,d).

Proof. Consider the protocol where Alice and Bob use the shared random string to generate
a (d + 2)2/‘-hash of their inputs x, y and then apply the protocol for Ham(d+2)2/‘,d with
error ‘/2. By Corollary 5.5, the probability that the hashed inputs a, b do not satisfy
Hamn,d(a, b) = Hamn,d(x, y) is at most ‘

2 . The lemma follows from the union bound. J

We can now complete the proof of the theorem.

Proof of Theorem 5.6. When ‘ Æ d/n, Alice and Bob simply run the protocol from the
proof of Lemma 5.7. When ‘ > d/n, Alice and Bob combine the protocol from the proof of
Lemma 5.8 with the protocol from Lemma 5.7 (with the parameter n set to (d + 2)2/‘). J

6 Applications and extensions

6.1 Property testing lower bounds
A Boolean property P is a subset of the set of functions mapping {0, 1}n to {0, 1}. A
function f has property P if f œ P . Conversely, we say that the function f is ‘-far from P if
|{x œ {0, 1}n : f(x) ”= g(x)}| Ø ‘2n for every g œ P . A (q, ‘, ”)-tester for P is a randomized
algorithm A that, given oracle access to some function f : {0, 1}n æ {0, 1}, queries the value
of f on at most q elements from {0, 1}n and satisfies two conditions:
1. When f has property P , A accepts f with probability at least 1 ≠ ”.
2. When f is ‘-far from P , A rejects f with probability at least 1 ≠ ”.
The query complexity of the property P for given ‘ and ” parameters is the minimum value
of q for which there is a (q, ‘, ”)-tester for P . We denote this query complexity by Q‘,”(P ).

The two properties we consider in this section are k-linearity and k-juntas. The function
f is k-linear i� it is of the form f : x ‘æ

q
iœS xi (mod 2) for some set S ™ [n] of size

|S| = k. (The k-linear functions are also known as k-parity functions.) The function f is a
k-junta if there is a set J = {j1, . . . , jk} ™ [n] of coordinates such that the value of f(x) is
determined by the values of xj

1

, . . . , xjk for every x œ {0, 1}n.
The upper bound in Corollary 1.9 is from [3]. The proof is obtained via a simple reduction

from the Hamming distance function, following the method introduced in [4].

I Corollary 6.1 (Unconditional lower bound of Corollary 1.9). Fix 0 < ” < 1
3 , 0 < ‘ Æ 1

2 , and
k Æ n/ log 1

” . Then Q‘,”(k-Linearity) = �(k log 1
” ) and Q‘,”(k-Juntas) = �(k log 1

” ).

Proof. Consider the following protocol for the Hamn,k function. Alice takes her input
x œ {0, 1}n and builds the function ‰A : {0, 1}n æ {0, 1} defined by ‰A : z ‘æ

qn
i=1 xizi

(mod 2). Similarly, Bob builds the function ‰B from his input y by setting ‰B : z ‘æqn
i=1 yizi (mod 2). Notice that the bitwise XOR of the functions ‰A and ‰B satisfies

‰A ü ‰B : z ‘æ
nÿ

i=1
(xi + yi)zi (mod 2) =

ÿ

iœ[n]:xi ”=yi

zi (mod 2).

The function Â := ‰A ü ‰B is ¸-linear, where ¸ is the Hamming distance of x and y. When
¸ Æ k, the function Â is a k-junta; when ¸ > k, then Â is 1

2 -far from all k-juntas. Let Alice
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and Bob simulate a q-query tester for k-juntas on Â by exchanging the values of ‰A(z) and
‰B(z) for every query z of the tester. If this tester succeeds with probability 1 ≠ ”, the
resulting protocol is a ”-error protocol for Hamn,k with communication cost at most 2q.
Therefore, by Theorem 1.2, Q‘,”(k-Juntas) Ø Rpub

” (Hamn,k) Ø �(k log 1
” ).

