
Beyond Set Disjointness: The Communication Complexity
of Finding the Intersection

Joshua Brody
Swarthmore College

brody@cs.swarthmore.edu

Amit Chakrabarti
Dartmouth College

ac@cs.dartmouth.edu

Ranganath Kondapally
Dartmouth College

rangak@cs.dartmouth.edu
David P. Woodruff

IBM Almaden
dpwoodru@us.ibm.com

Grigory Yaroslavtsev
Brown University, ICERM
grigory@grigory.us

ABSTRACT
We consider the following fundamental communication prob-
lem - there is data that is distributed among servers, and the
servers want to compute the intersection of their data sets,
e.g., the common records in a relational database. They
want to do this with as little communication and as few
messages (rounds) as possible. They are willing to use ran-
domization, and fail with a tiny probability. Given a pro-
tocol for computing the intersection, it can also be used to
compute the exact Jaccard similarity, the rarity, the number
of distinct elements, and joins between databases. Comput-
ing the intersection is at least as hard as the set disjointness
problem, which asks whether the intersection is empty.

Formally, in the two-server setting, the players hold sub-
sets S, T ⊆ [n]. In many realistic scenarios, the sizes of S
and T are significantly smaller than n, so we impose the con-
straint that |S|, |T | ≤ k. We study the minimum number of
bits the parties need to communicate in order to compute
the intersection set S ∩ T , given a certain number r of mes-
sages that are allowed to be exchanged. While O(k log(n/k))
bits is achieved trivially and deterministically with a sin-
gle message, we ask what is possible with more than one
message and with randomization. We give a smooth com-
munication/round tradeoff which shows that with O(log∗ k)
rounds, O(k) bits of communication is possible, which im-
proves upon the trivial protocol by an order of magnitude.
This is in contrast to other basic problems such as computing
the union or symmetric difference, for which Ω(k log(n/k))
bits of communication is required for any number of rounds.
For two players, known lower bounds for the easier problem
of set disjointness imply our algorithms are optimal up to
constant factors in communication and number of rounds.
We extend our protocols to m-player protocols, obtaining
an optimal O(mk) bits of communication with a similarly
small number of rounds.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’14, July 15–18, 2014, Paris, France.
Copyright 2014 ACM 978-1-4503-2944-6/14/07 ...$15.00.
http://dx.doi.org/10.1145/2611462.2611501 .

1. INTRODUCTION
Communication complexity [27] quantifies the communi-

cation necessary for two or more players to compute a func-
tion, where each player holds only a portion of the func-
tion’s input. This model is widely studied, with applications
in circuit complexity [24], combinatorial auctions [20], com-
pressed sensing [2], data streams [1], and many other areas.
We refer the reader to the book by Kushilevitz and Nisan
[18] for a thorough treatment of the subject, which we only
briefly describe here.

For randomized protocols, there are two well-studied and
closely-related models. In the common random string model
the players share an infinite string of independent unbiased
coin tosses, and the players are otherwise deterministic. The
correctness requirement is that for every input pair x, y, the
output of Alice and Bob is equal to f(x, y) with probability
at least 1− δ, for some specified δ > 0, where the probabil-
ity is taken over the shared random string. We let Rδ(f) be
the minimum, over protocols in the common random string
model satisfying the correctness protocol for f , of the max-
imum number of bits exchanged by the protocol over all in-
puts and shared random strings. For brevity, we let R(f) =
R1/3(f). We note that a 2/3 success probability can be am-
plified to 1 − ε for an arbitrarily small constant ε > 0 by
incurring a constant factor overhead in communication.

In the private random string model, the players do not
share a random string, but rather are allowed to be ran-
domized using private randomness. By a result of Newman
[19], any problem that can be solved in the common ran-
dom string model can be solved in the private random string
model, adding only O(log log T) to the communication com-
plexity, where T is the number of different inputs to the
players. One unfortunate aspect of this reduction is that it
is non-constructive in the sense that for each input length
n, the protocol used is either hardwired an advice string
that depends on n, or the players must search for the advice
string, which doesn’t require communication, but can result
in unnecessary computation. We give our upper bounds
in the common random string model, but describe how to
translate them into constructive protocols in the private ran-
dom string model, preserving optimality.

Besides the total communication, another well-studied re-
source is the total number of messages exchanged between
the two players, known as the round complexity. In certain
applications a server may not always be online, resulting in a
significant delay between messages. There may also be unde-

sirable overhead in the transmission of each message. Thus,
it is important to not only achieve optimal communication,
but also an optimal number of rounds for a given amount
of communication. We use D(r)(f) and R(r)(f) to denote
the deterministic and randomized communication complex-
ity (in the common random string model) for protocols re-
stricted to using at most r rounds.

One of the most well-studied problems in communication
complexity is the disjointness function DISJnk (S, T). In this
problem, Alice has an input set S ⊆ [n] of size at most
k, Bob has an input set T ⊆ [n] of size at most k, and
DISJnk (S, T) = 1 iff |S ∩ T | = 0. H̊astad and Wigderson
[15] showed that R(DISJnk) = Θ(k). The lower bound of
Ω(k) follows by taking known lower bounds for set disjoint-
ness without a cardinality restriction on S and T , due to
Kalysundaram and Schnitger [16], simplified by Razborov
[25] and Bar-Yossef et al. [3], and combining them with a
padding argument. The upper bound of O(k) is due to a
protocol given by H̊astad and Wigderson, which they also
remark was known and used many years ago [22].

