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Abstract—The Gap-Hamming-Distance problem arose in
the context of proving space lower bounds for a number of
key problems in the data stream model. In this problem,
Alice and Bob have to decide whether the Hamming
distance between theirn-bit input strings is large (i.e., at
least n/2 +

√

n) or small (i.e., at most n/2 −

√

n); they
do not care if it is neither large nor small. This Θ(

√

n)
gap in the problem specification is crucial for capturing
the approximation allowed to a data stream algorithm.

Thus far, for randomized communication, anΩ(n) lower
bound on this problem was known only in the one-way
setting. We prove an Ω(n) lower bound for randomized
protocols that use any constant number of rounds.

As a consequence we conclude, for instance, thatε-
approximately counting the number of distinct elements in
a data stream requiresΩ(1/ε2) space, even with multiple
(a constant number of) passes over the input stream. This
extends earlier one-pass lower bounds, answering a long-
standing open question. We obtain similar results for ap-
proximating the frequency moments and for approximating
the empirical entropy of a data stream.

In the process, we also obtain tightn − Θ(
√

n log n)
lower and upper bounds on the one-way deterministic
communication complexity of the problem. Finally, we give
a simple combinatorial proof of an Ω(n) lower bound on
the one-way randomized communication complexity.

I. I NTRODUCTION

This paper concerns communication complexity,
which is a heavily-studied basic computational model,
and is a powerful abstraction useful for obtaining results
in a variety of settings not necessarily involving com-
munication. To cite but two examples, communication
complexity has been applied to prove lower bounds on
circuit depth (see, e.g., [KW90]) and on query times for
static data structures (see, e.g., [MNSW98], [Pǎt08]).
The basic setup involves two players, Alice and Bob,
each of whom receives an input string. Their goal is
to compute some function of the two strings, using a
protocol that involves exchanging asmall number of
bits. When communication complexity is applied as a
lower bound technique — as it often is — one seeks to

prove that there does not exist a nontrivial protocol, i.e.,
one that communicates only a sublinear number of bits,
for computing the function of interest. Naturally, such a
proof is more challenging when the protocol is allowed
to be randomizedand err with some small probability
on each input.

The textbook by Kushilevitz and Nisan [KN97] pro-
vides detailed coverage of the basics of communication
complexity, and of a number of applications, including
the two mentioned above. In this paper, we only recap
the most basic notions, in Section II.

Our focus here is on a specific communication prob-
lem — the Gap-Hamming-Distance problem — that, to
the best of our knowledge, was first formally studied by
Indyk and Woodruff [IW03] in FOCS 2003. They studied
the problem in the context of proving space lower bounds
for the Distinct Elements problem in the data stream
model. We shall discuss their application shortly, but let
us first define our communication problem precisely.

The Problem

In the Gap-Hamming-Distance problem, Alice re-
ceives a Boolean stringx ∈ {0, 1}n and Bob receives
y ∈ {0, 1}n. They wish to decide whetherx and y are
“close” or “far” in the Hamming sense. That is, they
wish to output0 if ∆(x, y) ≤ n/2 − √

n and 1 if
∆(x, y) ≥ n/2+

√
n. They do not care about the output

if neither of these conditions holds. Here,∆ denotes
Hamming distance. In the sequel, we shall be interested
in a parametrized version of the problem, where the
thresholds are set atn/2 ± c

√
n, for some parameter

c ∈ R
+.

Our Results

While we prove a number of results about the Gap-
Hamming-Distance problem here, there is a clear “main
theorem” that we wish to highlight. Technical terms
appearing below are defined precisely in Section II.



Theorem 1 (Main Theorem, Informal). Suppose a
randomized1

3 -error protocol solves the Gap-Hamming-
Distance problem usingk rounds of communication.
Then, at least one message must ben/2O(k2) bits long.
In particular, any protocol using a constant number of
rounds must communicateΩ(n) bits in some round. In
fact, these bounds apply to deterministic protocols with
low distributional error under the uniform distribution.

At the heart of our proof is a round elimination lemma
that lets us “eliminate” the first round of communication,
in a protocol for the Gap-Hamming-Distance problem,
and thus derive a shorter protocol for an “easier” instance
of the same problem. By repeatedly applying this lemma,
we eventually eliminate all of the communication. We
also make the problem instances progressively easier,
but, if the original protocol was short enough, at the end
we are still left with a nontrivial problem. The resulting
contradiction lower bounds the length of the original
protocol. We note that this underlying “round elimination
philosophy” is behind a number of key results in com-
munication complexity [MNSW98], [Sen03], [CR04],
[ADHP06], [Cha07], [VW07], [CJP08].