The lower bound for Q‘,”(k-Linearity) is essentially the same except that we use the extra
fact that the bound in Theorem 1.2 also holds even when we have the additional promise
that the Hamming distance between x and y is either exactly d or greater than d. J

The proof of the conditional lower bounds of Corollary 1.9 is identical except that we
appeal to the bound in Theorem 1.6 instead of the one in Theorem 1.2 in the conclusion of
the proof.

6.2 Parity decision tree complexity lower bounds
The proof of Corollary 1.10 is similar to the one in the last section. The details follow.

Proof of Corollary 1.10. Consider the following protocol for the Hamn,d function. Let z =
xüy œ {0, 1}n denote the bitwise XOR of Alice’s input x and Bob’s input y. The Hamming
weight of z is exactly the Hamming distance between x and y. Recall that a randomized
parity decision tree of depth d is a distribution over deterministic parity decision trees that
each have depth at most d. Alice and Bob can use their shared randomness to draw a tree
T from this distribution. Since for every S ™ [n], the parity of z on S, denoted zS , satisfies
zS = xS ü yS , Alice and Bob can determine the path of z through T by exchanging the
parities xS and yS for each query of the parity of z on the subset S ™ [n] of coordinates.
So they can determine the value of Hamn,d with error at most ‘ using 2Rü

‘ (Weightn,d)
bits of communication. The bounds in Corollary 1.10 follow directly from Theorems 1.2
and 1.6. J

6.3 Symmetric XOR functions
The key to the proof of Theorem 1.11 is the observation that the proof of Theorem 1.2
proves an even stronger statement: it shows that the same information complexity bound
also holds for the Hamn,dvs.d+2 promise version of the Hamn,d function.

I Theorem 6.2 (Strengthening of Theorem 1.2). For every 1 Æ d < n ≠ 1 and every 0 Æ ‘ <
1/2,

IC(Hamn,dvs.d+2, ‘) = �(min{log
!

n
d

"
, d log(1/‘)}).

Proof. The proof is identical to that of Theorem 1.2. The only additional observation that
we need to make is that in our argument, our choice of µk ensures that we only ever examine
the behavior of the protocol on inputs of the ANDd ¶ Hamn,1vs.3 function in which at most
1 of the d inputs to the Hamn,1vs.3 function have Hamming weight 3. J

The proof of Theorem 1.11 follows immediately from Theorem 6.2.

Proof of Theorem 1.11. Consider any ‘-error protocol P for the symmetric XOR function
f . Let d = �+2(f). Then since f(d) ”= f(d + 2), P must distinguish between the cases
where Alice and Bob’s inputs have Hamming distance d from those where their inputs have
Hamming distance d + 2. Thus, the protocol P (or the protocol P Õ obtained by flipping the
outputs of P ) is an ‘-error protocol for Hamn,dvs.d+2 and so it must have information cost
at least IC(Hamn,dvs.d+2, ‘) and the bound follows from Theorem 6.2. J
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7 Direct-sum theorems for Hamming distance

It was shown in [10] that, when the error rate is viewed as a parameter, the equality function
violates the direct-sum theorem for randomized communication complexity in the following
sense:

I Definition 7.1. We say that a function f : {0, 1}m ◊ {0, 1}m æ {0, 1} violates the direct-
sum theorem for randomized communication complexity if

Rk
‘ (fk) = o(kR‘(f))

where Rk
‘ (fk) denotes the randomized communication complexity of computing f such that

on each tuple of k input pairs, the error probability on each input pair is at most ‘.

