
ar
X

iv
:0

80
2.

28
43

v1
 [

cs
.C

C
]

 2
0

Fe
b

20
08

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 145-156
www.stacs-conf.org

SUBLINEAR COMMUNICATION PROTOCOLS FOR MULTI-PARTY

POINTER JUMPING AND A RELATED LOWER BOUND

JOSHUA BRODY 1 AND AMIT CHAKRABARTI 1

1 Department of Computer Science
Dartmouth College
Hanover, NH 03755, USA

Abstract. We study the one-way number-on-the-forehead (NOF) communication com-
plexity of the k-layer pointer jumping problem with n vertices per layer. This classic
problem, which has connections to many aspects of complexity theory, has seen a recent
burst of research activity, seemingly preparing the ground for an Ω(n) lower bound, for
constant k. Our first result is a surprising sublinear — i.e., o(n) — upper bound for the
problem that holds for k ≥ 3, dashing hopes for such a lower bound.

A closer look at the protocol achieving the upper bound shows that all but one of the
players involved are collapsing, i.e., their messages depend only on the composition of the
layers ahead of them. We consider protocols for the pointer jumping problem where all

players are collapsing. Our second result shows that a strong n − O(log n) lower bound
does hold in this case. Our third result is another upper bound showing that nontrivial
protocols for (a non-Boolean version of) pointer jumping are possible even when all players
are collapsing.

Our lower bound result uses a novel proof technique, different from those of earlier
lower bounds that had an information-theoretic flavor. We hope this is useful in further
study of the problem.

1. Introduction

Multi-party communication complexity in general, and the pointer jumping problem
(also known as the pointer chasing problem) in particular, has been the subject of plenty
of recent research. This is because the model, and sometimes the specific problem, bears
on several aspects of computational complexity: among them, circuit complexity [Yao90,
HG91, BT94], proof size lower bounds [BPS05] and space lower bounds for streaming al-
gorithms [AMS99, GM07, CJP08]. The most impressive known consequence of a strong

1998 ACM Subject Classification: F.1.3, F.2.2.
Key words and phrases: Communication complexity, pointer jumping, number on the forehead.
Work supported in part by an NSF CAREER Award CCF-0448277, NSF grants CCF-0514870 and EIA-

98-02068. Work partly done while the authors were visiting the University of Washington, Seattle, WA.
.

c© J. Brody and A. Chakrabarti
CC© Creative Commons Attribution-NoDerivs License

http://arXiv.org/abs/0802.2843v1

146 J. BRODY AND A. CHAKRABARTI

multi-party communication lower bound would be to exhibit non-membership in the com-
plexity class ACC

0; details can be found in Beigel and Tarui [BT94] or in the textbook by
Arora and Barak [AB07]. Vexingly, it is not even known whether or not ACC

0 = NEXP.
The setting of multi-party communication is as follows. There are k players (for some

k ≥ 2), whom we shall call plr1,plr2, . . . ,plrk, who share an input k-tuple (x1, x2, . . . , xk).
The goal of the players is to compute some function f(x1, x2, . . . , xk). There are two well-
studied sharing models: the number-in-hand model, where plri sees xi, and the number-

on-the-forehead (NOF) model, where plri sees all xjs such that j 6= i. Our focus in
this paper will be on the latter model, which was first introduced by Chandra, Furst and
Lipton [CFL83]. It is in this model that communication lower bounds imply lower bounds
against ACC

0. We shall use C(f) to denote the deterministic communication complexity
of f in this model. Also of interest are randomized protocols that only compute f(x)
correctly with high probability: we let Rε(f) denote the ε-error randomized communication
complexity of f . Our work here will stick to deterministic protocols, which is a strength for
our upper bounds. Moreover, it is not a serious weakness for our lower bound, because the
ACC

0 connection only calls for a deterministic lower bound.
Notice that the NOF model has a feature not seen elsewhere in communication com-

plexity: the players share plenty of information. In fact, for large k, each individual player
already has “almost” all of the input. This intuitively makes lower bounds especially hard
to prove and indeed, to this day, no nontrivial lower bound is known in the NOF model
for any explicit function with k = ω(log n) players, where n is the total input size. The
pointer jumping problem is widely considered to be a good candidate for such a lower bound.
As noted by Damm, Jukna and Sgall [DJS98], it has many natural special cases, such as
shifting, addressing, multiplication and convolution. This motivates our study.

1.1. The Pointer Jumping Problem and Previous Results

There are a number of variants of the pointer jumping problem. Here we study two
variants: a Boolean problem, mpjn

k , and a non-Boolean problem, m̂pj
n
k (henceforth, we shall

drop the superscript n). In both variants, the input is a subgraph of a fixed layered graph
that has k + 1 layers of vertices, with layer 0 consisting of a single vertex, v0, and layers 1
through k−1 consisting of n vertices each (we assume k ≥ 2). Layer k consists of 2 vertices
in the case of mpjk and n vertices in the case of m̂pjk. The input graph is a subgraph of the
fixed layered graph in which every vertex (except those in layer k) has outdegree 1. The
desired output is the name of the unique vertex in layer k reachable from v0, i.e., the final
result of “following the pointers” starting at v0. The output is therefore a single bit in the
case of mpjk or a ⌈log n⌉-bit string in the case of m̂pjk.

1

The functions mpjk and m̂pjk are made into NOF communication problems as follows:
for each i ∈ [k], a description of the ith layer of edges (i.e., the edges pointing into the ith
layer of vertices) is written on plri’s forehead. In other words, plri sees every layer of edges
except the ith. The players are allowed to write one message each on a public blackboard

and must do so in the fixed order plr1,plr2, . . . ,plrk. The final player’s message must be
the desired output. Notice that the specific order of speaking — plr1,plr2, . . . ,plrk —
is important to make the problem nontrivial. Any other order of speaking allows an easy
deterministic protocol with only O(log n) communication.