Besides the above theorem, we also prove tight
lower and upperbounds ofn − Θ(

√
n log n) on the

one-way deterministic communication complexity of
Gap-Hamming-Distance. OnlyΩ(n) lower bounds were
known before. We also prove anΩ(n) one-way ran-
domized communication lower bound. This matches
earlier results, but our proof has the advantage of
being purely combinatorial. (We recently learned that
Woodruff [Woo09] had independently discovered a sim-
ilar combinatorial proof. We present our proof never-
theless, for pedagogical value, as it can be seen as a
generalization of our deterministic lower bound proof.)

Motivation and Relation to Prior Work

We now describe the original motivation for studying
the Gap-Hamming-Distance problem. Later, we discuss
the consequences of our Theorem 1. In the data stream
model, one wishes to compute a real-valued function
of a massively long input sequence (the data stream)
using very limited space, hopefully sublinear in the input
length. To get interesting results, one almost always
needs to allow randomized approximate algorithms. A
key problem in this model, that has seen much re-
search [FM85], [AMS99], [BJK+04], [IW03], [Woo09],
is the Distinct Elements problem: the goal is to estimate
the number of distinct elements in a stream ofm
elements (for simplicity, assume that the elements are
drawn from the universe[m] := {1, 2, . . . , m}).

An interesting solution to this problem would give

a nontrivial tradeoff between the quality of approxima-
tion desired as the space required to achieve it. The
best such result [BJK+04] achieved a multiplicative
(1 + ε)-approximation using spacẽO(1/ε2), where the
Õ-notation suppresseslog m and log(1/ε) factors. It
also processed the input stream in a single pass, a
very desirable property. Soon afterwards, Indyk and
Woodruff [IW03] gave a matchingΩ(1/ε2) space lower
bound for one-pass algorithms for this problem, by
a reduction from the Gap-Hamming-Distance commu-
nication problem. In SODA 2004, Woodruff [Woo04]
improved the bound, extending it to the full possible
range of subconstantε, and also applied it to the
more general problem of estimating frequency moments
Fp :=

∑n
i=1 fp

i , wherefi is the frequency of element
i in the input stream. A number of other natural data
stream problems have similar space lower bounds via
reductions from Gap-Hamming, a more recent example
being the computation of the empirical entropy of a
stream [CCM07].

The idea behind the reduction is quite simple: Al-
ice and Bob can convert their Gap-Hamming inputs
into suitable streams of integers, and then simulate a
one-pass streaming algorithm using a single round of
communication in which Alice sends Bob the memory
contents of the algorithm after processing her stream. In
this way, anΩ(n) one-way communication lower bound
translates into anΩ(1/ε2) one-pass space lower bound.
Much less simple was the proof of the communication
lower bound itself. Woodruff’s proof [Woo04] required
intricate combinatorial arguments and a fair amount
of complex calculations. Jayram et al. [JKS07] later
provided a rather different proof, based on a simple
geometric argument, coupled with a clever reduction
from the INDEX problem. A version of this proof is
given in Woodruff’s Ph.D. thesis [Woo07]. In Section V,
we provide a still simpler direct combinatorial proof,
essentially from first principles.

All of this left open the tantalizing possibility that
a second pass over the input stream could drastically
reduce the space required to approximate the number of
distinct elements — or, more generally, the frequency
momentsFp. PerhapsÕ(1/ε) space was possible? This
was a long-standing open problem [Kum06] in data
streams. Yet, some thinking about the underlying Gap-
Hamming communication problem suggested that the
linear lower bound ought to hold for general commu-
nication protocols, not just for one-way communication.
This prompted the following natural conjecture.

Conjecture 2. A 1
3 -error randomized communication

protocol for the Gap-Hamming-Distance problem must
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communicateΩ(n) bits in total, irrespective of the
number of rounds of communication.

An immediate consequence of the above conjecture
is that a second pass doesnot help beat theΩ(1/ε2)
space lower bound for the aforementioned streaming
problems; in fact, no constant number of passes helps.
Our Theorem 1 doesnot resolve Conjecture 2. However,
it does imply the Ω(1/ε2) space lower bound with a
constant number of passes. This is because wedo obtain
a linear communication lower bound with a constant
number of rounds.

Finer Points

To better understand our contribution here, it is worth
considering some finer points of previously known lower
bounds on Gap-Hamming-Distance, including some
“folklore” results. The earlier one-wayΩ(n) bounds
were inherently one-way, because theINDEX problem
has a trivial two-round protocol. Also, the nature of
the reduction implied a distributional error lower bound
for Gap-Hamming only under a somewhat artificial in-
put distribution. Our bounds here, including our one-
way randomized bound, overcome this problem, as
does the recent one-way bound of Woodruff [Woo09]:
they apply to the uniform distribution. As noted by
Woodruff [Woo09], this has the desirable consequence
of implying space lower bounds for the Distinct El-
ements problem under weaker assumptions about the
input stream: it could be random, rather than adversarial.