In this paper we are interested in a seemingly much harder
problem than the disjointness function. Namely, we are in-
terested in recovering the entire set intersection S∩T , rather
than only deciding if |S ∩ T | = 0. We call this problem the
INTk problem. Computing the intersection or the size of
the intersection of two sets is a fundamental problem in com-
puter science, with applications to distributed databases, in-
cluding computing joins, finding duplicates, measuring Jac-
card similarity, and computing rarity [9]; for more details on
these applications, see below. We note that a recent work
of Pagh et al. [21] studies approximating the size of the
set intersection in the 1-way communication model, while
we seek to recover the actual intersection and allow 2-way
communication.

By the lower bound for the disjointness function, we have
thatR(INTk) = Ω(k), which holds for any number of rounds.
Also, Alice and Bob can deterministically exchange their
inputs using only O(k log(n/k)) bits of communication, so

D(1)(INTk) = O(k log(n/k)). They can also first hash the
elements in their sets to O(log k)-bit strings, and exchange
the hashed values, from which they can decide which el-
ements are in the intersection with probability 1 − 1/kC ,
for an arbitrarily large constant C > 0. This means that
R(1)(INTk) = O(k log k), which is optimal sinceR(1)DISJnk =
Ω(k log k) [8, 7].

This was extended in [26] to interpolate between the one-
round and unbounded-round situations, giving an r-round
upper bound of O(k log(r) k). Both [15] and [26] work by
interpreting the public coin as a sequence of sets and having
Alice or Bob send the index of the first set in this sequence
containing her or his set. If S ∩ T = ∅, then if the sets in
the public coin were uniformly random and Alice sends the
index of a set Z to Bob, w.h.p. |Z ∩ T | ≈ |T |/2, and so
in O(log k) rounds they can solve k-disj. In [26] the public
coin is instead interpreted as a list of random sparse sets,
so now if S ⊆ Z, |Z ∩ T | � |T |/2, and so in fewer rounds
they can solve k-disj, at the cost of larger communication
per round. These protocols seem specific to k-disj, and we
do not know how to adapt them to the intersection problem,
the main difficulty being in handling large |S ∩ T |.

A somewhat related problem is that of computing k copies
of the equality function EQnk . In this problem, Alice has k
strings x1, . . . , xk ∈ {0, 1}n, Bob has k strings y1, . . . , yk ∈

{0, 1}n and they wish to compute EQnk (x1, . . . , xk, y1, . . . , yk),
a length-k bit vector, where the i-th bit is 1 iff xi = yi.
Feder, Kushilevitz, Naor, and Nisan [12] show thatR(EQnk) =
Θ(k). One unfortunate aspect of their protocol is that the

number of rounds they achieve is Ω(
√
k), as their protocol

seems to be inherently sequential.
We observe in Section 3.1 below that by hashing into buck-

ets, given a protocol for EQnk , we can build a protocol for
the INTk problem. Plugging in the protocol of Feder et al.,
we obtain a randomized protocol for INTk with the optimal
O(k) bits of communication in Theorem 3.1. However, the

round complexity is O(
√
k). Another way of obtaining the

optimal O(k) bits of communication is to use a technique of
Braverman and Rao to compress a protocol to its so-called
internal information cost [5]. For the INTk problem, the
internal information cost is O(k), and so this results in a
protocol with the optimal O(k) bits of communication, with
a much smaller O(log k) number of rounds. It may seem
plausible that one can combine the hashing technique we use
in Section 3.1 together with O(k) invocations of the recent
round-optimal protocols for EQn [6], each with error proba-
bility O(1/k). However, with such low error probability one
invocation of the protocol of [6] requires Ω(log k) communi-
cation for any number of rounds, even though the expected
communication for the simpler task of verifying that two
unequal inputs are indeed not equal with error probability
O(1/k), can be smaller.

Our Results: In this paper we give a new randomized pro-
tocol for INTk which achieves the optimal O(k) bits of com-
munication, and simultaneously achieves O(log∗ k) number
of rounds, where log∗ k is the iterated logarithm function,
that is the number of times the logarithm function must
be iteratively applied before the result is at most 1. Our
number of rounds provides a significant improvement on the
earlier O(log k) rounds needed to achieve the optimal O(k)
bits of communication given in previous work.

We also provide a more refined tradeoff, showing that with
O(r) rounds, one can achieve communication O(k log(r) k),

where log(r) k is the function obtained by iteratively apply-
ing the logarithm function r times (e.g., log(0) k = k, log(1) k =

log k, log(2) k = log log k, etc.). Our protocols work in the
common random string model, but can be turned into con-
structive protocols (i.e., without using Newman’s theorem)
in the private random string model, incurring an additive
O(log logn) bits of communication with no increase in the
number of rounds.

Next we extend this to the setting in which there are m
players in the private messages model [4, 23] and give a pro-

tocol with O(k log(r) k) average communication per player,
expected number of rounds O(r · max(1, logm

k
)), and error

probability 1 − 1/2k. We give a similar guarantee with a
worst-case communication bound ber player.