Braverman [5] showed that his constant upper bound on the information complexity of
EQ (which holds for any error rate ‘ Ø 0) implies a di�erent proof of the fact that EQ
violates the direct-sum theorem for randomized communication complexity when ‘ = o(1) is
viewed as a parameter. We next observe that our tight characterization of the information
complexity of HDm

1 given in Proposition 1.1 and Theorem 1.2 implies that HDm
1 satisfies the

direct-sum theorem for randomized communication complexity whenever m = �(poly(1/‘))
and violates it otherwise (i.e., when log m = o(log(1/‘))). This can be seen as a further
indication of the qualitative di�erence between the information complexity of EQ and that
of HDm

1 in the small error regime.

I Proposition 7.2. HDm
1 satisfies the direct-sum theorem for randomized communica-

tion complexity whenever m = �(poly(1/‘)) and violates it otherwise (i.e., when log m =
o(log(1/‘))).

Proof. We first recall the following theorem of Braverman [5]:

I Theorem 7.3 ([5]). For any function f and any error rate ‘ > 0, IC(f, ‘) = limkæŒ
Rk

‘ (fk)
k .

Applying Theorem 7.3 with f = HDm
1 , we get that that Rk

‘ ((HDm
1 )k) = �(kIC(HDm

1 , ‘)).
Proposition 1.1 and Theorem 1.2, we have that IC(HDm

1 , ‘) = �(min(log m, log(1/‘))).
Hence, we get that

Rk
‘ ((HDm

1 )k) = �(k min(log m, log(1/‘)))

On the other hand, we have that R‘(HDm
1 ) = �(log(1/‘)) 5. So we conclude that

Rk
‘ ((HDm

1 )k) = �(kR‘(HDm
1 ))

whenever m = �(poly(1/‘)) and

Rk
‘ ((HDm

1 )k) = o(kR‘(HDm
1 ))

whenever log m = o(log(1/‘)). J

5
This follows from the fact that R‘(EQ) = �(log(1/‘)) and by padding.
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8 Low information protocols for ANDk ¶ Hamn/k,1 and ORk ¶ Hamn/d,1

In this section, we give protocols for ANDk ¶ Hamn/k,1 and ORk ¶ Hamn/k,1 with O(k)
information cost. For ANDk ¶ Hamn/k,1, the following theorem implies a protocol with
O(k) information cost for any constant error parameter ‘ > 0.

I Theorem 8.1. For any error parameter ‘ > 0,

IC(ANDk ¶ Hamn/k,1, ‘) = O(k min(log(n/k), log(1/‘))).

Proof. The description of the protocol is given below.

Algorithm 2 Protocol for ANDk ¶ Hamn/k,1

Input. Alice is given x œ {0, 1}n and Bob is given y œ {0, 1}n

Output. ANDk ¶ Hamn/k,1(x, y)
1: Run in parallel k copies of Algorithm 1 for Hamn/k,1 with error parameter ‘ on

(x(1), y(1)), . . . , (x(k), y(k)).
2: Declare ANDk ¶ Hamn/k,1(x, y) to be 1 if and only if all the (x(i), y(i))’s were declared

to be at distance 1.

If ANDk ¶ Hamn/k,1(x, y) = 1, then all the (x(i), y(i))’s are at distance 1. Since Algo-
rithm 1 for Hamn/k,1 always outputs the correct answer on distance-1 input pairs, each
(x(i), y(i)) will be declared to be at distance 1 and hence the above protocol will out-
put the correct answer for ANDk ¶ Hamn/k,1(x, y) (namely, 1) with probability 1. If
ANDk ¶ Hamn/k,1(x, y) = 0, then there exists an (x(i), y(i)) that is at distance 3. Then,
the copy of Algorithm 1 for Hamn/k,1 running on (x(i), y(i)) will declare this pair to be at
distance 3 with probability at least 1 ≠ ‘. Thus, the above protocol will output the correct
answer for ANDk ¶ Hamn/k,1(x, y) (namely, 0) with probability at least 1 ≠ ‘. Fix a dis-
tribution µ on the input pair (X, Y ) with support {0, 1}2n and let µ(i) denote the marginal
of µ over (X(i), Y (i)) for every i œ [k]. Denoting by � the transcript of the above protocol,
its information cost ICµ(�) := Iµ(�; X|Y ) + Iµ(�; Y |X) is upper-bounded by the following
lemma:

I Lemma 8.2. ICµ(�) = O(k min(log(n/k), log(1/‘))).