Intuitively, the uniform distribution is the hard case
for the Gap-Hamming problem. The Hamming distance
between two uniformly distributedn-bit strings is likely
to be just around then/2 ± Θ(

√
n) thresholds, which

means that a protocol will have to work hard to deter-
mine which threshold the input is at. Indeed, this line of
thinking suggests anΩ(n) lower bound for distributional
complexity — under the uniform distribution — on the
gaplessversion of the problem. Our proofs here confirm
this intuition, at least for a constant number of rounds.

It is relatively easy to obtain anΩ(n) lower bound on
thedeterministicmulti-round communication complexity
of the problem. One can directly demonstrate that the
communication matrix contains no large monochromatic
rectangles (see, e.g. [Woo07]). Indeed, the argument goes
through even with gaps of the formn/2 ± Θ(n), rather
than n/2 ± Θ(

√
n). It is also easy to obtain anΩ(n)

bound on the randomized complexity of the gapless
problem, via a reduction fromDISJOINTNESS. Unfortu-
nately, the known hard distributions forDISJOINTNESS

are far from uniform, andDISJOINTNESSis actually very
easy under a uniform input distribution. So, this reduc-

tion does not give us the results we want. Incidentally,
an even easier reduction fromDISJOINTNESSyields an
arbitrary-roundΩ(

√
n) lower bound for Gap-Hamming-

Distance; this result is folklore.

Furthermore, straightforward rectangle-based methods
(discrepancy/corruption) fail to effectively lower bound
the randomized communication complexity of our prob-
lem. This is because theredo exist very large near-
monochromatic rectangles in its communication matrix.
This can be seen, e.g., by considering all inputs(x, y)
with xi = yi = 0 for i ∈ [O(

√
n)].

Connection to Decision Trees and Quantum Communi-
cation

We would like to bring up two other illuminating
observations. Consider the following query complexity
problem: the input is a stringx ∈ {0, 1}n and the desired
output is1 if |x| ≥ n/2 +

√
n and0 if |x| ≤ n/2−√

n.
Here,|x| denotes the Hamming weight ofx. The model
is a randomized decision tree whose nodes query indi-
vidual bits ofx, and whose leaves give outputs in{0, 1}.
It is not hard to show thatΩ(n) queries are needed to
solve this problem with13 error. Essentially, one can do
no better than sampling bits ofx at random, and then
Ω(1/ε2) samples are necessary to distinguish a biased
coin that shows heads with probability12 + ε from one
that shows heads with probability12 − ε.

The Gap-Hamming-Distance problem can be seen as
a generalization of this problem to the communication
setting. Certainly, any efficient decision tree for the query
problem implies a correspondingly efficient communica-
tion protocol, with Alice acting as the querier and Bob
acting as the responder (say). Conjecture 2 says that
no better communication protocols are possible for this
problem.

This query complexity connection brings up another
crucial point. Thequantum query complexity of the
above problem can be shown to beO(

√
n), by the

results of Nayak and Wu [NW99]. This in turn implies
an O(

√
n log n) quantum communication protocol for

Gap-Hamming, essentially by carefully “implementing”
the quantum query algorithm, as in Razborov [Raz02].
Therefore, any technique that seeks to prove anΩ(n)
lower bound for Gap-Hamming (under classical com-
munication) must necessarily fail for quantum proto-
cols. This rules out several recently-developed methods,
such as the factorization norms method of Linial and
Shraibman [LS07] and the pattern matrix method of
Sherstov [She08].
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Connections to Recent Work

Our multi-roundΩ(n) bound turns out to also have
applications [ABC09] to the communication complexity
of several distributed “functional monitoring” problems,
studied recently by Cormode et al. [CMY08] in SODA
2008. Also, our lower bound approach here uses and
extends a subspace-finding technique recently developed
by Brody [Bro09] to prove lower bounds on multiparty
pointer jumping.

II. BASIC DEFINITIONS, NOTATION AND

PRELIMINARIES

We begin with definitions of our central problem of
interest, and quickly recall some standard definitions
from communication complexity. Along the way, we also
introduce some notation that we use in the rest of the
paper.

Definition 1. For stringsx, y ∈ {0, 1}n, the Hamming
distance betweenx and y, denoted∆(x, y), is defined
as the number of coordinatesi ∈ [n] such thatxi 6= yi.

Definition 2 (Gap-Hamming-Distance problem).Sup-
posen ∈ N andc ∈ R

+. Thec-Gap-Hamming-Distance
partial function, onn-bit inputs, is denotedGHDc,n and
is defined as follows.

GHDc,n(x, y) =






1 , if ∆(x, y) ≥ n/2 + c
√

n ,

0 , if ∆(x, y) ≤ n/2 − c
√

n ,

⋆ , otherwise.