Our protocols for two players are communication-optimal,
up to a constant factor in the number of rounds r, in light
of a recent Ω(k log(r) k) communication lower bound for the
DISJnk problem [26]. Form players andO(log∗ k·max(1, logm

k
))

rounds, our O(mk) communication is also optimal up to con-
stant factors [4, 23].

Since EQnk is also a special case of INTk (Fact 2.1), we
also significantly improve the round complexity of Feder et
al. [12].

Applications: Set-intersection and list-intersection are very
basic problems in databases, occurring in data mining appli-
cations, text analytics, and evaluation of conjunctive queries.
They are also key operations in enterprise and web search.
We refer the reader to a recent sample of database theory
using the set-intersection primitive [10, 28, 13, 11]. While
these papers focus on the computational costs of set-intersection,
given the emergence of cloud computing and distributed
databases, the communication cost is just as important.
A quite basic problem, such as computing the join of two
databases held by different servers, requires computing an
intersection, which one would like to do with as little com-
munication and as few messages as possible.

Prior to our work, it was not even known how to compute
the size |S∩T | of the intersection with O(k) communication
and fewer than O(log k) rounds. Given our upper bound
for set intersection, we significantly improve the communi-
cation/round tradeoffs for computing |S ∩ T |. Since com-
municating |S| and |T | can be done in one-round, this gives
the first protocol for computing the size |S ∪T | of the union
with our communication/round tradeoff. This in turn gives
the first protocol for computing the exact Jaccard similarity
|S∩T |
|S∪T | , exact Hamming distance, exact number of distinct

elements, and exact 1-rarity and 2-rarity [9].

Our Technique: Our upper bound uses hashing and ver-
ification. First consider the following toy protocol: there
is a hash function h : [n] → [k/ log k] that the two players
share. For each i ∈ [k/ log k], the players run a set intersec-
tion protocol on Si = {x ∈ S | h(x) = i} and Ti = {y ∈
T | h(y) = i}. To do so, note that with high probability, si-
multaneously for all i ∈ [k/ log k], |Si| = O(log k) and |Ti| =
O(log k). Alice and Bob now agree on a hash function gi :
[n] → [log3 k]. If Alice sends gi(x) to Bob for each x ∈ Si,
then Bob can compute gi(y) for each y ∈ Ti and check if
gi(y) is in the list of hashed elements that Alice sent. Bob
can similary send the gi(y) values to Alice. Both parties
therefore obtain candidate sets IA ⊆ Si and IB ⊆ Ti, re-
spectively, for the intersection Si ∩ Ti. The communication
for a given i ∈ [k/ log k] is O(log k log log k) and the correct-
ness probability is 1 − 1

Ω(log k)
. An important observation

now is that IA and IB contain Si ∩ Ti with probability 1.
Therefore, if IA = IB , then in fact IA = IB = Si ∩ Ti. By
spending an additional O(log k) bits of communication, Al-
ice and Bob can run an equality test on IA and IB , which
one should think of as a “verification test”, which succeeds
with probability 1 − 1

kC
, for an arbitrarily large constant

C > 0. Whenever the equality test succeeds, Alice and
Bob can conclude IA = IB = Si ∩ Ti, since all such equal-
ity tests simultaneously succeed with very high probability.
For the values of i ∈ [k/ log k] for which the corresponding
equality test detects that IA 6= IB , then the players re-run
the set intersection protocol on Si and Ti. The expected
number of re-runs for each i ∈ [k/ log k] is less than 1, and
so the overall expected communication is at most 2k/ log k ·
O(log k log log k) = O(k log log k), which can be made worst-
case by terminating the protocol if it consumes more than a
constant factor times its expected communication cost.

To improve the communication futher, we instead hash
into k buckets using a hash function h, and build a “veri-
fication tree” with these k buckets as the leaves. The tree
has r levels, where r is the number of rounds we seek to

achieve. For 2 ≤ h ≤ r, the nodes with height h have
log(r−h) k/ log(r−h+1) k children, while the nodes with height

1 (the parents of the leaves) have log(r−1) k children. For a
given i ∈ [k], define Si and Ti as before. For each i ∈ [k],
we run a set intersection protocol on Si and Ti, now with
only constant expected communication. For a node with
height 1, we have a candidate set intersection for each of its
log(r−1) k children. We concatenate these log(r−1) k candi-
date intersections as strings, and verify they are equal with
a single equality test. If the equality test succeeds, then we
proceed to the next level in the tree. At a node v in a given
level of the tree, we perform a single equality test on all can-
didate intersections of leaves in the subtree T (v) rooted at
v. If the equality test fails at v, we re-run the set intersec-
tion protocol at all leaves in T (v). By carefully choosing the
correctness probabilty of the equality tests run at different
levels in the tree, we are able to inductively show the ex-
pected communication until the root succeeds is O(k), and
the number of rounds is O(r). Detailed description of the
protocol and analysis is given in Section 3.3, which gives our
main result:

Theorem 1.1. For r > 0 there exists an 6r-round com-
munication protocol for INTk with total expected communi-
cation O(k log(r) k) and success probability 1− 1/poly(k).

It remains open whether there exists an r-round protocol
with communication O(k log(r) k).

2. DEFINITIONS AND PRELIMINARIES
We will use the following definition of the iterated loga-

rithm functions log(i) z. Let log(0) z = z and for an integer

i ≥ 1 let log(i) z = log
(

log(i−1) z
)

.