1Throughout this paper we use “log” to denote logarithm to the base 2.

SUBLINEAR PROTOCOLS FOR POINTER JUMPING 147

Consider the case k = 2. The problem mpj2 is equivalent to the two-party communica-
tion problem index, where Alice holds a bit-vector x ∈ {0, 1}n, Bob holds an index i ∈ [n],
and Alice must send Bob a message that enables him to output xi. It is easy to show that
C(mpj2) = n. In fact, Ablayev [Abl96] shows the tight tradeoff Rε(mpj2) = (1 − H(ε))n,
where H is the binary entropy function. It is tempting to conjecture that this lower bound
generalizes as follows.

Conjecture 1.1. There is a nondecreasing function ξ : Z
+ → R

+ such that, ∀ k : C(mpjk) =
Ω(n/ξ(k)).

Note that, by the results of Beigel and Tarui [BT94], in order to show that mpjk /∈ ACC
0

it would suffice, for instance, to prove the following (possibly weaker) conjecture.

Conjecture 1.2. There exist constants α, β > 0 such that, for k = nα, C(mpjk) = Ω(nβ).

Conjecture 1.1 is consistent with (and to an extent motivated by) research prior to
this work. In weaker models of information sharing than the NOF model, an equivalent
statement is known to be true, even for randomized protocols. For instance, Damm, Jukna
and Sgall [DJS98] show an Ω(n/k2) communication lower bound in the so-called conservative

model, where plri has only a limited view of the layers of the graph behind her: she only
sees the result of following the first i− 1 pointers. Chakrabarti [Cha07] extends this bound
to randomized protocols and also shows an Ω(n/k) lower bound in the so-called myopic

model, where plri has only a limited view of the layers ahead of her: she cannot see layers
i + 2, . . . , k.

For the full NOF model, Wigderson, building on the work of Nisan and Wigder-
son [NW93], showed that C(mpj3) = Ω(

√
n). This result is unpublished, but an exposition

can be found in Babai, Hayes and Kimmel [BHK01]. Very recently, Viola and Wigder-
son [VW07] generalized this result and extended it to randomized protocols, showing that

R1/3(mpjk) = Ω(n1/(k−1)/kO(k)). Of course, this bound falls far short of that in Conjec-
ture 1.1 and does nothing for Conjecture 1.2. However, it is worth noting that the Viola-
Wigderson bound in fact applies to the much smaller subproblem of tree pointer jumping

(denoted tpjk), where the underlying layered graph is a height-k tree, with every vertex in

layers 0 through k − 2 having n1/(k−1) children and every vertex in layer k − 1 having two
children. It is easy to see that C(tpjk) = O(n1/(k−1)). Thus, one might hope that the more
general problem mpjk has a much stronger lower bound, as in Conjecture 1.1.

On the upper bound side, Damm et al. [DJS98] show that C(m̂pjk) = O(n log(k−1) n),

where log(i) n is the ith iterated logarithm of n. This improves on the trivial upper bound
of O(n log n). Their technique does not yield anything nontrivial for the Boolean problem
mpjk, though. However, Pudlak, Rödl and Sgall [PRS97] obtain a sublinear upper bound
of O(n log log n/ log n) for a special case of mpj3. Their protocol works only when every
vertex in layer 2 has indegree 1, or equivalently, when the middle layer of edges in the input
describes a permutation of [n].

1.2. Our Results

The protocol of Pudlak et al. [PRS97] did not rule out Conjecture 1.1, but it did suggest
caution. Our first result is the following upper bound — in fact the first nontrivial upper
bound on C(mpjk) — that falsifies the conjecture.

148 J. BRODY AND A. CHAKRABARTI

Theorem 1.3. For k ≥ 3, we have

C(mpjk) = O

(
n

(
k log log n

log n

)(k−2)/(k−1)
)

.

In particular, C(mpj3) = O(n
√

log log n/ log n).

A closer look at the protocol that achieves the upper bound above reveals that all
players except for plr1 behave in the following way: the message sent by plri depends
only on layers 1 through i − 1 and the composition of layers i + 1 through k. We say that
plri is collapsing. This notion is akin to that of the aforementioned conservative protocols
considered by Damm et al. Whereas a conservative player composes the layers behind hers,
a collapsing player does so for layers ahead of hers.

We consider what happens if we require all players in the protocol to be collapsing. We
prove a strong linear lower bound, showing that even a single non-collapsing player makes
an asymptotic difference in the communication complexity.

Theorem 1.4. In a protocol for mpjk where every player is collapsing, some player must

communicate at least n − 1
2 log n − 2 = n − O(log n) bits.

Finally, one might wonder whether the collapsing requirement is so strong that nothing
nontrivial is possible anyway. The same question can be raised for the conservative and
myopic models where Ω(n/k2) and Ω(n/k) lower bounds were proven in past work. It turns
out that the upper bound on C(m̂pjk) due to Damm et al. [DJS98] (see Section 1.1) is
achievable by a protocol that is both conservative and myopic. We can show a similar
upper bound via a different protocol where every player is collapsing.

Theorem 1.5. For k ≥ 3, there is an O(n log(k−1) n)-communication protocol for m̂pj
perm
k

in which every player is collapsing. Here m̂pj
perm
k denotes the subproblem of m̂pjk in which

layers 2 through k of the input graph are permutations of [n].

The requirement that layers be permutations is a natural one and is not new. The pro-
tocol of Pudlak et al. also had this requirement; i.e., it gave an upper bound on C(mpj

perm
3).

Theorem 1.5 can in fact be strengthened slightly by allowing one of the layers from 2 through
k to be arbitrary; we formulate and prove this stronger version in Section 4.