We also useGHDc,n to denote the corresponding com-
munication problem where Alice holdsx ∈ {0, 1}n,
Bob holdsy ∈ {0, 1}n, and the goal is for them to
communicate and agree on an output bit that matches
GHDc,n(x, y). By convention,⋆ matches both0 and1.

Protocols

Consider a communication problemf : {0, 1}n ×
{0, 1}n → {0, 1, ⋆}n and a protocolP that attempts
to solvef . We writeP(x, y) to denote the output ofP
on input(x, y): note that this may be a random variable,
dependent on the internal coin tosses ofP , if P is a
randomized protocol. A deterministic protocolP is said
to be correct forf if ∀ (x, y) : P(x, y) = f(x, y)
(the “=” is to be read as “matches”). It is said to
have distributional error ε under an input distribution
ρ if Pr(x,y)∼ρ[P(x, y) 6= f(x, y)] ≤ ε. A randomized
protocolP , using a public random stringr, is said to be
have errorε if ∀ (x, y) : Prr[P(x, y) 6= f(x, y)] ≤ ε. A
protocolP is said to be ak-round protocolif it involves
exactlyk messages, with Alice and Bob taking turns to

send the messages; by convention, we usually assume
that Alice sends the first message and the recipient
of the last message announces the output. A1-round
protocol is also called aone-way protocol, since the
entire communication happens in the Alice→ Bob
direction.

Communication Complexity

The deterministic communication complexityD(f)
of a communication problemf is defined to be the
minimum, over deterministic protocolsP for f , of the
number of bits exchanged byP for a worst-case input
(x, y). By suitably varying the class of protocols over
which the minimum is taken, we obtain, e.g., theε-
error randomized, one-way deterministic,ε-error one-
way randomized, andε-error ρ-distributional determin-
istic communication complexities off , denotedRε(f),
D→(f), R→

ε (f), and Dρ,ε(f), respectively. When the
error parameterε is dropped, it is tacitly assumed to be
1
3 ; as is well-known, the precise value of this constant
is immaterial for asymptotic bounds.

Definition 3 (Near-Orthogonality). We say that strings
x, y ∈ {0, 1}n arec-near-orthogonal, and writex ⊥c y,
if |∆(x, y) − n/2| < c

√
n. Here, c is a positive

real quantity, possibly dependent onn. Notice that
GHDc,n(x, y) = ⋆ ⇔ x ⊥c y.

The distribution of the Hamming distance between
two uniform randomn-bit strings — equivalently, the
distribution of the Hamming weight of a uniform random
n-bit string — is just an unbiased binomial distribu-
tion Binom(n, 1

2 ). We shall use the following (fairly
loose) bounds on the tail of this distribution (see, e.g.,
Feller [Fel68]).

Fact 3. Let Tn(c) = Prx [x 6⊥c 0n], where x is dis-
tributed uniformly at random in{0, 1}n. Let T (c) =
limn→∞ Tn(c). Then

2−3c2−2 ≤ T (c) ≈ e−2c2

c
√

2π
≤ 2−c2

.

There are two very natural input distributions for
GHDc,n: the uniform distribution on{0, 1}n × {0, 1}n,
and the (non-product) distribution that is uniform over
all inputs for which the output is precisely defined. We
call this latter distributionµc,n.

Definition 4 (Distributions). For n ∈ N, c ∈ R
+, let

µc,n denote the uniform distribution on the set{(x, y) ∈
{0, 1}n × {0, 1}n : x 6⊥c y}. Also, let Un denote the
uniform distribution on{0, 1}n.

Using Fact 3, we can show that for a constantc
and suitably smallε, the distributional complexities
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DUn×Un,ε(GHDc,n) andDµc,n,ε(GHDc,n) are within con-
stant factors of each other. This lets us work with the
latter and draw conclusions about the former. The latter
has the advantage that it is meaningful for anyε < 1

2 ,
whereas the former is only meaningful ifε < 1

2T (c).
Let B(x, r) denote the Hamming ball of radiusr

centered atx. We need to use the following bounds
on the volume (i.e., size) of a Hamming ball. Here,
H : [0, 1] → [0, 1] is the binary entropy function.

Fact 4. If r = c
√

n, then(
√

n/c)r < |B(x, r)| < nr.

Fact 5. If r = αn for some constant0 < α < 1, then
|B(x, r)| ≤ 2nH(α).