Proof. Denote by �(1), . . . , �(k) the transcripts corresponding to the k parallel runs of
Algorithm 1 for Hamn/k,1 on the input pairs (x(1), y(1)), . . . , (x(k), y(k)) respectively. Since
�(1), . . . , �(k) completely determine �, we have that

ICµ(�) = Iµ(�(1), . . . , �(k); X|Y ) + Iµ(�(1), . . . , �(k); Y |X).

Since each of the protocols �(1), . . . , �(k) - as well as � - is completely symmetric with re-
spect to Alice and Bob, it is enough to show that Iµ(�(1), . . . , �(k); X|Y ) = O(k min(log(n/k), log(1/‘))).
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By the chain rule for mutual information, we have that:

Iµ(�(1), . . . , �(k); X|Y ) =
kÿ

i=1
Iµ(�(i); X|Y, �(<i))

=
kÿ

i=1

kÿ

j=1
Iµ(�(i); X(j)|Y, �(<i), X(<j))

(a)=
kÿ

i=1
Iµ(�(i); X(i)|Y, �(<i), X(<i))

(b)=
kÿ

i=1
Iµ(i)

(�(i); X(i)|Y (i))

(c)=
kÿ

i=1
O(min(log(n/k), log(1/‘)))

= O(k min(log(n/k), log(1/‘)))

where (a) follows from �(i) and X(j) being conditionally independent given Y, �(<i), X(<j)

for any i ”= j œ [k], (b) follows from (�(i), X(i)) being conditionally independent of Y ( ”=i), �(<i), X(<i)

given Y (i) and (c) follows from Proposition 1.1. J

The previous lemma implies that for constant ‘, the information cost of protocol � is
O(k). The following lemma notes that, in this case, even the communication complexity is
O(k):

I Lemma 8.3. For constant ‘, the communication complexity of Algorithm 2 is O(k).

Proof. Note that for constant ‘, Theorem 5.6 implies that each run of Algorithm 1 has
communication cost O(1). Since Algorithm 2 performs k such calls to Algorithm 1, the
communication cost of Algorithm 2 is hence O(k). J

J

I Theorem 8.4. For every constant ‹ œ (0, 1), CC(ORk ¶ Hamn/k,1, 1/k‹) = O(k).

Proof. The description of the protocol is given in Algorithm 3.
If ORk ¶ Hamn/k,1(x, y) = 1, then there is an input pair (x(i), y(i)) (for some i œ [k])

that is at distance 1. Since Protocol 1 for Hamn/k,1 always outputs the correct answer on
distance-1 input pairs, (x(i), y(i)) will be declared to be at distance 1 in each iteration and
hence the above protocol will output the correct answer for ORk ¶ Hamn/k,1(x, y) (namely,
1) with probability 1. If ORk ¶ Hamn/k,1(x, y) = 0, then the protocol outputs the correct
answer with probablity at least 1 ≠ ‘ as shown by the following lemma:

I Lemma 8.5. If ORk ¶ Hamn/k,1(x, y) = 0, then the probability that the protocol outputs
a wrong answer is at most 1/kc≠1 + ke≠ ÷2k1≠c/2

3 .

