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Abstract—We study the one-way number-on-the-forhead
(NOF) communication complexity of the k-layer pointer
jumping problem. Strong lower bounds for this problem
would have important implications in circuit complexity.
All of our results apply to myopic protocols (where players
see only one layer ahead, but can still see arbitrarily
far behind them.) Furthermore, our results apply to the
maximum communication complexity, where a protocol is
charged for the maximum communication sent by a single
player rather than the total communication sent by all
players.

Our main result is a lower bound of n/2 bits for
deterministic protocols, independent of the number of
players. We also provide a matching upper bound, as well
as an Ω (n/k log n) lower bound for randomized protocols,
improving on the bounds of Chakrabarti [Cha07]. In the
non-Boolean version of the problem, we give a lower bound
of n(log(k−1) n)(1 − o(1)) bits, essentially matching the
upper bound from Damm et al. [DJS98].

I. INTRODUCTION

Communication complexity has been an important
technique in proving lower bounds in a wide variety of
areas, including settings that do not involve communi-
cation. Specifically, communication complexity has been
used to prove lower bounds on the depth of monotone
circuits for undirected connectivity [KW88], time/space
tradeoffs for cell probe data structures [Ajt88], [Mil94],
and lower bounds on space complexity in streaming
algorithms [AMS99], [GM07], [CJP08].

We focus on the comunication complexity of the
multi-party pointer jumping problem in the number-on-
the-forhead model, introduced by Chandra, Furst, and
Lipton [CFL83]. A series of works [Yao90], [HG91],
[BT94] has shown that a strong lower bound for any
explicit function f in this model would imply that
f 6∈ ACC0. The pointer jumping problem is widely
considered to be a good candidate for such a lower
bound.

A. The Pointer Jumping Problem and Previous Results

There are a number of variants of the pointer jump-
ing problem, all of which involve following a series
of directed edges in a graph. We study two variants
of the multiplayer pointer jumping variety: a Boolean
version MPJk and a non-Boolean version M̂PJk. In these
settings, there is a graph Gnk , which has k + 1 layers
of vertices. Layer 0 contains a single vertex v0. Each
layer 1 ≤ i ≤ k − 1 contains n vertices. In the Boolean
version, layer k contains two vertices labelled 0 and
1. In the non-Boolean version, layer k also contains n
vertices. There are directed edges in Gnk from each vertex
in layer i to each vertex in layer i + 1. The input to
the pointer jumping problem is a subgraph where each
vertex (except those in layer k) has outdegree 1, and the
goal is to output the unique vertex in layer k reachable
from vertex v0. The NOF communication version of
MPJk and M̂PJk work as follows: there are k players
PLR1, . . . , PLRk. The set of edges from layer i − 1 to
layer i are written on PLRi’s forhead, and the players
communicate in a fixed order PLR1, . . . , PLRk. PLRk’s
message is the output. Note that the order of the players
is important: if the players speak in an order other than
PLR1, PLR2, . . . , PLRk, then an easy O(log n) protocol
exists. As mentioned previously, proving lower bounds
for this problem would have important consequences
in circuit complexity. Specifically, showing a polyno-
mial lower bound on communication for deterministic
MPJk protocols for any k = ω(polylog n) would show
that MPJk 6∈ ACC0. Consult the work of Beigel and
Tarui [BT94] for more details.

There are a number of other variants to the pointer
jumping problem. All of them operate by following
pointers on a graph similar to the multi-party version.
In the bipartite pointer jumping problem, denoted BPJk,
the input is a bipartite graph with directed edges between
each of the parts, going in both directions. Harvey



[Har08] used lower bounds for BPJk to show lower
bounds on the number of queries needed to solve the
matroid intersection problem. The graph for the tree
pointer jumping problem, denoted TPJk, is a d-ary tree,
with d = O(n1/k−1). Viola and Wigderson [VW07]
show lower bounds of Ω(n1/k−1/kO(k)) for randomized
protocols for TPJk. Note that the input to TPJk can be
seen as a restriction of the input to MPJk, so this lower
bound applies to MPJk as well.