III. M AIN THEOREM: MULTI -ROUND LOWER

BOUND

A. Some Basics

In order to prove our multi-round lower bound, we
need a simple — yet, powerful — combinatorial lemma,
known as Sauer’s Lemma [Sau72]. For this, we recall
the concept of Vapnik-Chervonenkis dimension. LetS ⊆
{0, 1}n andI ⊆ [n]. We say thatS shattersI if the set
obtained by restricting the vectors inS to the coordinates
in I has the maximum possible size,2|I|. We define
VC-dim(S) to be the maximum|I| such thatS shatters
I.

Lemma 6 (Sauer’s Lemma).SupposeS ⊆ {0, 1}n has
VC-dim(S) < d. Then

|S| ≤
d∑

i=0

(
n

i

)
.

When d = αn for some constantα, then the above
sum can be upper bounded by2nH(α). This yields the
following corollary.

Corollary 7. If |S| ≥ 2nH(α), for a constantα, then
VC-dim(S) ≥ αn.

We now turn to the proof proper. It is based on a
round elimination lemma that serves to eliminate the first
round of communication of aGHD protocol, yielding a
shorter protocol, but forGHD instances with weakened
parameters. To keep track of all relevant parameters, we
introduce the following notation.

Definition 5. A [k, n, s, c, ε]-protocol is a deterministic
k-round protocol forGHDc,n that errs on at most anε
fraction of inputs, under the input distributionµc,n, and
in which each message iss bits long.

The next lemma gives us the “end point” of our round
elimination argument.

Lemma 8. There exists no[0, n, s, c, ε]-protocol with
n > 1, c = o(

√
n), and ε < 1

2 .

Proof: With these parameters,µc,n has nonempty
support. This impliesPrµc,n

[GHDc,n(x, y) = 0] =
Prµc,n

[GHDc,n(x, y) = 1] = 1
2 . Thus, a0-round de-

terministic protocol, which must have constant output,
cannot achieve error less than12 .

B. The Round Elimination Lemma

The next lemma is the heart of our proof. To set up its
parameters, we sett0 = (48 ln 2)·211k, t = 215k, andb =
T−1(1/8), and we define a sequence〈(ni, si, ci, εi)〉ki=0

as follows:

n0 = n , ni+1 = ni/3 ,
s0 = t0s , si+1 = tsi ,
c0 = 10 , ci+1 = 2ci ,

ε0 = 2−211k

, εi+1 = εi/T (ci+1) .





for i > 0 .

(1)

Lemma 9 (Round Elimination for GHD). Suppose
0 ≤ i < k and si ≤ ni/20. Suppose there ex-
ists a [k − i, ni, si, ci, εi]-protocol. Then there exists a
[k − i − 1, ni+1, si+1, ci+1, εi+1]-protocol.

Proof: Let (n, s, c, ε) = (ni, si, ci, εi) and
(n′, s′, c′, ε′) = (ni+1, si+1, ci+1, εi+1). Also, let µ =
µc,n, µ′ = µc′,n′ , GHD = GHDc,n andGHD′ = GHDc′,n′ .
Let P be a [k − i, n, s, c, ε]-protocol. Assume, WLOG,
that Alice sends the first message inP .

Call a stringx0 ∈ {0, 1}n “good” if

Pr
(x,y)∼µ

[P(x, y) 6= GHD(x, y) | x = x0] ≤ 2ε . (2)

By the error guarantee ofP and Markov’s inequality,
the number of good strings is at least2n−1. There are
2s ≤ 2n/20 different choices for Alice’s first message.
Therefore, there is a setM ⊆ {0, 1}n of good strings
such that Alice sends the same first messagem on every
input x ∈ M , with |M | ≥ 2n−1−n/20 ≥ 2nH(1/3). By
Corollary 7,VC-dim(M) ≥ n/3. Therefore, there exists
a setI ⊆ [n], with |I| = n/3 = n′, that is shattered by
M . For stringsx′ ∈ {0, 1}n′

and x′′ ∈ {0, 1}n−n′
, we

write x′ ◦ x′′ to denote the string in{0, 1}n formed by
plugging in the bits ofx′ and x′′ (in order) into the
coordinates inI and [n] \ I, respectively.

We now give a suitable(k−i−1)-round protocolQ for
GHD′, in which Bob sends the first message. Consider an
input (x′, y′) ∈ {0, 1}n′ × {0, 1}n′

, with Alice holding
x′ and Bob holdingy′. By definition of shattering, there
exists anx′′ ∈ {0, 1}n−n′

such thatx := x′ ◦ x′′ ∈
M . Alice and Bob agree beforehand on a suitablex for
each possiblex′. Suppose Bob were to pick a uniform
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randomy′′ ∈ {0, 1}n−n′
and form the stringy := y′◦y′′.

Then, Alice and Bob could simulateP on input (x, y)
using onlyk− i−1 rounds of communication, with Bob
starting, because Alice’s first message inP would always
bem. Call this randomized protocolQ1. We defineQ to
be the protocol obtained by runningt instances ofQ1 in
parallel, using independent random choices ofy′′, and
outputting the majority answer. Note that the length of
each message inQ is ts = s′. We shall now analyze the
error.