1.3. Organization

The rest of the paper is organized as follows. Theorems 1.3, 1.4 and 1.5 are proven
in Sections 2, 3 and 4 respectively. Section 2.1 introduces some notation that is used in
subsequent sections.

2. A Sublinear Upper Bound

2.1. Preliminaries, Notation and Overall Plan

For the rest of the paper, “protocols” will be assumed to be deterministic one-way NOF
protocols unless otherwise qualified. We shall use cost(P) to denote the total number of
bits communicated in P , for a worst case input.

SUBLINEAR PROTOCOLS FOR POINTER JUMPING 149

Let us formally define the problems mpjk and m̂pjk. We shall typically write the input
k-tuple for mpjk as (i, f2, . . . , fk−1, x) and that for m̂pjk as (i, f2, . . . , fk), where i ∈ [n],

each fj ∈ [n][n] and x ∈ {0, 1}n. We then define mpjk : [n] ×
(
[n][n]

)k−2 × {0, 1}n → {0, 1}
and m̂pjk : [n] ×

(
[n][n]

)k−1 → [n] as follows.

mpj2(i, x) := xi ; mpjk(i, f2, f3, . . . , fk−1, x) := mpjk−1(f2(i), f3, . . . , fk−1, x) , for k ≥ 3

m̂pj2(i, f) := f(i) ; m̂pjk(i, f2, f3, . . . , fk) := m̂pjk−1(f2(i), f3, . . . , fk) , for k ≥ 3 .

Here, xi denotes the ith bit of the string x. It will be helpful, at times, to view strings in
{0, 1}n as functions from [n] to {0, 1} and use functional notation accordingly. It is often

useful to discuss the composition of certain subsets of the inputs. Let î2 := i, and for
3 ≤ j ≤ k, let îj := fj−1 ◦ · · · ◦ f2(i). Similarly, let x̂k−1 := x, and for 1 ≤ j ≤ k − 2, let
x̂j := x ◦ fk−1 ◦ · · · ◦ fj+1. Unrolling the recursion in the definitions, we see that, for k ≥ 2,

mpjk(i, f2, . . . , fk−1, x) = x ◦ fk−1 ◦ · · · ◦ f2(i) = x̂1(i) = xîk
; (2.1)

m̂pjk(i, f2, . . . , fk) = fk ◦ · · · ◦ f2(i) = fk(̂ik) . (2.2)

We also consider the subproblems mpj
perm
k and m̂pj

perm
k where each fj above is a bi-

jection from [n] to [n] (equivalently, a permutation of [n]). We let Sn denote the set of all
permutations of [n].

Here is a rough plan of the proof of our sublinear upper bound. We leverage the fact
that a protocol P for mpj

perm
3 with sublinear communication is known. To be precise:

Fact 2.1 (Pudlak, Rödl and Sgall [PRS97, Corollary 4.8]). C(mpj
perm
3) = O(n log log n/ log n).

The exact structure of P will not matter; we shall only use P as a black box. To get a
sense for why P might be useful for, say, mpj3, note that the players could replace f2 with
a permutation π and just simulate P , and this would work if π(i) = f(i). Of course, there
is no way for plr1 and plr3 to agree on a suitable π without communication. However, as
we shall see below, it is possible for them to agree on a small enough set of permutations
such that either some permutation in the set is suitable, or else only a small amount of side
information conveys the desired output bit to plr3.

This idea eventually gives us a sublinear protocol for mpj3. Clearly, whatever upper
bound we obtain for mpj3 applies to mpjk for all k ≥ 3. However, we can decrease the
upper bound as k increases, by embedding several instances of mpj3 into mpjk. For clarity,
we first give a complete proof of Theorem 1.3 for the case k = 3.

2.2. A 3-Player Protocol

Following the plan outlined above, we prove Theorem 1.3 for the case k = 3 by plugging
Fact 2.1 into the following lemma, whose proof is the topic of this section.

Lemma 2.2. Suppose φ : Z
+ → (0, 1] is a function such that C(mpj

perm
3) = O(nφ(n)).

Then C(mpj3) = O(n
√

φ(n)).

Definition 2.3. A set A ⊆ Sn of permutations is said to d-cover a function f : [n] → [n]
if, for each r ∈ [n], at least one of the following conditions holds:

(i) ∃π ∈ A such that π(r) = f(r), or
(ii) |f−1(f(r))| > d.

150 J. BRODY AND A. CHAKRABARTI

Lemma 2.4. Let f : [n] → [n] be a function and d be a positive integer. There exists a set

Ad(f) ⊆ Sn, with |Ad(f)| ≤ d, that d-covers f .

Proof. We give an explicit algorithm to construct Ad(f). Our strategy is to partition the
domain and codomain of f (both of which equal [n]) into parts of matching sizes and then
define bijections between the corresponding parts. To be precise, suppose Range(f) =
{s1, s2, . . . , st}. Let Ai = f−1(si) be the corresponding fibers of f . Clearly, {Ai}t

i=1 is a
partition of [n]. It is also clear that there exists a partition {Bi}t

i=1 of [n] such that, for
all i ∈ [t], Bi ∩ Range(f) = {si} and |Bi| = |Ai|. We shall now define certain bijections
πi,ℓ : Ai → Bi, for each i ∈ [t] and ℓ ∈ [d].

Let ai,1 < ai,2 < · · · < ai,|Ai| be the elements of Ai arranged in ascending order.
Similarly, let bi,1 < · · · < bi,|Bi| be those of Bi. We define

πi,ℓ(ai,j) := bi,(j−ℓ) mod |Bi| , for i ∈ [t], ℓ ∈ [d] ,

where, for convenience, we require “α mod β” to return values in [β], rather than {0, 1, . . . , β−
1}. It is routine to verify that πi,ℓ is a bijection. Notice that this construction ensures that
for all i ∈ [t] and j ∈ [|Ai|] we have

|{πi,ℓ(ai,j) : ℓ ∈ [d]}| = min{d, |Bi|} . (2.3)

Let πℓ : [n] → [n] be the bijection given by taking the “disjoint union” of π1,ℓ, . . . , πt,ℓ. We
claim that Ad(f) = {π1, . . . , πd} satisfies the conditions of the lemma.