The remarkable Ω(n1/k−1/kO(k)) bound of Viola and
Wigderson is tight for TPJk for all constant k and is the
best known lower bound for MPJk. Unfortunately, it says
nothing when k = ω(log n). There are several stronger
lower bounds for MPJk in restricted settings. There are
also two nontrivial upper bounds. In the non-Boolean
case, the trivial protocol costs O(n log n) bits and has
PLR1 sending PLR2 the input on his forhead, giving him
all the input and allowing him to output the answer.
Damm, Jukna, and Sgall [DJS98] give a deterministic
protocol for M̂PJk which has cost O(n log(k) n) for
k ≤ log∗ n and O(n) for k > log∗ n.1 Their protocol
is particularly interesting, because it is restricted in two
different ways. Firstly, players do not see the layers
1, . . . , i − 1 “behind” them as they normally would.
Instead, they see only the result of following the pointers
up to layer i. Damm et al. call this a conservative
protocol and give a deterministic lower bound for such
protocols that matches their upper bound up to a constant
factor. Secondly, the players in the protocol of Damm
et al. are restricted in what inputs they see “ahead”
of them: instead of seeing layers i + 1, . . . , k, PLRi
sees only layer i + 1. Such a protocol is called my-
opic. Gronemeier [Gro06] coined this term and gave
a Ω(n(1−ε)/k log n) lower bound for ε-error protocols.
Chakrabarti improved this lower bound to Ω(n/k) and
proved a lower bound of Ω(n log(k−1) n) for myopic
M̂PJk protocols. Both bounds apply to randomized pro-
tocols. Chakrabarti also gives lower bounds of Ω(n/k2)
and Ω(n log(k−1) n) for randomized conservative proto-
cols for MPJk and M̂PJk respectively.

For MPJk, Brody and Chakrabarti [BC08] give a
deterministic protocol for MPJk with cost
O
(
n(k log log n/ log n)1−1/(k−1)

)
, which disproved a

long-standing conjecture that essentially nothing nontriv-
ial could be done for MPJk protocols. This is currently
the only nontrivial protocol known for MPJk. Their
protocol showed that MPJk is a deeper problem than
origionally expected, and its communication complexity,
even in the deterministic setting, remains an open and

1We use log(k) to denote the kth iterated logarithm of n and log∗ n
to denote the least k such that log(k) n ≤ 1.

vexing problem. Improving either the upper or lower
bounds remains an interesting and difficult task.

B. Our Results

The protocol of Damm et al. is both myopic and
conservative, but holds only for M̂PJk. The MPJk protocol
of Brody and Chakrabarti is neither. Our main result
shows that there are no nontrivial myopic protocols for
MPJk. Specifically, we have

Theorem 1. In any deterministic myopic protocol for
MPJk, some player PLRj must communicate at least n/2
bits.

Using this result, we provide an exact bound on the
total communication cost of myopic MPJk protocols.

Corollary 2. A deterministic myopic protocol for MPJk
must communicate at least n bits in total.

This shows that the best myopic MPJk protocol is
the trivial one where PLRk−1 sends PLRk the last layer
of input, and other players communicate nothing. A
closer inspection of the proof of Theorem 1 shows that
there exists a decreasing function φ : Z+ → R+, with
limk→∞ φ(k) = 1/2, such that in any deterministic pro-
tocol for MPJk, some player must communicate at least
φ(k)n bits. Our next result shows that this lower bound
on the maximum communication of myopic protocols is
essentially tight.

Theorem 3. For all k ≥ 3, there exists a deterministic
myopic protocol for MPJk in which each player sends
(1 + o(1))φ(k)n bits.

Our technique uses a round elimination lemma on a
generalized version of MPJk in which there are m ≤ n
vertices in the first layer of the graph. This method can
also be applied to M̂PJk protocols. Recall that Damm
et al. gave a deterministic myopic protocol for M̂PJk
where each player sends at most n log(k−1) n bits. Our
technique gives a lower bound that nearly matches this.

Theorem 4. In any deterministic myopic protocol
for M̂PJk, some player must communicate at least
n(log(k−1) n− log(k) n) bits.

Finally, we give a randomized bound on the maximum
communication of randomized myopic MPJk protocols.
Chakrabarti gave a lower bound of Ω(n/k) on the
total communication of randomized MPJk protocols. This
immediately yields a lower bound of Ω(n/k2) on the
maximum communication. We give a similar but incom-
parable result.
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Theorem 5. In any randomized myopic protocol
for MPJk, some player must communicate at least
Ω(n/k log n) bits.