Let EQn denote the communication problem of solving
Equality on binary strings of length n. Let EQn

k denote
the communication problem, corresponding to k indepen-
dent instances of EQn. Let INTk denote the communication
problem of computing the intersection of two sets S, T ⊆ [n],
such that |S|, |T | ≤ k.

A simple reduction from EQn
k to INTk can be given as

follows. For an instance (x1, . . . , xk, y1, . . . , yk) of EQn
k an

instance of INTk is constructed by creating two sets of pairs
(1, x1), . . . (k, xk) and (1, y1), . . . (k, yk). The size of the in-
tersection between these two sets is exactly equal to the
number of equal (xi, yi) pairs. This fact for DISJnk can be
also found in [6].

Fact 2.1 ([6]). If there exists a protocol Π for INTk,
where the sets are drawn from a universe of size N ≥ kc for
c > 2 then there exists a protocol Π′ for EQn

k with the same
communication complexity and success probability for n =
blog(N

k
)c.

We will use the following fact about collision probability
of a randomly chosen hash function.

Fact 2.2. For any set S ⊆ [n] of size |S| ≥ 2 and i ≥ 0
a random hash function h : [n] → [t], where t = O(|S|i+2)
has no collisions with probability at least 1− 1/|S|i, namely
for all x, y ∈ S such that x 6= y it holds that h(x) 6= h(y).
Moreover, a random hash function satisfying such guarantee
can be constructed using only O(logn) random bits.

3. TWO-PARTY SET INTERSECTION
In this section we give upper bounds in both private and

public randomness model. In the private random string
model, the players do not share a random string, but rather
are allowed to be randomized using private randomness. By
a result of Newman [19], any problem that can be solved in
the common random string model can be solved in the pri-
vate random string model, adding only O(log log T) to the
communication complexity, where T is the number of dif-
ferent inputs to the players. One unfortunate aspect of this
reduction is that it is non-constructive in the sense that for
each input length n, the protocol used is either hardwired an
advice string that depends on n, or the players must search
for the advice string, which doesn’t require communication,
but can result in unnecessary computation. We give our
upper bounds in the common random string model, but de-
scribe how to translate them into constructive protocols in
the private random string model, preserving optimality.

We start by describing a simple protocol with linear com-
munication in Section 3.1 and then show how to achieve an
optimum round vs. communication trade-off in Section 3.2
and Section 3.3.

3.1 O(
√
k)-round protocol

Theorem 3.1. There exists an O(
√
k)-round construc-

tive randomized protocol for INTk with success probability
1 − 1/poly(k). In the model of shared randomness the total
expected communication is O(k) and in the model of private
randomness it is O(k + log logn)

Proof. Let N = kc for a constant c > 2. First, the
parties pick a random hash function H : [n] → [N], which
gives no collisions on the elements in S ∪T with probability
at least 1− 1/Ω(kc−2). Thus, for the rest of the analysis we
can assume S, T ⊆ [N].

The parties pick a random hash function h : [N] → [k].
For a set U ⊆ [N] we use notation Ui = h−1(i) ∩ U for the
preimage of i in U . Using preimages Si and Ti the parties
construct a collection of instances of Equality, which con-
tains an instance of Equality(s, t) for every (s, t) ∈ Si×Ti
for every i ∈ [k].

Formally, for two sets of instances of a communication
problem C, say C1 = C(x1, y1), . . . , C(xi, yi) and C2 =
C(x′1, y

′
1), . . . , C(x′j , y

′
j) let’s denote their concatenation, which

corresponds to solving C1 and C2 simultaneously as

C1 t C2 = (x1, y1), . . . , (xi, yi), (x
′
1, y
′
1), . . . (x′j , y

′
j).

Let’s denote as Ei =
⊔

(s,t)∈(Si×Ti)
Eq(s, t) the collection of

instances of equality corresponding to hash value i. The
collection of all instances constructed by the parties is E =⊔k
i=1 Ei.
The expected number of instances E[|E|] is given as:

E[|E|] = E

[
k∑
i=1

|Si||Ti|

]
=

k∑
i=1

E[|Si||Ti|]

≤
k∑
i=1

E[|(S ∪ T)i|2] =

k∑
i=1

V ar[|(S ∪ T)i|] + E[|(S ∪ T)i|]2

(1)

Given that for a set Z, the random variable |Zi| is dis-
tributed according to a binomial distribution B(|Z|, 1/k),

for each i we have V ar[| (S ∪ T)i |] ≤ 2k · (1/k)(1 − 1/k) ≤
2 and E[| (S ∪ T)i |] ≤ 2 so E[|E|] ≤ 6k.

We use the following result of [12]:

Theorem 3.2 ([12]). There exists aconstructive random-

ized protocol for EQn
k with O(

√
k) rounds, which has success

probability 2−Ω(
√
k). In the public randomness model the ex-

pected total communication is O(k) and in the private ran-
domness model it is O(k + logn).