It suffices to verify that this choice of Ad(f) d-covers f , i.e., to verify that every r ∈ [n]
satisfies at least one of the two conditions in Definition 2.3. Pick any r ∈ [n]. Suppose r ∈ Ai,
so that f(r) ∈ Bi and πℓ(r) = πi,ℓ(r). If |Bi| > d, then |f−1(f(r))| = |Ai| = |Bi| > d, so
condition (ii) holds. Otherwise, from Eq. (2.3), we conclude that {πi,ℓ(r) : ℓ ∈ [d]} = Bi.
Therefore, for each s ∈ Bi — in particular, for s = f(r) — there exists an ℓ ∈ [d] such that
πℓ(r) = πi,ℓ(r) = s, so condition (i) holds.

Proof of Lemma 2.2. Let (i, π, x) ∈ [n] × Sn × {0, 1}n denote an input for the problem
mpj

perm
3 . Then the desired output is xπ(i). The existence of a protocol P for mpj

perm
3 with

cost(P) = O(nφ(n)) means that there exist functions

α : Sn × {0, 1}n → {0, 1}m , β : [n] × {0, 1}n × {0, 1}m → {0, 1}m , and

γ : [n] × Sn × {0, 1}m × {0, 1}m → {0, 1} ,

where m = O(nφ(n)), such that γ(i, π, α(π, x), β(i, x, α(π, x))) = xπ(i). The functions α, β
and γ yield the messages in P of plr1,plr2 and plr3 respectively.

To design a protocol for mpj3, we first let plr1 and plr3 agree on a parameter d, to
be fixed below, and a choice of Ad(f) for each f : [n] → [n], as guaranteed by Lemma 2.4.

Now, let (i, f, x) ∈ [n]× [n][n]×{0, 1}n be an input for mpj3. Our protocol works as follows.

• plr1 sends a two-part message. The first part consists of the strings {α(π, x)}π

for all π ∈ Ad(f). The second part consists of the bits xs for s ∈ [n] such that
|f−1(s)| > d.

• plr2 sends the strings {β(i, x, α)}α for all strings α in the first part of plr1’s
message.

• plr3 can now output xf(i) as follows. If |f−1(f(i))| > d, then she reads xf(i) off
from the second part of plr1’s message. Otherwise, since Ad(f) d-covers f , there
exists a π0 ∈ Ad(f) such that f(i) = π0(i). She uses the string α0 := α(π0, x) from

SUBLINEAR PROTOCOLS FOR POINTER JUMPING 151

the first part of plr1’s message and the string β0 := β(i, x, α0) from plr2’s message
to output γ(i, π0, α0, β0).

To verify correctness, we only need to check that plr3’s output in the “otherwise” case
indeed equals xf(i). By the correctness of P , the output equals xπ0(i) and we are done, since
f(i) = π0(i).

We now turn to the communication cost of the protocol. By the guarantees in Lemma 2.4,
|Ad(f)| ≤ d, so the first part of plr1’s message is at most dm bits long, as is plr2’s mes-
sage. Since there can be at most n/d values s ∈ [n] such that |f−1(s)| > d, the second part
of plr2’s message is at most n/d bits long. Therefore the communication cost is at most

2dm + n/d = O(dnφ(n) + n/d). Setting d = ⌈1/
√

φ(n)⌉ gives us a bound of O(n
√

φ(n)),
as desired.

2.3. A k-Player Protocol

We now show how to prove Theorem 1.3 by generalizing the protocol from Lemma 2.2
into a protocol for k players. It will help to view an instance of mpjk as incorporating
several “embedded” instances of mpj3. The following lemma makes this precise.

Lemma 2.5. Let (i, f2, . . . , fk−1, x) be input for mpjk. Then, for all 1 < j < k,

mpjk(i, f2, . . . , x) = mpj3(fj−1 ◦ · · · ◦ f2(i), fj , x ◦ fk−1 ◦ · · · ◦ fj+1).

In our protocol for mpjk, for 2 ≤ j ≤ k− 1, the players plr1,plrj , and plrk will use a
modified version of the protocol from Lemma 2.2 for mpj3 on input (fj−1 ◦ · · · ◦ f2(i), fj , x ◦
· · · ◦ fj+1). Before we get to the protocol, we need to generalize the technical definition and
lemma from the previous subsection.

Definition 2.6. Let S ⊆ [n] and let d be a positive integer. A set A ⊆ Sn of permutations
is said to (S, d)-cover a function f : [n] → [n] if, for each r ∈ S, at least one of the following
conditions holds:

(i) ∃π ∈ A such that π(r) = f(r), or
(ii) |S ∩ f−1(f(r))| > d.

Lemma 2.7. Let f : [n] → [n] be a function, S ⊆ [n], and d be a positive integer. There

exists a set AS,d(f) ⊆ Sn, with |AS,d(f)| ≤ d, that (S, d)-covers f .

Proof. This proof closely follows that of Lemma 2.4. As before, we give an explicit algorithm
to construct AS,d(f). Suppose Range(f) = {s1, s2, . . . , st}, and let {Ai} and {Bi} be defined
as in Lemma 2.4. Let ai,1 < · · · < ai,z be the elements of Ai ∩ S arranged in ascending
order, and let ai,z+1 < · · · < ai,|Ai| be the elements of Ai \ S arranged in ascending order.
Similarly, let bi,1 < · · · < bi,|Bi|−1 be the elements of Bi \ {si} arranged in ascending order,
and let bi,|Bi| = si. For i ∈ [t], ℓ ∈ [d], we define πi,ℓ(ai,j) := bi,(j−ℓ) mod |Bi|. As before,
it is routine to verify that πi,ℓ is a bijection. Let πℓ : [n] → [n] be the bijection given by
taking the “disjoint union” of π1,ℓ, . . . , πt,ℓ. We claim that AS,d(f) = {π1, . . . , πd} satisfies
the conditions of the lemma.