Proof. If ORk¶Hamn/k,1(x, y) = 0, all the (x(i), y(i))’s are at distance 3. Conditioned on the
fact that the protocol didn’t halt and output 1 during the for loop, the probability that the
protocol outputs an incorrect answer is, by the union bound, at most k ◊ 1/2t = 1/kc≠1. To
complete the proof, we now upper bound the probability that the protocol halts and outputs
1 during the for loop. Note that the expected number of input pairs that are marked as
distance-1 pairs after the i-th iteration is k/2i. By the Cherno� bound, the probability that
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Algorithm 3 Algorithm for ORk ¶ Hamn/k,1

Input. Alice is given x œ {0, 1}n and Bob is given y œ {0, 1}n

Output. ORk ¶ Hamn/k,1(x, y)
1: Let c := ‹ + 1, ÷ := 1/4, t := c log2 k, and h := t/2.
2: Mark all k input pairs (x(1), y(1)), . . . , (x(k), y(k)) as distance-1 pairs.
3: Initialize the number u of inputs pairs that are marked to be at distance 1: u = k.
4: for i = 1 : t do
5: Run in parallel u copies of Protocol 1 for Hamn/k,1 with error parameter ‘Õ = 1/2

on each of the input pairs (x(i), y(i)) that are still marked as distance-1 pairs.
6: If an input pair is declared to be at distance 3, mark it as a distance-3 pair.
7: If i Æ h and the number u of input pairs that are still marked as distance-1 pairs is

larger than (1 + ÷)k/2i, halt and declare ORk ¶ Hamn/k,1(x, y) to be 1.
8: end for
9: Declare ORk ¶ Hamn/k,1(x, y) to be 0 if and only if all the (x(i), y(i))’s are marked as

distance-3 pairs.

after the i-th iteration, the number of distance-1 marked pairs is larger than (1 + ÷)k/2i is
at most

e≠÷2k/(3◊2i) Æ e≠÷2k/(3◊2h) = e≠ ÷2k1≠c/2

3 .

By the union bound, the probability that the algorithm halts and outputs 0 during the for
loop is at most ke≠ ÷2k1≠c/2

3 . By another union bound, the probability that the protocol
outputs an incorrect answer is at most 1/kc≠1 + ke≠ ÷2k1≠c/2

3 . J

I Lemma 8.6. For any constant c œ (1, 2), the communication complexity of the above
protocol is O(1).

Proof. Consider the execution of Protocol 3. For every i œ [h], the number of calls to
Protocol 1 is at most k(1 + ÷)/2i≠1. For every i œ {h + 1, . . . , k}, the number of calls of
Protocol 1 is at most k(1 + ÷)/2h. Hence, the total number of calls to Protocol 1 is at most:

hÿ

i=1

k(1 + ÷)
2i≠1 +hk(1 + ÷)

2h
Æ 2k(1+÷)+ck(1 + ÷) log2 k

2
ck log

2

k
2

+1
= 2k(1+÷)+c(1 + ÷)

2 k1≠c/2 log2 k = �(k)

where the last equality uses the fact that c œ (1, 2) is a constant. By Theorem 5.6, the
communication cost of any run of Protocol 1 with noise rate ‘Õ = 1/2 is O(1). Hence, the
communication cost of Protocol 3 is O(1). J

Using Lemma 8.5 (and the paragraph preceding it), Lemma 8.6 and the fact that ‹ = c≠1
is a constant in (0, 1), the statement of Theorem 8.4 now follows. J
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A Slight generalization of the direct-sum theorem of [16]

We start by recalling the direct-sum theorem of Molinaro, Woodru� and Yaroslavtsev ([16]),
which is stated in terms of the following notion of information complexity:

I Definition 1.1 (MWY notion of information complexity with abortion). Let f : X ◊ Y æ
Z be a function. Then, ICµ,–,”,‘(f |‹) is the minimum conditional information cost of a
randomized protocol that with probability at least 1 ≠ – gives a deterministic protocol that
computes f with abortion probability at most ” with respect to µ and with conditional error
probability given no abortion at most ‘ with respect to µ.

I Theorem 1.2 ([16]). Let X œ X , Y œ Y and ⁄ be a distribution on (X, Y, D) with
marginals µ over (X, Y ) and ‹ over D such that for every value d of D, X and Y are
conditionally independent given D = d. For any f : X ◊ Y æ Z, k œ N and ” Æ 1/3,
ICµk,”(fk|‹k) = k · �(ICµ,1/20,1/10,”/k(f |‹))

We now give the slight generalization of the MWY theorem that is used to prove Theo-
rem 1.6.