While this improves on the bound of Chakrabarti only
for k ≥ log n players, we emphasize that this is precisely
the setting which would yield lower bounds in circuit
complexity.

C. Organization

The rest of the paper is organized as follows. In
Section II we introduce notation and formally define
the pointer jumping problem. In Section III we prove
Theorems 1 and 4 and Corollary 2. We prove Theorem 3
in Section IV and Theorem 5 in Section V.

II. PRELIMINATIES AND NOTATION

For the rest of the paper, “protocols” will be assumed
to be deterministic one-way NOF protocols unless oth-
erwise qualified. Let P be a k-player protocol in which
player i’s message has length `i. Most of our results
concern the maximum communication of a protocol.
We define cost(P) := max1≤i≤k `i. A γ-bit protocol
is a protocol P with cost(P) = γ. We also define
tcost(P) := `1 + . . .+ `k to be the total communication
cost of a protocol.

We now formally define the problems MPJm,k and
M̂PJm,k in a recursive fashion. We define MPJm,2 :
[m] × {0, 1}m → {0, 1} as MPJm,2(i, x) := xi, where
xi denotes the ith bit of the string x. In a similar
fashion, we define M̂PJm,2 : [m] × [n][m] → [n] as
M̂PJm,2(i, f2) := f2(i). For k ≥ 3 we then define
MPJm,k : [m]× [n][m] ×

(
[n][n]

)k−3 × {0, 1}n → {0, 1}
and M̂PJm,k : [m]×[n][m]×

(
[n][n]

)k−2 → [n] as follows:

MPJm,k(i, f2, f3, . . . , fk−1, x) :=
MPJn,k−1(f2(i), f3, . . . ,fk−1, x) , for k ≥ 3

M̂PJm,k(i, f2, f3, . . . , fk) :=
M̂PJn,k−1(f2(i), f3, . . . , fk) , for k ≥ 3 .

It will be helpful, at times, to view strings in {0, 1}n
as functions from [n] to {0, 1} and use functional no-
tation accordingly. Unrolling the recursion in the above
definitions, we see that, for k ≥ 2,

MPJm,k(i, f2, . . . , fk−1, x) = x ◦ fk−1 ◦ · · · ◦ f2(i)
M̂PJm,k(i, f2, . . . , fk) = fk ◦ · · · ◦ f2(i) .

The most natural formulation of this problem has m = n.
In this case, we drop n from the notation. Previous work
on multiplayer pointer jumping considered only MPJk
and M̂PJk. In the next section, we prove Theorem 1 by

performing round elimination on MPJm,k and shrinking
m at each step.

For many of our results, we shall make use of the
following sequences of numbers, all of which are pa-
rameterized by some δ ∈ R+ (possibly dependent on n
and k) to be specified later. Let a0 := 0, and for ` > 0,
let a` := δ2a`−1 . For all ` ≥ 0, let m` := n2−a` . Note
that m0 = n. Also, let φ(k) be the least δ such that
ak−1 ≥ 1.

III. PROOF OF THE MAIN THEOREM

We now prove the lower bound on myopic MPJk pro-
tocols. We repeat the main theorem here for convenience:

Theorem 6. (Precise restatement of Theorem 1). Let P
be a myopic protocol for MPJk. Then, cost(P) > n/2.

We prove this theorem by viewing MPJk as a special
instance of MPJm,k and by using a round elimination
lemma. First, we note that MPJm,2 is just the INDEX
problem on m bits. The one-way communication com-
plexity of INDEX is well known; we state it here in terms
of MPJm,2.

Fact 7. If P is a protocol for MPJm,2, then cost(P) ≥ m.

The structure of our proof is as follows. We assume
the existence of a protocol for MPJk in which each player
sends at most δn bits. In the round elimination step, we
show how to turn a protocol for MPJm,k into a protocol
for MPJm′,k−1 with the same cost, and with m′ < m.
Repeating this step k − 2 times, transforms the δn-bit
protocol for MPJk into a δn-bit protocol for MPJm,2 with
m > δn, contradicting Fact 7.

The following simple definition and lemma provide
the combinatorial hook that permits the round elimina-
tion step.

Definition 1. Let i ∈ [`] and F ⊆ [n]` be given. The
range of i in F , denoted Range(i,F), is defined as:

Range(i,F) := {f(i) : f ∈ F}

Lemma 8. Let F ⊆ [n]` be given. If |F| ≥ m`, then
there exists i ∈ [`] with |Range(i,F)| ≥ m.