It suffices to verify that this choice of AS,d(f) (S, d)-covers f , i.e., to verify that every
r ∈ S satisfies at least one of the two conditions in Definition 2.6. Pick any r ∈ S.
Suppose r ∈ Ai, and fix j such that r = ai,j. If |S ∩ f−1(f(r))| > d, then condition (ii)
holds. Otherwise, setting ℓ = j < |S ∩ f−1(f(i))| ≤ d, we conclude that πℓ(r) = πi,ℓ(r) =
πi,ℓ(ai,j) = bi,|Bi| = si = f(r), so condition (i) holds.

152 J. BRODY AND A. CHAKRABARTI

Proof of Theorem 1.3. To design a protocol for mpjk, we first let plr1 and plrk agree on a
parameter d, to be fixed below. They also agree on a choice of AS,d(f) for all S ⊆ [n] and
f : [n] → [n]. Let (i, f2, . . . , fk−1, x) denote an input for mpjk. Also, let S1 = [n], and for
all 2 ≤ j ≤ k − 1, let Sj = {s ∈ [n] : |Sj−1 ∩ f−1

j (s)| > d}. Our protocol works as follows:

• plr1 sends a (k−1)-part message. For 1 ≤ j ≤ k−2, the jth part of plr1’s message
consists of the strings {α(π, x̂j+1)}π for each π ∈ ASj ,d(fj+1). The remaining part
consists of the bits xs for s ∈ Sk−1.

• For 2 ≤ j ≤ k − 1, plrj sends the strings {β(̂ij , x̂j , α)}α for all strings α in the
(j − 1)th part of plr1’s message.

• plrk can now output xîk
as follows. If |S1 ∩ f−1

2 (f2(i))| ≤ d, then, because

AS1,d(f2) (S1, d)-covers f2, there exists π0 ∈ AS1,d(f2) such that f2(i) = π0(i).
She uses the string α0 = α(π0, x̂2) from the first part of plr1’s message and the
string β0 = β(i, x̂2, α0) from plr2’s message to output γ0 = γ(i, π0, α0, β0). Sim-

ilarly, if there is a j such that 2 ≤ j ≤ k − 2 and |Sj ∩ f−1
j+1(fj+1(̂ij+1))| ≤ d,

then since ASj ,d(fj+1) (Sj , d)-covers fj+1, there exists a π0 ∈ ASj ,d(fj+1) such that

fj+1(̂ij+1) = π0(̂ij+1). She uses the string α0 = α(π0, x̂j+1) from the jth part

of plr1’s message and the string β0 = β(̂ij+1, x̂j+1, α0) from plrj+1’s message to

output γ0 = γ(̂ij+1, π0, α0, β0). Otherwise, |Sk−2 ∩ f−1
k−1(fk−1(̂ik−1))| > d, hence

îk ∈ Sk−1, and she reads xîk
off from the last part of plr1’s message.

To verify correctness, we need to ensure that plrk always outputs x ◦ fk−1 ◦ · · · ◦ f2(i).
In the following argument, we repeatedly use Lemma 2.5. We proceed inductively. If
|S1 ∩ f−1

2 (f2(i))| ≤ d then there exists π0 ∈ AS1,d(f2) such that f2(i) = π0(i), α0 =
α(π0, x̂2), and β0 = β(i, x̂2, α0), and plrk outputs γ0 = γ(i, π0, α0, β0) = x̂2(π0(i)) =
x ◦ fk−1 ◦ · · · ◦ f2(i). Otherwise, |S1 ∩ f−1

2 (f2(i))| > d, hence f2(i) ∈ S2. Inductively, if

îj ∈ Sj−1, then either |Sj−1 ∩ f−1
j (fj (̂ij))| ≤ d, or |Sj−1 ∩ f−1

j (fj (̂ij))| > d. In the former

case, there is π0 ∈ ASj−1,d(fj) such that fj (̂ij) = π0(̂ij); α0(π0, x̂j), and β0 = β(̂ij , x̂j, α0),

and plrk outputs γ0 = γ(̂ij , π0, α0, β0) = x̂j(fj (̂ij)) = x ◦ fk−1 ◦ · · · ◦ f2(i). In the latter

case, fj (̂ij) ∈ Sj. By induction, we have that either plrk outputs x ◦ fk−1 ◦ · · · ◦ f2(i), or

îk ∈ Sk−1. But in this case, plrk outputs x(̂ik) = x ◦ fk−1 ◦ · · · ◦ f2(i) directly from the last
part of plr1’s message. Therefore, plrk always outputs x ◦ fk−1 ◦ · · · ◦ f2(i) correctly.

We now turn to the communication cost of the protocol. By Lemma 2.7, |ASj ,d(fj)| ≤ d
for each 2 ≤ j ≤ k − 1, hence the first k − 2 parts of plr1’s message each are at most dm
bits long, as is plrj ’s message for all 2 ≤ j ≤ k − 1. Also, since for all 2 ≤ j ≤ k − 1, there

are at most |Sj−1|/d elements s ∈ Sj such that |Sj−1 ∩ f−1
j (s)| > d, we must have that

|S2| ≤ |S1|/d = n/d, |S3| ≤ |S2|/d ≤ n/d2, etc., and |Sk−1| ≤ n/dk−2. Therefore, the final
part of plr1’s message is at most n/dk−2 bits long, and the total communication cost is at

most 2(k−2)dm+n/dk−2 = O((k−2)dnφ(n)+n/dk−2). Setting d = ⌈1/((k−2)φ(n))1/(k−1)⌉
gives us a bound of O(n(kφ(n))(k−2)/(k−1)) as desired.