I Theorem 4.2 (Slight generalization of the direct-sum theorem of [16]). Let X œ X , Y œ Y
and ⁄ be a distribution on (X, Y, D) with marginals µ over (X, Y ) and ‹ over D such that
for every value d of D, X and Y are conditionally independent given D = d. For any
f : X ◊ Y æ Z, k œ N and ‘ Æ 1/3, ICµk,‘(fk|‹k) = k · �(ICµ,O(‘),O(‘/k)(f |‹)).

Proof. For every i œ [k], we denote by Wi the pair (Xi, Yi) and by f(W<i) the tuple
(f(W1), . . . , f(Wi≠1)).

I Definition 1.3 (Good indices). An index i œ [k] is said to be good if

Pr
µ,�

[�i(W ) = f(Wi)|�<i(W ) = f(W<i)] = 1 ≠ O(‘/k)

I Lemma 1.4. At least half of the indices i œ [k] are good.

Proof. Follows from averaging and the fact that

Pr
µ,�

[�(W ) = f(W )] =
kŸ

i=1
Pr
µ,�

[�i(W ) = f(Wi)|�<i(W ) = f(W<i)] Ø 1 ≠ ‘. J

I Definition 1.5 (Reasonable prefixes). Fix a good index i œ [k]. A prefix w<i is said to be
reasonable if

APPROX/RANDOM’14
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1. I(�(W ); W |‹k, W<i = w<i) = O(I(�(W ); W |‹k))
2. Prµ,�[�<i(W ) = f(W<i)|W<i = w<i] = 1 ≠ O(‘)
3. Prµ,�[�i(W ) = f(Wi)|�<i(W ) = f(W<i), W<i = w<i] = 1 ≠ O(‘/k)

I Lemma 1.6. For every good index i œ [k], a random prefix w<i is reasonable with proba-
bility at least 1/2.

Proof. Follows from 3 applications of Markov’s inequality, the union bound and su�ciently
large constants in the O(·) notations. J

I Definition 1.7 (Acceptable fixings d≠i). Fix a good index i œ [k] and a reasonable prefix
w<i. A fixing d≠i of D≠i is said to be acceptable if
1. I(�(W ); W |‹k, W<i = w<i, D≠i = d≠i) = O(I(�(W ); W |‹k, W<i = w<i))
2. Prµ,�[�<i(W ) = f(W<i)|W<i = w<i, D≠i = d≠i] = 1 ≠ O(‘)
3. Prµ,�[�i(W ) = f(Wi)|�<i(W ) = f(W<i), W<i = w<i, D≠i = d≠i] = 1 ≠ O(‘/k)

I Lemma 1.8. Fix a good index i œ [k] and a reasonable prefix w<i. Then, a random fixing
d≠i of D≠i is acceptable with probability at least 1/2.

Proof. Follows from 3 applications of Markov’s inequality, the union bound and su�ciently
large constants in the O(·) notations. J

I Lemma 1.9. Fix a good index i œ [k], a reasonable prefix w<i and an acceptable fixing
d≠i. Then, we have that:

I(�(W ); W |‹k, W<i = w<i, D≠i = d≠i) Ø ICµ,O(‘),O(‘/k)(Hamn,1|‹)

Proof. The new protocol �Õ simulates the old protocol with W<i = w<i and D≠i = d≠i

hardwired and it doesn’t use any public randomness beyond that of the old protocol. Hence,

I(�(W ); W |‹k, W<i = w<i, D≠i = d≠i) Ø I(�Õ(Wi); Wi|‹). J

The lemma now follows from the chain rule for mutual information and Lemmas 1.4, 1.6
and 1.8. J
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