In the shared randomness model the result now follows
immediately. In the private randomness model the parties
need to construct two random hash functions H and h, us-
ing Fact 2.2 with only O(logn) + O(log k) = O(logn) ran-
dom bits. These bits are exchanged through the channel
in the first round of the protocol and are added to the to-
tal communication, bringing it down to O(k + logn). To
further reduce the communication we can use the hashing
scheme of Fredman, Komlos and Szemeredi [14] as the first
step of the protocol. In [14] it is shown that mapping el-
ements [n] by taking a remainder modulo a random prime

q = Õ(k2 logn) gives no collisions on a subset of size O(k)
with probability 1− 1/poly(k). Applying this result to S ∪
T we can reduce the length of strings in the instances of
equality down to O(log k + log logn). Thus, we can now
specify the pairwise independent hash function using only
O(log k+ log logn) random bits. See Appendix A.1.1 in [17]
for a detailed discussion.

3.2 Auxiliary protocols
We first describe auxiliary protocols Basic-Intersection

(Lemma 3.3) and Equality (Fact 3.5) that we use as build-
ing blocks in our main algorithm in Section 3.3. For a two-
party communication protocol P we denote the output of the
protocol for the first party as PA(x, y) and for the second
party as PB(x, y).

Lemma 3.3 (Protocol Basic-Intersection(S, T)).
There exists a randomized protocol P(with shared random-
ness), such that for any S, T ⊂ [n] and an integer i ≥ 1, the
sets S′ = PA(S, T) and T ′ = PB(S, T) satisfy the following
properties:

1. S′ ⊆ S, T ′ ⊆ T .

2. If S ∩ T = ∅ then S′ ∩ T ′ = ∅ with probability 1.

3. If S ∩ T 6= ∅ then (S ∩ T) ⊆ (S′ ∩ T ′). Also, with
probability 1− 1/N i it holds that S′ = T ′ = (S ∩ T).

The total communication in the protocol is

O (i · (|S|+ |T |) log(|S|+ |T |))

and the protocol can be executed in 4 rounds.

Note that Lemma 3.3 guarantees that S′ ∩ T ′ is always a
superset of the intersection. Also, if the sets S′ and T ′ are
equal then each of them is exactly the intersection of S and
T .

Proof. The parties first exchange the sizes of their sets
|S| and |T | and determine m = |S| + |T |. Using shared
randomness they pick a random hash function h : [n] → [t],
where t = Θ(mi+2). They exchange sets h(S) and h(T)
using total communication O(i · N logN). The outcome of
the protocol is PA(S, T) = h−1(h(T)) ∩ S and PB(S, T) =

h−1(h(S)) ∩ T . Since exchanging the sizes of the sets takes
two rounds and another two rounds are required to exchange
h(S) and h(T), the total number of rounds of communication
is 4.

By construction we have S′ = h−1(h(T)) ∩ S ⊆ S and
similarly T ′ ⊆ T so the first property holds. If S ∩ T = ∅
then S′∩T ′ = (h−1(h(T))∩S)∩(h−1(h(S))∩T) ⊆ (S∩T) =
∅ and the second property holds. Because S ⊆ h−1(h(S))
and T ⊆ h−1(h(T)) we have

S ∩ T ⊆ (h−1(h(T)) ∩ S) ∩ (h−1(h(S)) ∩ T) = S′ ∩ T ′,

the first part of the third property. Moreover, if the hash
function h has no collisions among S ∪ T then

S′ = h−1(h(T)) ∩ S = T ∩ S

and

T ′ = h−1(h(S)) ∩ T = S ∩ T.
The proof is completed using the analysis of collision prob-
ability given by Fact 2.2.

We have the following corollary.

Corollary 3.4. If for the protocol P in Lemma 3.3 it
holds that PA(S, T) = PB(S, T) then

PA(S, T) = PB(S, T) = S ∩ T.

In our main protocol in Section 3.3 we will use an Eqn
test with the following guarantees to verify correctness of the
protocol Basic-Intersection. The following guarantee is
achieved by a protocol, which uses a random hash function
h into k bits.

Fact 3.5. There exists a randomized (with shared ran-
domness) protocol P for Eqn with the following properties.

1. If x = y then PA(x, y) = PB(x, y) = 1 with probability
1.

2. If x 6= y then PA(x, y) = PB(x, y) = 0 with probability
at least 1− 1/2k.

The total communication in the protocol is O(k) and it can
be executed in two rounds.

3.3 Main protocol
Theorem 3.6 (Restatement of Theorem 1.1). For

every integer r > 0 there exists an 6r-round constructive
randomized communication protocol (with shared random-

ness) for INTk with total expected communication O(k log(r) k)
and success probability 1− 1/poly(k).

Proof. For r = 1 the parties use shared randomness to
pick a hash function h : [n]→ [N] for N = kc, where c > 2.
Then each of the parties uses ck log k bits to exchange h(S)
and h(T) respectively. By Fact 2.2 the probability that h
has a collision on a set S ∪ T is at most 1− 1/Θ(kc−2).

For r > 1 consider a tree T of depth r with the set of nodes
at the i-th level for 0 ≤ i ≤ r denoted as Li (these are the
nodes at distance i from the leaves). Let the degree at the i-

th level for 2 ≤ i ≤ r be equal to di = log(r−i) k/ log(r−i+1) k

and the degree at the first level is d1 = log(r−1) k. Note that
this guarantees that the total number of leaves in the tree
is k. For a node v ∈ T , let c(v) denote the set of children of
v. For a node v ∈ T , let C(v) denote the set of all leaves in
the subtree of v. Note that for a node v ∈ Li the number of
such leaves is |C(v)| = log(r−i) k.