Note that, in the above protocol, except for the first and last players, the remaining
players access very limited information about their input. Specifically, for all 2 ≤ j ≤ k−1,
plrj needs to see only îj and x̂j, i.e., plrj is both conservative and collapsing. Despite
this severe restriction, we have a sublinear protocol for mpjk. As we shall see in the next
section, further restricting the input such that plr1 is also collapsing yields very strong
lower bounds.

SUBLINEAR PROTOCOLS FOR POINTER JUMPING 153

3. Collapsing Protocols: A Lower Bound

Let F : A1 × A2 × · · · × Ak → B be a k-player NOF communication problem and P
be a protocol for F . We say that plrj is collapsing in P if her message depends only on
x1, . . . , xj−1 and the function gx,j : A1 × A2 × · · · × Aj → B given by gx,j(z1, . . . , zj) =
F (z1, . . . , zj , xj+1, . . . , xk). For pointer jumping, this amounts to saying that plrj sees all
layers 1, . . . , j − 1 of edges (i.e., the layers preceding the one on her forehead), but not layers
j + 1, . . . , k; however, she does see the result of following the pointers from each vertex in
layer j. Still more precisely, if the input to mpjk (or m̂pjk) is (i, f2, . . . , fk), then the only
information plrj gets is i, f2, . . . , fj−1 and the composition fk ◦ fk−1 ◦ · · · ◦ fj+1.

We say that a protocol is collapsing if every player involved is collapsing. We shall
prove Theorem 1.4 by contradiction. Assume that there is a collapsing protocol P for mpjk

in which every player sends less than n − 1
2 log n − 2 bits. We shall construct a pair of

inputs that differ only in the last layer (i.e., the Boolean string on plrk’s forehead) and
that cause players 1 through k − 1 to send the exact same sequence of messages. This will
cause plrk to give the same output for both these inputs. But our construction will ensure
that the desired outputs are unequal, a contradiction. To aid our construction, we need
some definitions and preliminary lemmas.

Definition 3.1. A string x ∈ {0, 1}n is said to be consistent with (f1, . . . , fj, α1, . . . , αj) if,
in protocol P , for all h ≤ j, plrh sends the message αh on seeing input (i = f1, . . . , fh−1, x◦
fj ◦ fj−1 ◦ · · · ◦ fh+1) and previous messages α1, . . . , αh−1.

2 A subset T ⊆ {0, 1}n is said to
be consistent with (f1, . . . , fj , α1, . . . , αj) if x is consistent with (f1, . . . , fj, α1, . . . , αj) for
all x ∈ T .

Definition 3.2. For strings x, x′ ∈ {0, 1}n and a, b ∈ {0, 1}, define the sets

Iab(x, x′) := {j ∈ [n] : (xj, x
′
j) = (a, b)} .

A pair of strings (x, x′) is said to be a crossing pair if for all a, b ∈ {0, 1}, Iab(x, x′) 6= ∅. A
set T ⊆ {0, 1}n is said to be crossed if it contains a crossing pair and uncrossed otherwise.
The weight of a string x ∈ {0, 1}n is defined to be the number of 1s in x, and denoted |x|.

For the rest of this section, we assume (without loss of generality) that n is large enough
and even.

Lemma 3.3. If T ⊆ {0, 1}n is uncrossed, then |{x ∈ T : |x| = n/2}| ≤ 2.

Proof. Let x and x′ be distinct elements of T with |x| = |x′| = n/2. For a, b ∈ {0, 1},
define tab = |Iab(x, x′)|. Since x 6= x′, we must have t01 + t10 > 0. An easy counting
argument shows that t01 = t10 and t00 = t11. Since T is uncrossed, (x, x′) is not a crossing
pair, so at least one of the numbers tab must be zero. It follows that t00 = t11 = 0, so
x and x′ are bitwise complements of each other. Since this holds for any two strings in
{x ∈ T : |x| = n/2}, that set can have size at most 2.

Lemma 3.4. Suppose t ≤ n− 1
2 log n−2. If {0, 1}n is partitioned into 2t disjoint sets, then

one of those sets must be crossed.

2It is worth noting that, in Definition 3.1, x is not to be thought of as an input on plrk’s forehead.
Instead, in general, it is the composition of the rightmost k − j layers of the input graph.

154 J. BRODY AND A. CHAKRABARTI

Proof. Let {0, 1}n = T1⊔T2⊔· · ·⊔Tm be a partition of {0, 1}n into m uncrossed sets. Define
X := {x ∈ {0, 1}n : |x| = n/2}. Then X =

⋃m
i=1(Ti ∩ X). By Lemma 3.3,

|X| ≤
m∑

i=1

|Ti ∩ X| ≤ 2m .

Using Stirling’s approximation, we can bound |X| > 2n/(2
√

n). Therefore, m > 2n− 1

2
log n−2.

Proof of Theorem 1.4. Set t = n− 1
2 log n− 2. Recall that we have assumed that there is a

collapsing protocol P for mpjk in which every player sends at most t bits. We shall prove
the following statement by induction on j, for j ∈ [k − 1].

(*) There exists a partial input (i = f1, f2, . . . , fj) ∈ [n] ×
(
[n][n]

)j−1
, a

sequence of messages (α1, . . . , αj) and a crossing pair of strings (x, x′) ∈
({0, 1}n)2 such that both x and x′ are consistent with (f1, . . . , fj , α1, . . . , αj),
whereas x ◦ fj ◦ · · · ◦ f2(i) = 0 and x′ ◦ fj ◦ · · · ◦ f2(i) = 1.