Supposex′′ ⊥b y′′. Let d1 = ∆(x, y) − n/2, d2 =
∆(x′, y′) − n′/2 and d3 = ∆(x′′, y′′) − (n − n′)/2.
Clearly,d1 = d2 + d3. Also,

|d1| ≥ |d2| − |d3| ≥ c′
√

n′ − b
√

n − n′

≥ (c′ − b
√

2)
√

n√
3

≥ c
√

n ,

where we used (1) and our choice ofb. Thus,x 6⊥c y.
The same calculation also shows thatd1 and d2 have
the same sign, as|d2| > |d3|. ThereforeGHD(x, y) =
GHD′(x′, y′).

For the rest of the calculations in this proof, fix an
input x′ for Alice, and hence,x′′ and x as well. For
a fixed y′, let E(y′) denote the event thatP(x, y) 6=
GHD(x, y): note that y′′ remains random. Using the
above observation (at step (5) below), we can bound the
probability thatQ1 errs on input(x′, y′) as follows.

Pr
y

[Q1(x
′, y′) 6= GHD′(x′, y′) | y′] (3)

≤ Pr
y

[P(x, y) 6= GHD(x, y)

∨ GHD(x, y) 6= GHD′(x′, y′) | y′] (4)

≤ Pr
y′′

[E(y′)] + Pr
y

[GHD(x, y) 6= GHD′(x′, y′) | y′]

≤ Pr
y′′

[E(y′)] + Pr
y′′

[x′′ 6⊥b y′′] (5)

≤ Pr
y′′

[E(y′)] + T (b)

= Pr
y′′

[E(y′)] + 1/8 , (6)

where step (6) follows from our choice ofb. To analyze
Q, notice that during thet-fold parallel repetition ofQ1,
y′ remains fixed whiley′′ varies. Thus, it suffices to
understand how the repetition drives down the sum on
the right side of (6). Unfortunately, for some values of
y′, the sum may exceed12 , in which case it will be driven
up, not down, by the repetition. To account for this, we
shall bound theexpectationof the first term of that sum,
for a randomy′.

To do so, letz ∼ µ | x be a random string independent
of y. Notice thatz is uniformly distributed on a subset

of {0, 1}n of size 2nT (c), whereasy is uniformly
distributed on a subset of{0, 1}n of size 2nT (c′). (We
are now thinking ofx as being fixed and bothy′ andy′′

as being random.) Therefore,

Ey′

[
Pr
y′′

[E(y′)]

]
= Pr

y
[E(y′)] (7)

= Pr
y

[P(x, y) 6= GHD(x, y)]

≤ Pr
z

[P(x, z) 6= GHD(x, z)] · T (c)

T (c′)

≤ 2εT (c)/T (c′) , (8)

where (8) holds becausex, being good, satisfies (2).
Thus, by Markov’s inequality,

Pr
y′

[
Pr
y′′

[E(y′)] ≥ 1

8

]
≤ 16εT (c)/T (c′) . (9)

If, for a particulary′, the bad eventPry′′ [E(y′)] ≥ 1
8

doesnot occur, then the right side of (6) is at most1/8+
1/8 = 1/4. In other words,Q1 errs with probability at
most1/4 for thisy′. By standard Chernoff bounds, thet-
fold repetition inQ drives this error down to(e/4)t/4 ≤
2−t/10 ≤ ε0 ≤ ε. Combining this with (9), which bounds
the probability of the bad event, we get

Pr
y′,r

[Q(x′, y′) 6= GHD′(x′, y′)] ≤ 16εT (c)/T (c′) + ε

≤ ε/T (c′)

= ε′ ,

wherer denotes the internal random string ofQ (i.e.,
the collection ofy′′s used).

Note that this error bound holds forevery fixed x′,
and thus, when(x′, y′) ∼ µ′. Therefore, we can fix
Bob’s random coin tosses inQ to get the desired
[k − i − 1, n′, s′, c′, ε′]-protocol.

C. The Lower Bound

Having established our round elimination lemma, we
obtain our lower bound in a straightforward fashion.

Theorem 10 (Multi-round Lower Bound). Let P be
a k-round 1

3 -error randomized communication protocol
for GHDc,n, with c = O(1), in which each message iss
bits long. Then

s ≥ n

2O(k2)
.

Remark. This is a formal restatement of Theorem 1.