Proof: We prove the contrapositive of this state-
ment. Suppose that |Range(i,F)| < m for all i ∈ [`].
Without loss of generality, assume that Range(i,F) ⊆
[m − 1] for each i, and let G := {f : f(i) ≤ m −
1 for all i ∈ [`]}. Its clear that F ⊆ G. Furthermore,
|G| = (m− 1)`. Hence, |F| ≤ |G| < m`.

Lemma 9 (Round Elimination Lemma). Let k ≥ 3.
If there is a δn-bit myopic protocol P for MPJm,k, then
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there is a δn-bit myopic protocol Q for MPJm′,k−1 with
m′ = n · 2−δn/m.

Proof: In MPJm,k, PLR1’s input is a function f2 :
[m] → [n]. There are nm such functions. Since PLR1

sends at most δn bits, he must send the same message
M on nm/2δn distinct f2. Let F be the set of inputs for
which PLR1 sends M . It follows that |F| ≥ nm/2δn =
2m logn−δn = 2m(logn−δn/m) = 2m logm′ = (m′)m. By
Lemma 8, we must have i ∈ [m] with |Range(i,F)| ≥
m′. Fix such an i, and let S := Range(i,F). Without
loss of generality, assume S = [m′]. 2

We are now ready to construct a protocol for
MPJm′,k−1. Label the players PLR2, . . . , PLRk. For each
j ∈ [m′], the players agree on a gj ∈ F such
that gj(i) = j. Then, on input (j, f3, . . . , fk−1, x),
players simulate P on input (i, gj , f3, . . . , fk−1, x).
Clearly, cost(Q) = cost(P), and since gj(i) =
j, we must have MPJm,k(i, gj , f3, . . . , fk−1, x) =
MPJm′,k−1(j, f3, . . . , fk−1, x).

Note that the reduction step in the round elimination
lemma uses only the first two layers of input, so the
lemma can be applied to a much wider range of problems
than just MPJm,k and to a much wider range of protocols
than just myopic protocols. For example, the reduction
step only requires that PLR1 is myopic. More impor-
tantly, the lemma applies to M̂PJm,k exactly as stated.

Lemma 10. Let k ≥ 3. If there is a δn-bit myopic
protocol P for M̂PJm,k, then there is a δn-bit myopic
protocol Q for M̂PJm′,k−1 with m′ = n · 2−δn/m.

Proof of Theorem 6. The main theorem follows by care-
ful application of the round elimination lemma. Suppose
P is a δn-bit myopic protocol for MPJk = MPJm0,k.
By the Round Elimination Lemma, a δn-bit protocol for
MPJm`,z yields a δn-bit protocol for MPJm′,z−1, where
m′ = n · 2−δn/m` = n · 2−δn/(n2−a` ) = n · 2−δ2a` =
n ·2−a`+1 = m`+1. Applying the lemma k−2 times, we
transform P into a δn-bit protocol for MPJmk−2,2. By
Fact 7, we must have δn ≥ mk−2 = n2−ak−2 , hence
1 ≤ δ2ak−2 = ak−1. Therefore, cost(P) ≥ φ(k)n.
(Recall that φ(k) is precisely the least δ such that
ak−1 ≥ 1.)

We complete the proof by showing that φ(k) > 1/2.
Specifically, we claim that if δ ≤ 1/2, then a` < 1
for all ` > 0. We prove this claim by induction. In the

2Specifically, if S 6= [m′], then fix a permutation π ∈ Sn that
maps (a subset of) S to [m′]. In Q, players agree on gj such that
π(gj(i)) = j and simulate P on input (i, gj , f3 ◦ π, . . . , fk−1, x).
f3(j) = f3(π(gj(i))) = f3 ◦ π(gj(i)), and the rest of the proof
follows.

base case, a1 = δ2a0 ≤ 1/2 < 1, and if a` < 1, then
a`+1 = δ2a` < (1/2) · 21 = 1. �

Next, we show how to extend this to an exact lower
bound for the total communication of myopic protocols.

Corollary 11. For all m ≤ n, any myopic protocol P
for MPJm,k must have tcost(P) ≥ m.