Considering (*) for j = k − 1, we see that plrk must behave identically on the two inputs
(i, f2, . . . , fk−1, x) and (i, f2, . . . , fk−1, x

′). Therefore, she must err on one of these two
inputs. This will give us the desired contradiction.

To prove (*) for j = 1, note that plr1’s message, being at most t bits long, partitions
{0, 1}n into at most 2t disjoint sets. By Lemma 3.4, one of these sets, say T , must be
crossed. Let (x, x′) be a crossing pair in T and let α1 be the message that plr1 sends on
seeing a string in T . Fix i = f1 such that i ∈ I01(x, x′). These choices are easily seen to
satisfy the conditions in (*). Now, suppose (*) holds for a particular j ≥ 1. Fix the partial
input (f1, . . . , fj) and the message sequence (α1, . . . , αj) as given by (*). We shall come up
with appropriate choices for fj+1, αj+1 and a new crossing pair (y, y′) to replace (x, x′), so
that (*) is satisfied for j + 1. Since plrj+1 sends at most t bits, she partitions {0, 1}n into
at most 2t subsets (the partition might depend on the choice of (f1, . . . , fj , α1, . . . , αj)).

As above, by Lemma 3.4, she sends a message αj+1 on some crossing pair (y, y′). Choose
fj+1 so that it maps Iab(x, x′) to Iab(y, y′) for all a, b ∈ {0, 1}; this is possible because
Iab(y, y′) 6= ∅. Then, for all i ∈ [n], xi = yfj+1(i) and x′

i = y′fj+1(i)
. Hence, x = y ◦ fj+1

and x′ = y′ ◦ fj+1. Applying the inductive hypothesis and the definition of consistency, it
is straightforward to verify the conditions of (*) with these choices for fj+1, αj+1, y and y′.
This completes the proof.

4. Collapsing Protocols: An Upper Bound

We now turn to proving Theorem 1.5 by constructing an appropriate collapsing protocol
for m̂pj

perm
k . Our protocol uses what we call bucketing schemes, which have the flavor of the

conservative protocol of Damm et al. [DJS98]. For any function f ∈ [n][n] and any S ⊆ [n],
let 1S denote the indicator function for S; that is, 1S(i) = 1 ⇔ i ∈ S. Also, let f |S denote
the function f restricted to S; this can be seen as a list of numbers {is}, one for each s ∈ S.
Players will often need to send 1S and f |S together in a single message. This is because
later players might not know S, and will therefore be unable to interpret f |S without 1S .
Let 〈m1, . . . ,mt〉 denote the concatenation of messages m1, . . . ,mt.

Definition 4.1. A bucketing scheme on a set X is an ordered partition B = (B1, . . . , Bt) of
X into buckets. For x ∈ X, we write B[x] to denote the unique integer j such that Bj ∋ x.

SUBLINEAR PROTOCOLS FOR POINTER JUMPING 155

We actually prove our upper bound for problems slightly more general than m̂pj
perm
k .

To be precise, for an instance (i, f2, . . . , fk) of m̂pjk, we allow any one of f2, . . . , fk to be an

arbitrary function in [n][n]. The rest of the fjs are required to be permutations, i.e., in Sn.

Theorem 4.2 (Slight generalization of Theorem 1.5). There is an O(n log(k−1) n) collapsing

protocol for instance (i, f2, . . . , fk) of m̂pjk when all but one of f2, . . . , fk are permutations.

In particular, there is such a protocol for m̂pj
perm
k .

Proof. We prove this for m̂pj
perm
k only. For 1 ≤ t ≤ ⌈log n⌉, define the bucketing scheme

Bt = (B1, . . . , B2t) on [n] by Bj := {r ∈ [n] : ⌈2tr/n⌉ = j}. Note that each |Bj| ≤ ⌈n/2t⌉
and that a bucket can be described using t bits. For 1 ≤ j ≤ k, let bj = ⌈log(k−j) n⌉. In the
protocol, most players will use two bucketing schemes, B and B′. On input (i, f2, . . . , fk):

• plr1 sees f̂1, computes B′ := Bb1, and sends 〈B′[f̂1(1)], . . . ,B′[f̂1(n)]〉.
• plr2 sees î2, f̂2, and plr1’s message. plr2 computes B := Bb1 and B′ := Bb2 . She

recovers b := B[f̂2(f2(̂i2))] and hence Bb. Let S2 := {s ∈ [n] : f̂2(s) ∈ Bb}. Note

that f2(̂i2) ∈ S2. plr2 sends 〈1S2
, {B′[f̂2(s)] : s ∈ S2}〉.

...
• plrj sees îj , f̂j, and plrj−1’s message. plrj computes B := Bbj−1

and B′ := Bbj
. She

recovers b := B[f̂j(fj (̂ij))] and hence Bb. Let Sj := {s ∈ [n] : f̂j(s) ∈ Bb}. Note that

the definitions guarantee that fj (̂ij) ∈ Sj. plrj sends 〈1Sj
, {B′[f̂j(s)] : s ∈ Sj}〉.

...
• plrk sees îk and plrk−1’s message and outputs fk(̂ik).

We claim that this protocol costs O(n log(k−1) n) and correctly outputs m̂pjk(i, f2, . . . , fk).
For each 2 ≤ j ≤ k − 1, plrj uses bucketing scheme Bbj−1

to recover the bucket Bb con-

taining f̂j(fj (̂ij)). She then encodes each element in Bb in the bucketing scheme Bbj
. Each

bucket in Bbj
has size at most ⌈n/bj+1⌉. In particular, each bucket in scheme Bk−1 has

size at most ⌈n/bk⌉ = 1, and the unique element in the bucket (if present) is precisely

fk(̂ik). Turning to the communication cost, plr1 sends b1 = ⌈log(k−1) n⌉ bits to identify

the bucket for each i ∈ [n], giving a total of n⌈log(k−1) n⌉ bits. For 1 < j < k, plrj uses

n + bj(n/bj) = O(n) bits. Thus, the total cost is O(n log(k−1) n + kn) bits.
For k ≤ log∗ n players, we are done. For larger k, we can get an O(n) protocol by

doubling the size of each bj and stopping the protocol when the buckets have size ≤ 1.