Proof: For simplicity, assumec ≤ c0 = 10. Our
proof easily applies to a generalc = O(1) by a suitable
modification of the parameters in (1). Also, assumen ≥
24k2

, for otherwise there is nothing to prove.
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By repeatingP (48 ln 2) ·211k = t0 times, in parallel,
and outputting the majority of the answers, we can
reduce the error to2−211k

= ε0. The size of each
message is nowt0s = s0. Fixing the random coins of the
resulting protocol gives us a[k, n0, s0, c0, ε0]-protocol
P0.

Supposesi ≤ ni/20 for all i, with 0 ≤ i < k.
We then repeatedly apply Lemma 9k times, starting
with P0. Eventually, we end up with a[0, nk, sk, ck, εk]-
protocol. Examining (1), we see thatnk = n/3k,
sk = 215k2

s0 = (48 ln 2)215k2+11ks, andck = 10 · 2k.
Notice thatnk ≥ 24k2

/3k > 1 and ck = o(
√

nk). We
also see that〈ci〉ki=1 is an increasing sequence, whence
εi+1/εi = 1/T (ci+1) ≤ 1/T (ck) ≤ 23ck

2+2, where the
final step uses Fact 3. Thus,

εk ≤ ε0

(
23c2

k+2
)k

= 2−211k · 2(3(10·2k)2+2)·k

= 2−211k+300k·22k+2k

<
1

2
.

In other words, we have a[0, nk, sk, ck, εk]-protocol with
nk > 1, ck = o(

√
nk) and εk < 1

2 . This contradicts
Lemma 8.

Therefore, there must exist ani such that si ≥
ni/20. Since 〈si〉ki=1 is increasing and〈ni〉ki=1 is de-
creasing, sk ≥ nk/20. By the above calculations,
(48 ln 2)215k2+11ks ≥ n/(20 · 3k), which impliess ≥
n/2O(k2), as claimed.

Notice that, for constantk, the argument in the above
proof in fact implies a lower bound for deterministic
protocols with small enough constant distributional error
underµc,n. This, in turn, extends to distributional error
under the uniform distribution, as remarked earlier.

IV. T IGHT DETERMINISTIC ONE-WAY BOUNDS

The main result of this section is the following.

Theorem 11. D→(GHDc,n) = n − Θ(
√

n log n) for all
constantc.

Definition 6. Let x1, x2, y ∈ {0, 1}n. We say thaty
witnessesx1 andx2 or thaty is a witness for(x1, x2) if
x1 6⊥c y, x2 6⊥c y, andGHDc,n(x1, y) 6= GHDc,n(x2, y).

Intuitively, if (x1, x2) have a witness, then they cannot
be in the same message set. For if Alice sent the
same message onx1 and x2 and Bob’s inputy was a
witness for(x1, x2) then whatever Bob were to output,
the protocol would err on either(x1, y) or (x2, y).
The next lemma characterizes which(x1, x2) pairs have
witnesses.

Lemma 12. For all x1, x2 ∈ {0, 1}n, there existsy that
witnesses(x1, x2) if and only if ∆(x1, x2) ≥ 2c

√
n.

Proof: On the one hand, supposey witnesses
(x1, x2). Then assume WLOG that∆(x1, y) ≤ n/2 −
c
√

n and ∆(x2, y) ≥ n/2 + c
√

n. By the triangle
inequality,∆(x1, x2) ≥ ∆(x2, y) − ∆(x1, y) = 2c

√
n.

Conversely, suppose∆(x1, x2) ≥ 2c
√

n. Let L = {i :
x1[i] = x2[i]}, and letR = {i : x1[i] 6= x2[i]}. Suppose
y agrees withx1 on all coordinates fromR and half the
coordinates fromL. Then, ∆(x1, y) = |L|/2 = (n −
∆(x1, x2))/2 ≤ n/2− c

√
n. Furthermore,y agrees with

x2 on no coordinates fromR and half the coordinates
from L, so∆(x1, y) = |L|/2 + |R| ≥ n/2 + c

√
n.

We show that it is both necessary and sufficient
for Alice to send different messages onx1 and x2

whenever∆(x1, x2) is “large”. To prove this, we need
the following theorem, due to Bezrukov [Bez87] and a
claim that is easily proved using the probabilistic method
(a full proof of the claim appears in the appendix).

Theorem 13. Call a subsetA ⊆ {0, 1}n d-maximal if
it is largest, subject to the constraint that∆(x, y) ≤ d
for all x, y ∈ A.

1) If d = 2t thenB(x, t) is d-maximal for anyx ∈
{0, 1}n.

2) If d = 2t + 1 thenB(x, t) ∪ B(y, t) is d-maximal
for any x, y ∈ {0, 1}n such that∆(x, y) = 1.

Claim 14. It is possible to cover{0, 1}n with at most
2n−O(

√
n log n) Hamming balls, each of radiusc

√
n.