Proof: We prove this by induction on k. The base
case MPJm,2 is trivial. For the general case, assume that
for all m ≤ n, any protocol for MPJm,k−1 requires m
bits, and suppose there is a protocol P for MPJm,k where
PLR1 sends m1 bits. The reduction in Lemma 9 gives
a protocol Q for MPJm′,k−1 where m′ = n · 2−δn/m =
n·2−m1/m. By the induction hypothesis, tcost(Q) ≥ m′.
Therefore, tcost(P) ≥ m1 +m′. Next, note that

m1 +m′ < m ⇔ m1 + n · 2−m1/m < m (1)
⇔ n < 2m1/m(m−m1) (2)
⇔ n < 2αm(1− α). (3)

where α = m′/m ∈ [0, 1]. The function f(x) =
2x(1− x) is decreasing on all x ∈ [0, 1], so it achieves
its maximal value at f(0) = 1. Hence inequality (3)
becomes n < m. However, by assumption, m ≤ n, so
this cannot be true. Therefore, m1+m′ ≥ m, completing
the proof.

Our main theorem shows that no matter how many
players are involved, someone must send at least
φ(k)n > n/2 bits. For specific k, the constant factor can
be improved. For example, a δn-bit protocol for MPJ3
gives a δn-bit protocol for MPJm,2 with m = n · 2−δ .
By Lemma 7, we must have n · 2−δ ≤ δn, or δ2δ ≥ 1.
Solving for δ gives a lower bound of ≈ 0.6412n.

Next we give a similar theorem for M̂PJk.

Theorem 12. (Restatement of Theorem 4). Fix 2 ≤ k <
log∗ n, and let P be a myopic protocol for M̂PJk. Then,
cost(P) ≥ n(log(k−1) n− log(k) n) bits.

As in the lower bound proof for MPJk, we begin with
an easy lower bound for M̂PJm,2.

Fact 13. In any deterministic protocol for M̂PJm,2, PLR1

communicates at least m log n bits.

Theorem 12 is a direct consequence of the following
lemma:

Lemma 14. If δ = log(k−1) n − log(k) n, then aj ≤
log(k−j) n − log(k+1−j) n for all 1 ≤ j < k. In
particular, ak−1 ≤ log n− log log n.

Proof: (by induction) For j = 1, aj = a1 = δ =
log(k−1) n − log(k) n = log(k−j) n − log(k+1−j) n. For
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the induction step, we have

aj−1 ≤ log(k+1−j) n− log(k+2−j) n

= log

(
log(k−j) n

log(k+1−j) n

)

Therefore, 2aj−1 ≤ log(k−j) n
log(k+1−j) n

, and

aj = δ2aj−1

≤
(

log(k−1) n− log(k) n
)( log(k−j) n

log(k+1−j) n

)

=
log(k−1) n log(k−j) n

log(k+1−j) n
− log(k) n log(k−j) n

log(k+1−j) n

≤ log(k−j) n− log(k+1−j) n

where the last inequality is because the positive term is
less than log(k−j) n, and the negative term is greater than
log(k+1−j) n, for all 2 ≤ j < k.

Proof of Theorem 12. Let δ = log(k−1) n − log(k) n.
Suppose we have a protocol for M̂PJk in which each
player sends δn bits. By Lemma 10, we have a δn-bit
protocol for M̂PJmk−2,2. By Fact 13, such a protocol costs
at least mk−2 log n bits. Hence, we must have

δn ≥ mk−2 log n ⇔ δn ≥ n2−ak−2 log n
⇔ δ2ak−2 ≥ log n
⇔ ak−1 ≥ log n

However, we know by Lemma 14 that ak−1 ≤ log n−
log log n < log n, so we have a contradiction. �

IV. AN UPPER BOUND FOR MYOPIC PROTOCOLS

The analysis for the lower bound in the previous
section also gives insight as to what myopic protocols
can do. Specifically, in a protocol for MPJm,k, we’d like
PLR1’s message to give PLR2 enough information so that
PLR2, . . . , PLRk can run a protocol for MPJm′,k−1 for
some m′ < m. To do this, we need PLR1’s messages
to partition his input space so that for each of his
messages Mj and for each 1 ≤ i ≤ m, the range size
|Range(i,M1)| is small.

It turns out that just such a protocol is possible, and
that the communication cost matches our lower bound
up to 1 + o(1) factors. To aid in the analysis of this
protocol, we need the following covering lemma.