Definition 3.1 (Set assignment). A set assignment
A to the leaves of T is a vector A = (A1, . . . ,Ak), con-
sisting of k sets. We say that the set A` is assigned to a
corresponding leaf ` in T .

Every set assignment to the leaves of T naturally induces
a set assignment on all internal vertices of T . Let A =
(A1, . . . ,Ak) be a set assignment for the leaves of T . For
every internal node v ∈ T we denote an assignment induced
at this vertex by A as Av = ∪i∈C(v)Ai.

Now we describe the protocol used by the parties. First,
Alice and Bob use shared randomness to pick a hash function
h : [n] → [k]. Using this hash function they define initial
assignments of sets S−1 and T−1 respectively as follows.
For a leaf ` ∈ [k] of T , let S−1

` = h−1(h(`)) ∩ S and T−1
` =

h−1(h(`)) ∩ T .
Then the protocol proceeds in r stages. In stage i for 0 ≤

i < r the parties construct new assignments to the leaves of
T , which induce new assignments on the internal nodes. We
will show that after r stages the parties obtain an assignment
to the leaves, such that with high probability the set induced
by this assignment in the root of T is exactly S∩T . We use
notation Si and T i respectively for the i-th assignment that
the parties make to the leaves of the tree. The description
of the i-th stage is given as Algorithm 1. This completes the
description of the protocol.

Input: Sets S, T ∈ [k]k, assignments Si−1, T i−1.

1: For every v ∈ Li run the protocol
Equality(Si−1

v , T i−1
v) with success probability

1− 1/(log(r−i−1) k)4.
2: Let F be the set of vertices for which the equality

protocol above returns Si−1
v 6= T i−1

v . We call these
vertices failed.

3: For every v ∈ F and every leaf u ∈ C(v) run
Basic-Intersection(Si−1

u , T i−1
u) with success

probability 1− 1/(log(r−i−1) k)4 and assign Siu =
PA(Si−1

u , T i−1
u) and T iu = PB(Si−1

u , T i−1
u) respectively.

4: For every v /∈ F and every leaf u ∈ C(v) assign
Siu = Si−1

u and T iu = T i−1
u .

Algorithm 1: Protocol for INTk. Stage i.

In the rest of the proof we first analyze the correctness
probability of the protocol above (the key lemma is Lemma 3.7)
and then total communication (Lemma 3.10). The proof of
Theorem 1.1 is completed by observing that the protocol
can be executed in O(r) rounds.

Lemma 3.7. After stage i for every leaf u ∈ T it holds
that Siu = T iu with probability at least 1 − 1/(log(r−i−1) k)4,
taken over all the randomness of the protocol.

Proof. If u is in the subtree of a node v, which is not
failed at level i then we know that Sv = Tv and thus Su = Tu
for each u ∈ C(v) with probability at least 1−1/(log(r−i−1) k)4

by the guarantee of the Equality(Sv, Tv) test. Otherwise,
u is in the subtree of a failed node v at level i. In this
case the claim follows because we run Basic-Intersection
protocol for this leaf with success probability at least 1 −
1/(log(r−i−1) k)4.

We call a node v ∈ Li correct if after stage i it holds that
Siv = T iv.

Corollary 3.8. Every node v ∈ Li is correct with prob-
ability at least 1 − 1/(log(r−i−1) k)3. In particular, the root
of the tree is correct with probability at least 1− 1/k3.

Proof. From Lemma 3.7 applied to the level i it fol-
lows that after the execution of stage i for every leaf u ∈
C(v) it holds that Siu = T iu with probability at least 1 −
1/(log(r−i−1) k)4. Hence, by a union bound over all log(r−i) k
such leaves with probability at least

1− log(r−i) k/(log(r−i−1) k)4 ≥ 1− 1/(log(r−i−1) k)3

we have Siv = T iv.

The correctness proof of the protocol now follows from
Corollary 3.8 together with the following invariant applied
to the root of the tree after round r − 1.

Proposition 3.9. If for a node v ∈ T Alice and Bob
assign Siv and T iv to it respectively then if Siv = T iv then
Siv = T iv = Sv ∩ Tv.

Proof. Note that this invariant is maintained by Basic-
Intersection (Corollary 3.4). During the execution of the
protocol the sets S′v and T ′v only change when we apply
Basic-Intersection to the leaves in T . Clearly, if the in-
variant is maintained for all leaves then it is also maintained
for all internal nodes as well.

Now we analyze the total communication in the protocol.
For a leaf u ∈ T let nu denote the expected number of
times the Basic-Intersection protocol was run on the sets
assigned to u.

Lemma 3.10. For every leaf u ∈ T it holds that E[nu] =
O(1).

Proof. For a leaf u let’s denote it’s unique predecessor
in level i as pi(u). Formally, pi(u) = v if and only if v ∈ Li
and u is in the subtree of v. We can express E[nu] as:

E[nu] =

r−1∑
i=0

Pr[pi(u) is failed] · (4 log(r−i) k)

≤
r−1∑
i=0

di · Pr [v is an incorrect child of pi(u)] (4 log(r−i) k),

≤
r−1∑
i=0

log(r−i) k

log(r−i+1) k
· 1

(log(r−i) k)3
· (4 log(r−i) k) = O(1)

where the first inequality holds by a union bound and the
second by Corollary 3.8.