5. Concluding Remarks

We have presented the first nontrivial upper bound on the NOF communication com-
plexity of the Boolean problem mpjk, showing that C(mpjk) = o(n). A lower bound of Ω(n)
had seemed a priori reasonable, but we show that this is not the case. One plausible line of
attack on lower bounds for mpjk is to treat it as a direct sum problem: at each player’s turn,
it seems that n different paths need to be followed in the input graph, so it seems that an
information theoretic approach (as in Bar-Yossef et al. [BJKS02] or Chakrabarti [Cha07])
could lower bound C(mpjk) by n times the complexity of some simpler problem. However, it
appears that such an approach would naturally yield a lower bound of the form Ω(n/ξ(k)),
as in Conjecture 1.1, which we have explicitly falsified.

156 J. BRODY AND A. CHAKRABARTI

The most outstanding open problem regarding mpjk is to resolve Conjecture 1.2. A
less ambitious, but seemingly difficult, goal is to get tight bounds on C(mpj3), closing the

gap between our O(n
√

log log n/ log n) upper bound and Wigderson’s Ω(
√

n) lower bound.
A still less ambitious question is prove that mpj3 is harder than its very special subproblem
tpj3 (defined in Section 1.1). Our n − O(log n) lower bound for collapsing protocols is a
step in the direction of improving the known lower bounds. We hope our technique provides
some insight about the more general problem.

References

[AB07] Sanjeev Arora and Boaz Barak. Complexity Theory: A Modern Approach. Available online at
〈http://www.cs.princeton.edu/theory/complexity/〉, 2007.

[Abl96] Farid Ablayev. Lower bounds for one-way probabilistic communication complexity and their ap-
plication to space complexity. Theoretical Computer Science, 175(2):139–159, 1996.

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the fre-
quency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. Preliminary version in Proc. 28th

Annu. ACM Symp. Theory Comput.., pages 20–29, 1996.
[BHK01] László Babai, Thomas P. Hayes, and Peter G. Kimmel. The cost of the missing bit: Communica-

tion complexity with help. Combinatorica, 21(4):455–488, 2001.
[BJKS02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics ap-

proach to data stream and communication complexity. In Proc. 43rd Annual IEEE Symposium

on Foundations of Computer Science, pages 209–218, 2002.
[BPS05] Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower bounds for Lovász-Schrijver systems

and beyond follow from multiparty communication complexity. In Proc. 32nd International Col-

loquium on Automata, Languages and Programming, pages 1176–1188, 2005.
[BT94] Richard Beigel and Jun Tarui. On ACC. Comput. Complexity, 4:350–366, 1994.
[CFL83] Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multi-party protocols. In Proc. 15th

Annual ACM Symposium on the Theory of Computing, pages 94–99, 1983.
[Cha07] Amit Chakrabarti. Lower bounds for multi-player pointer jumping. In Proc. 22nd Annual IEEE

Conference on Computational Complexity, pages 33–45, 2007.
[CJP08] Amit Chakrabarti, T. S. Jayram, and Mihai Pǎtraşcu. Tight lower bounds for selection in ran-

domly ordered streams. In Proc. 19th Annual ACM-SIAM Symposium on Discrete Algorithms,
2008. to appear.

[DJS98] Carsten Damm, Stasys Jukna, and Jǐŕı Sgall. Some bounds on multiparty communication com-
plexity of pointer jumping. Comput. Complexity, 7(2):109–127, 1998. Preliminary version in Proc.

13th International Symposium on Theoretical Aspects of Computer Science, pages 643–654, 1996.
[GM07] Sudipto Guha and Andrew McGregor. Lower bounds for quantile estimation in random-order

and multi-pass streaming. In Proc. 34th International Colloquium on Automata, Languages and

Programming, pages 704–715, 2007.
[HG91] Johan H̊astad and Mikael Goldmann. On the power of small-depth threshold circuits. Comput.

Complexity, 1:113–129, 1991.
[NW93] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SICOMP,

22(1):211–219, 1993. Preliminary version in Proc. 23rd Annu. ACM Symp. Theory Comput., pages
419–429, 1991.

[PRS97] Pavel Pudlák, Vojtěch Rödl, and Jǐŕı Sgall. Boolean circuits, tensor ranks and communication
complexity. SIAM J. Comput., 26(3):605–633, 1997.

[VW07] Emanuele Viola and Avi Wigderson. One-way multi-party communication lower bound for pointer
jumping with applications. In Proc. 48th Annual IEEE Symposium on Foundations of Computer

Science, pages 427–437, 2007.
[Yao90] Andrew C. Yao. On ACC and threshold circuits. In Proc. 31st Annual IEEE Symposium on

Foundations of Computer Science, pages 619–627, 1990.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/ .

http://www.cs.princeton.edu/theory/complexity/$\delimiter "526930B $
http://creativecommons.org/licenses/by-nd/3.0/

	1. Introduction
	1.1. The Pointer Jumping Problem and Previous Results
	1.2. Our Results
	1.3. Organization

	2. A Sublinear Upper Bound
	2.1. Preliminaries, Notation and Overall Plan
	2.2. A 3-Player Protocol
	2.3. A k-Player Protocol

	3. Collapsing Protocols: A Lower Bound
	4. Collapsing Protocols: An Upper Bound
	5. Concluding Remarks
	References