Definition 2. We say a subset T ⊆ [m]d is isomorphic
to [m′]d and write T ∼= [m′]d if T = T1 × · · · × Td for
sets T1, . . . , Td ⊆ [m], each of size m′.

Lemma 15. (Covering Lemma). For integers
d,m,m′ < m ∈ Z>0, let Um,d := [m]d, and
Sm′,d := {T ⊆ Um,d : T ∼= [m′]d}. Then there exists a
set C ⊆ Sm′,d of size |C| ≤ (m/m′)d · d lnm + 1 such
that ∪T∈CT = Um,d. We say that C covers Um,d and
call C an m′-covering of Um,d.

Proof: We use the probabilistic method. Fix r >
(m/m′)d d lnm, and pick T1, . . . , Tr independently and
uniformly at random from Sm′,d. Note that picking T
in this way amounts to picking d [m′]-subsets of [m]
independently and uniformly at random. Therefore, for
any p ∈ Um,d, we have Pr[p ∈ T ] = (m′/m)d.
For each p ∈ Um,d, let BADp :=

∧
1≤j≤r(p 6∈ Tj)

be the event that p is not covered by any set Tj .
Also, let BAD :=

∨
p∈Um,d BADp be the event that

some p is not covered. From the probability calculation
above, and using the fact that 1 + x ≤ ex, we have
Pr[BADp] =

(
1− (m′/m)d

)r
≤ e−r(m

′/m)d . By the
union bound, we have Pr[BAD] ≤ md Pr[BADp] ≤
ed lnm−r(m′/m)d . Recall that r > (m/m′)d · d lnm, so
d lnm − r(m′/m)d < d lnm − d lnm = 0. Hence,
Pr[BAD] < e0 = 1. Therefore, there must exist a
set {T1, . . . , Tr} of sets isomorphic to [m′]d that cover
Um,d.

Theorem 16. For all k ≥ 3, there exists a deterministic
myopic protocol for MPJk in which each player sends
φ(k)n(1 + o(1)) bits.

Proof: We prove this by construction. As a warmup,
we give a (0.65n)-bit max-communication protocol for
MPJ3. Later, we show how to generalize this to more
than 3 players. Recall that we have a φ(3)n-bit lower
bound for MPJ3, where φ(3) ∼ 0.6412 is the unique
real number δ such that a2 = δ2δ = 1. In advance,
the players fix a [0.65n]-covering C of [n][n]. On input
(i, f2, x), PLR1 sends T ∈ C such that f2 ∈ T . PLR2 sees
i, x and T , and sends xj for all j ∈ Range(i, T ). PLR3

sees i, f2 and recovers xf2(i) from PLR2’s message.
In terms of communication cost, PLR1 sends log |C|

bits. By Lemma 15, |C| ≤ (n/0.65n)n ·n lnn+1, hence
PLR1 sends log |C| = n log(1/0.65)(1 + o(1)) < 0.65n
bits. PLR2 sends one bit for each j ∈ Range(i, T ). Since
T ∼= [0.65n]n, we must have |Range(i, T )| ≤ 0.65n.
Hence, PLR2 sends at most 0.65n bits, and the maximum
communication cost is also 0.65 bits.

For the general case, we construct a protocol P for
MPJk as follows. Fix δ := φ(k), and for each 0 ≤ j ≤
k − 2, players agree in advance on a [mj+1]-covering
set Cj+1 for Un,mj . Note that by the covering lemma,
log |Cj+1| = mj log(n/mj+1)(1 + o(1)). Also note that
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mj log(n/mj+1) = n2−aj log
(
n/n2−aj+1

)
= −n2−aj log(2−aj+1)
= n2−ajaj+1

= n2−aj (δ2aj )
= δn.

On input (i, f2, . . . , fk−1, x), the players proceed as
follows. PLR1 sees f2 ∈ [n][n] and picks T1 ∈ C1 that
contains f2. PLR1 communicates T1 to the rest of the
players.

PLR2 sees i ∈ [m], f3 ∈ [n][n], and T1. From i and
T1, PLR2 computes R2 := Range(i, T1). Note that since
T1 is an [m1] covering, |Range(i, T1)| = m1 for all
i. Without loss of generality, assume R2 = [m1]. Let
f∗3 be f3 restricted to the domain R2. Note that f∗3 is a
function [m1]→ [n], so f∗3 ∈ Un,m1 . PLR2 picks T2 ∈ C2
that contains f∗3 and communcates T2 to the rest of the
players.