The total expected communication in the protocol can be
expressed as the sum of the total communication for Equal-
ity and Basic-Intersection. The total communication for
Equality is:

r−1∑
i=0

|Li|(4 log(r−i) k)

= O(k log(r) k) +

r−1∑
i=1

(k/ log(r−i) k) · (4 log(r−i) k)

= O(k log(r) k) +O(rk)

= O(k log(r) k).

The expected total communication for Basic-Intersection
is by Lemma 3.3 equal to:

E

[
k∑
i=1

(|Si|+ |Ti|) log(|Si|+ |Ti|) · ni

]
=

k∑
i=1

E [(|Si|+ |Ti|) log(|Si|+ |Ti|)]E[ni],

where the equality follows from the independence of the ran-
dom variables. Because for every i we have E[ni] = O(1) by
Lemma 3.10, to complete the proof it is sufficient to show
that E[(|Si|+ |Ti|) log(|Si|+ |Ti|)] = O(1) and thus the total
communication for Basic-Intersection is O(k). We have
E[(|Si| + |Ti|) log(|Si| + |Ti|)] ≤ E[(|Si| + |Ti|)2], where the
right-hand side is constant by the same argument as used to
bound each term in (1). Finally, the bound on the number
of rounds of communication follows from the fact the com-
munication in each of the r stages for the Equality tests
can be done in parallel in two rounds (Fact 3.5). After in
four more rounds we can perform all Basic-Intersection
protocols in parallel (Lemma 3.3). This gives 6r rounds of
communication.

4. MULTI-PARTY SET INTERSECTION IN
THE MESSAGE PASSING MODEL

In the multi-party case we have m players, each holding
a set Si ⊆ [n] such that |Si| ≤ k. The goal of the parties
is to output a set S =

⋂m
i=1 Si. We allow arbitrary commu-

nication between the parties (i.e. any player i can send a
message to any player j). In each round of the protocol the
parties first perform some local computation and then can
exchange messages. This is known as the message passing
model (see e.g. [4]). We consider two optimization goals:
minimizing the total communication (or equivalently aver-
age communication per player) and minimizing the worst-
case communication per player. In both cases we keep the
number of rounds as small as possible.

First, observe that we can amplify the success probability
of the two-party protocol in Theorem 1.1 to be 1−1/2k while

keeping the expected total communication O(k log(r) k) and
only incurring a penalty in the number of rounds: the pro-
tocol will have expected O(r) rounds instead of worst-case
6r rounds. This follows by repeating the protocol if it hasn’t
succeeded. The latter condition can be checked by exchang-
ing k-bit equality checks after the protocol terminates. With
a total of O(1) expected repetitions this gives expected O(r)
number of rounds and success probability which is only lim-
ited by the equality checks and is thus 1− 1/2k by Fact 3.5.

Using this observation we obtain a protocol with the fol-
lowing guarantee for the average-case multi-party setting.

Corollary 4.1. (Average-case) For every r > 0 there
exists a multi-party protocol in the message passing model
with expected average communication per player O(k log(r) k),
expected number of rounds O

(
r ·max(1, logm

k
)
)
and error

probability 1− 1/2k.

Proof. First, the set of m players is partitioned into
groups of size at most 2k. Consider one such group, which
consists of players holding sets S1, . . . , S2k . The player hold-
ing S1 is chosen as a coordinator. Within the group all play-
ers execute the modified version of the two-party protocol

described above with the coordinator, who computes sets
Ti = S1 ∩Si for each 2 ≤ i ≤ 2k. This step is repeated until

the coordinator succeeds in verifying that
⋂2k

i=2 Ti =
⋂2k

i=1 Si
with probability at least 1 − 1/2k. This is done by using a
2k-bit equality check with each of the players. By Fact 3.5
the equality check succeeds with probability 1 − 1/22k and
hence by a union bound over the 2k players in the group the
desired success probability follows. Once all m′ = dm/2ke
coordinators succeed in verifying their sets the protocol is
executed recursively among them for their respective sets.

The number of active players decreases exponentially be-
tween the levels and thus the total communication is dom-
inated by the first level. The first level has average com-
plexity O(k log(r) k) per player and expected O(r) rounds
using the same reasoning as for the case of two-parties dis-
cussed above. The total number of levels of recursion is
max (1, log2k m) = max

(
1, logm

k

)
, which gives the claimed

bound on the total number of rounds.

Taking r = log∗ k in Corollary 4.1 we get average commu-
nication O(k) per player, which matches the lower bounds
of [23, 4] who show that average communication Ω(k) is nec-
essary for solving Set Intersection and Set Disjointness
in the message passing model.

In the protocol from Corollary 4.1 every coordinator has
to perform O(2kk log(r) k) communication per level. By in-
creasing the number of rounds we can amortize this cost
among the players.

Corollary 4.2. (Worst-case) For every r > 0 there ex-
ists a multi-party protocol in the message passing model with

worst-case communication O
(
k2 log(r) k ·max

(
1, logm

k

))
per

player, expected number of rounds O
(
r · k ·max(1, logm

k
)
)

and error probability 1− 1/2k.