Generalizing, PLRj computes Rj := Range(fj−1 ◦
· · · ◦ f2(i), Tj−1), which has size mj−1 because Tj−1 ∈
Cj−1. Noting that fj restricted to Rj is an element
in Un,mj−2 , PLRj picks Tj ∈ Cj that contains fj and
commicates this to the rest of the players.

PLRk−1 computes Rk−1 := Range(fk−2 ◦ · · · ◦
f2(i), Tk−2) and sends xr for each r ∈ Rk−1. PLRk
computes r∗ := fk−1 ◦ fk−2 ◦ · · · ◦ f2(i) and recovers
xr∗ from PLRk−1’s message.

For each 1 ≤ j ≤ k − 2, PLRj sends log |Cj+1| =
δn(1 + o(1)) bits. PLRk−1 sends one bit for each j ∈
Rk−1. By construction, |Rk−1| ≤ mk−2. Choosing δ
to be the smallest real such that δ2ak−2 = ak−1 ≥ 1
ensures that mk−2 ≤ δn.

In conclusion, we have a protocol P where each player
sends δn(1+o(1)) bits, where δ is the smallest real such
that ak−1 ≥ 1. Note that this choice of δ exactly matches
our lower bound.

V. RANDOMIZING THE LOWER BOUND

Theorems 6 and 12 give strong lower bounds for de-
terministic protocols for MPJk and M̂PJk respectively. In
this section, we show that our technique can also be used
to show lower bounds on the randomized complexity of
MPJk.

Previously, Chakrabarti [Cha07] showed randomized
lower bounds of Ω(n/k) and Ω(n log(k−1) n) for MPJk
and M̂PJk respectively. The bound for M̂PJk is for the
maximum communication and is tight. The bound for
MPJk is for the total communication; this bound implies
an Ω(n/k2) lower bound on the maximum communica-
tion. In contrast, we achieve:

Theorem 17. In any randomized myopic protocol
for MPJk, some player must communicate at least
Ω(n/k log n) bits.

Our lower bound improves on the bound from [Cha07]
for k = Ω(log n). To prove this lower bound, we
give a round elimination lemma for ε-error distributional
protocols for MPJm,k under the uniform distribution.
By Yao’s minimax principle [Yao77], lower bounds on
distributional protocols imply lower bounds on random-
ized protocols. Our “base case” is a lower bound on
the ε-error distributional complexity of MPJm,k, due to
Ablayev [Abl96]:

Fact 18. Any protocol for MPJm,2 that errs on at most
an ε-fraction of the inputs distributed uniformly must
communicate at least m (1−H(ε)) bits.3

Lemma 19 (Round Elimination Lemma). Let k ≥ 3.
If there is a δn-bit, ε-error distributional myopic pro-
tocol P for MPJm,k, then there is a δn-bit, ε̂-error
distributional myopic protocol Q for MPJm′,k−1 with
m′ = n · 2−2δ nm and ε̂ = 2nε.

Proof: For the sake of notation, we let z :=
(f3, . . . , fk−1, x), so the input to MPJm,k is (i, f2, z).
Let P(i, f2, z) denote the output of P on input (i, f2, z).
Let

α(i, f2, z) :=
{

1 if P(i, f2, z) 6= MPJm,k(i, f2, z)
0 otherwise

Since P is an ε-error protocol, we have
Ei,f2,z[α(i, f2, z)] = ε. Now, let α̂(i, f2) :=
Ez[α(i, f2, z)], and call (i, f2) bad if α̂(i, f2) > 2nε;
otherwise, call (i, f2) good. Clearly, Ei,f2 [α̂(i, f2)] =
Ei,f2,z[α(i, f2, z)] = ε, so by Markov’s inequality, we
get Pr[(i, f2) is bad] < 1/2n. Now, let

β(i, f2) :=
{

1 if (i, f2) is bad
0 otherwise

Also, let β̂(f2) = Ei[β(i, f2)]. Call f2 bad if β̂(f2) ≥
1/n, and call f2 good otherwise. Note that Ef2 [β̂(f2)] =
Ei,f2 [β(i, f2)] < 1/(2n), so by another application
of Markov’s inequality, we get Pr[f2 is bad] < 1/2.
Therefore, f2 is good with probability at least 1/2.