Proof. The protocol is executed recursively in max
(
1, logm

k

)
levels and in each level the players are assigned to groups
of size at most 2k as in Corollary 4.1. Consider one such
group. Instead of using a coordinator in each level the play-
ers are assigned to the leaves of a complete binary tree of
depth k. They run the two-party protocol recursively in
pairs. This gives expected number of rounds O(rk) per level
and the bound on the number of rounds follows. When the
two-party protocol is executed for the top two nodes in the
tree (the children of the root) the parties also perform a k-bit
equality check in order to certify the correctness of the result
with probability 1− 1/2k. If this check fails then the entire
computation in the tree is repeated, which gives O(1) rep-
etitions in expectation using the same reasoning as before.
Finally, adding up over all nodes on a path of length k the
worst-case communication per level is O(k2 log(r) k) which
gives the bound on the desired worst-case communication
per player.

5. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency moments.
J. Comput. Syst. Sci., 58(1):137–147, 1999.

[2] K. D. Ba, P. Indyk, E. Price, and D. P. Woodruff.
Lower bounds for sparse recovery. In SODA, pages
1190–1197, 2010.

[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and
D. Sivakumar. An information statistics approach to

data stream and communication complexity. J.
Comput. Syst. Sci., 68(4):702–732, 2004.

[4] M. Braverman, F. Ellen, R. Oshman, T. Pitassi, and
V. Vaikuntanathan. A tight bound for set disjointness
in the message-passing model. In FOCS, pages
668–677, 2013.

[5] M. Braverman and A. Rao. Information equals
amortized communication. In FOCS, pages 748–757,
2011.

[6] J. Brody, A. Chakrabarti, R. Kondapally, D. P.
Woodruff, and G. Yaroslavtsev. Certifying equality
with limited interaction. Manuscript.

[7] H. Buhrman, D. Garćıa-Soriano, A. Matsliah, and
R. de Wolf. The non-adaptive query complexity of
testing k-parities. CoRR, abs/1209.3849, 2012.

[8] A. Dasgupta, R. Kumar, and D. Sivakumar. Sparse
and lopsided set disjointness via information theory. In
APPROX-RANDOM, pages 517–528, 2012.

[9] M. Datar and S. Muthukrishnan. Estimating rarity
and similarity over data stream windows. In ESA,
pages 323–334, 2002.

[10] B. Ding and A. C. König. Fast set intersection in
memory. PVLDB, 4(4):255–266, 2011.

[11] B. Ding, H. Wang, R. Jin, J. Han, and Z. Wang.
Optimizing index for taxonomy keyword search. In
SIGMOD Conference, pages 493–504, 2012.

[12] T. Feder, E. Kushilevitz, M. Naor, and N. Nisan.
Amortized communication complexity. SIAM J.
Comput., 24(4):736–750, 1995.

[13] M. Fontoura, M. Gurevich, V. Josifovski, and
S. Vassilvitskii. Efficiently encoding term
co-occurrences in inverted indexes. In CIKM, pages
307–316, 2011.

[14] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing
a sparse table with 0(1) worst case access time. J.
ACM, 31(3):538–544, 1984.

[15] J. H̊astad and A. Wigderson. The randomized
communication complexity of set disjointness. Theory
of Computing, 3(1):211–219, 2007.

[16] B. Kalyanasundaram and G. Schnitger. The
probabilistic communication complexity of set
intersection. SIAM J. Discrete Math., 5(4):545–557,
1992.

[17] D. M. Kane, J. Nelson, and D. P. Woodruff. On the
exact space complexity of sketching and streaming
small norms. In SODA, pages 1161–1178, 2010.

[18] E. Kushilevitz and N. Nisan. Communication
complexity. Cambridge University Press, 1997.

[19] I. Newman. Private vs. common random bits in
communication complexity. Inf. Process. Lett.,
39(2):67–71, 1991.

[20] N. Nisan and I. Segal. The communication
requirements of efficient allocations and supporting
prices. J. Economic Theory, 129(1):192–224, 2006.

[21] R. Pagh, M. Stockel, and D. P. Woodruff. Is min-wise
hashing optimal for summarizing set intersection? In
PODS, 2014.

[22] I. Parnafes, R. Raz, and A. Wigderson. Direct product
results and the gcd problem, in old and new
communication models. In STOC, pages 363–372,
1997.

[23] J. M. Phillips, E. Verbin, and Q. Zhang. Lower
bounds for number-in-hand multiparty communication
complexity, made easy. In SODA, pages 486–501, 2012.

[24] R. Raz and A. Wigderson. Monotone circuits for
matching require linear depth. J. ACM,
39(3):736–744, 1992.

[25] A. A. Razborov. On the distributional complexity of
disjointness. Theor. Comput. Sci., 106(2):385–390,
1992.

[26] M. Saglam and G. Tardos. On the communication
complexity of sparse set disjointness and exists-equal
problems. In FOCS, pages 678–687, 2013.

[27] A. C.-C. Yao. Some complexity questions related to
distributive computing (preliminary report). In STOC,
pages 209–213, 1979.

[28] J. Zhou, Z. Bao, W. Wang, T. W. Ling, Z. Chen,
X. Lin, and J. Guo. Fast slca and elca computation for
xml keyword queries based on set intersection. In
ICDE, pages 905–916, 2012.

	Introduction
	Definitions and preliminaries
	Two-Party Set Intersection
	O(k)-round protocol
	Auxiliary protocols
	Main protocol

	Multi-Party Set Intersection in the Message Passing Model
	References