Note that if f2 is good, then Pri[(i, f2) is bad] < 1/n.
Furthermore, if (i, f2) were bad for even a single i,
then we would have Pri[(i, f2)is bad] ≥ 1/n. Therefore,
(i, f2) is good for every i whenever f2 is good.

The rest of this lemma closely follows the determinis-
tic version. There are nm functions f2 : [m]→ [n]. Since

3The binary entropy function H is defined as: H(ε) := −ε log ε−
(1− ε) log(1− ε).
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at least half the functions f2 are good, there must be at
least nm/2 good f2. Since PLR1 sends at most δn bits,
he must send the same message M1 on nm/(2 · 2δn)
distinct good f2. Let F be the set of good inputs for
which PLR1 sends M1. It follows that |F| ≥ nm

2·2δn =
2m logn−1−δn > 2m logn−2δn = (m′)m. By Lemma 8,
we must have i ∈ [m] with |Range(i,F)| ≥ m′. Fur-
thermore, every f ∈ F is good, so (i, f) is good for all
f ∈ F . Construct a protocol Q for MPJm′,k−1 as we did
in Lemma 9. As in Lemma 9, the cost ofQ remains equal
to the cost of P , MPJm,k(i, gj , z) = MPJm′,k−1(j, z), and
that Q(j, z) = P(i, gj , z). Finally, we get

Pr
j,z

[Q(i, z) 6=MPJm′,k−1(j, z)]

= Pr
j,z

[P(i, gj , z) 6= MPJm,k(i, gj , z)]

= Pr
j,z

[α(i, gj , z) = 1]

≤ 2nε

where the inequality holds because (i, gj) is good for
every j.

Proof of Theorem 17. Let ε = 1/3 and δ =
1/32, and suppose an ε-error randomized protocol for
MPJk exists where each player sends at most t =

n
48δ ln 2(log 3+(k−2) log(2n)) = Ω( n

k logn ) bits. By Chernoff

bounds, there exists an ε̂ := ε (2n)−(k−2)-error random-
ized protocol P for MPJk, where each player sends δn
bits. By Yao’s minimax lemma, there is a deterministic
protocol where each player sends δn bits that errs on an
ε̂ fraction of inputs, distributed uniformly.

Set a0 = 0, a` = 2δ2a`−1 , and m` = n2−a` . Note
that a0 < 1/8, and if a`−1 < 1/8, then a` = 2δ2a`−1 <
1/8, so by induction, a` < 1/8 for all `. Using Lemma
19 k − 2 times, we get a δn-bit, ε-error protocol for
MPJmk−2,2. Combining this with Fact 18, we get

δn ≥ mk−2 (1−H(1/3))
⇔ δn ≥ n2−ak−2 (1−H(1/3))
⇔ δ2ak−2 ≥ 1−H(1/3)
⇔ ak−1/2 ≥ 1−H(1/3)

However, we have already seen that ak−1/2 < 1/16 <
1−H(1/3), so this is a contradiction. �

VI. CONCLUDING REMARKS

In this paper, we characterize the power of determin-
istic myopic protocols for MPJk. We have shown that
it is essentially necessary and sufficient for each player
to send n/2 bits of communication. When considering

the total communication of a protocol, we show that
the trivial protocol is the best myopic protocol possible.
Finally, we show how to randomize our result. We hope
this provides another concrete step towards showing that
MPJk 6∈ ACC0.

Several questions relating to pointer jumping remain.
It remains open whether MPJk ∈ ACC0 or not. More
generally, the gap between the upper and lower bounds
on the communication complexity remain large. Based
on the bounds in this and other work, it appears that ran-
domization does not help this problem much; however,
that remains a conjecture. It would be interesting to know
if there are any randomized protocols for any pointer
jumping problem (even with any input restriction) that
are significantly better than the known deterministic
lower bounds.

The current lower bounds seem to rely heavily on
restrictions to either the input model or which parts of the
input are seen by each player. This work relies heavily on
the fact that each player sees only a single layer of input
in front of them. The technique of Viola and Wigderson
is dependent on a tree-structure to the inputs. Relaxing
either of these restrictions might prove fruitful.
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