Proof of Theorem 11:For the lower bound, suppose
for the sake of contradiction that there is a protocol
where Alice sends onlyn − c

√
n log n bits. By the

pigeonhole principle, there exists a setM ⊆ {0, 1}n

of inputs of size|M | ≥ 2n/2n−c
√

n log n = 2c
√

n log n =
nc

√
n upon which Alice sends the same message. By

Theorem 13, the Hamming ballB(x, c
√

n) is 2c
√

n-
maximal, and by Fact 4,|B(x, c

√
n)| < |M |. Therefore,

there must bex1, x2 ∈ M with ∆(x1, x2) > 2c
√

n.
By Lemma 12, there exists ay that witnesses(x1, x2).
No matter what Bob outputs, the protocol errs on either
(x1, y) or on (x2, y).

For a matching upper bound, Alice and Bob fix a
coveringC = {B(x0, r)} of {0, 1}n by Hamming balls
of radius r = c

√
n. On input x, Alice sends Bob

the Hamming ballB(x0, r) containingx. Bob selects
some x′ ∈ B(x0, r) such thatx′ 6⊥c y and outputs
GHD(x′, y). The correctness of this protocol follows
from Lemma 12, as∆(x, x′) ≤ 2c

√
n since they are

both in B(x0, c
√

n). The cost of the protocol is given
by Claim 14, which shows that it suffices for Alice to
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send log
(
2n−O(

√
n log n)

)
= n − O(

√
n log n) bits to

describe each Hamming ball.

V. ONE ROUND RANDOMIZED LOWER BOUND

Next, we develop a one-way lower bound for ran-
domized protocols. Note that our lower bound applies
to the uniform distribution, which, as mentioned in
Section I, implies space lower bounds for the Distinct
Elements problem under weaker assumptions about the
input stream. Woodruff [Woo09] recently proved similar
results, also for the uniform distribution. We include our
lower bound as a natural extension of the deterministic
bound.

Theorem 15. R→
ε (GHDc,n) = Ω(n).

Proof: For the sake of clarity, fixc = 2 and ε =
1/10, and supposeP is a one-round,ε-error, o(n)-bit
protocol for GHDc,n.

Definition 7. For x ∈ {0, 1}n, let Yx := {y : x 6⊥2 y}.
Say thatx is good if Pry∈Yx

[P(x, y) = GHD(x, y)] ≤
2ε. Otherwise, callx bad.

By Markov’s inequality, at most a1/2-fraction of
x are bad. Next, fix Alice’s messagem to maxi-
mize the number ofgood x, and let M = {x ∈
{0, 1}n : x is good and Alice sendsm on inputx}. It
follows that

|M | ≥ 2n−1/2o(n) > 2n(1−o(1)).

Our goal is to show that since|M | is large, we must
err on a> 2ε-fraction of y ∈ Yx for somex ∈ M ,
contradicting the goodness ofx. Note that it suffices to
show that a4ε fraction of y ∈ Yx1 witnessx1 andx2.
|M | ≥ 2n(1−o(1)), so by Fact 5 and Theorem 13,

There existx1, x2 with ∆(x1, x2) ≥ 1−o(1). Next, we’d
like to determine the probability that a randomy ∈ Yx1

witnesses(x1, x2). Without loss of generality, letx1 =
0n. Let w(x) := Pry∈Yx1

[GHD(x, y) 6= GHD(x1, y)].
The following lemma shows thatw(x) is an increasing
function of |x|. We leave the proof until the appendix.

Lemma 16. For all x, x′ ∈ {0, 1}n, w(x) ≥ w(x′) ⇔
|x| ≥ |x′|, with equality if and only if|x| = |x′|.

We computew(x) by conditioning on|y|:

w(x) =

n/2−c
√

n∑

n1=1

(Pr
[
∆(x, y) ≥ n/2 + c

√
n| |y| = n1

]

· Pr[|y| = n1]) .

Fix |x| =: m, pick a randomy with |y| = n1, and
suppose there arek coordinatesi such thatxi = yi.

Then,∆(x, y) = (m − k) + (n1 − k) = m + n1 − 2k.
Hence,

∆(x, y) ≥ n/2+ c
√

n ⇐⇒ k ≤ m + n1

2
− n

4
− c

2

√
n .

Note that given a randomy with weight |y| = n1,
the probability that exactlyk of m coordinates have
xi = yi = 1 follows the hypergeometric distribution
Hyp(k; n, m, n1). Therefore, we can express the proba-
bility Pr|y|=n1

[∆(x, y) ≥ n/2 + c
√

n] as

Pr
|y|=n1

[
∆(x, y) ≥ n/2 + c

√
n
]

=
∑

k≤m+n1
2 −n

4 − c
2

√
n

Hyp(k; n, m, n1) .

Finally, we show thatw(x) > 4ε for a suitably large
constant|x| with the following claims, whose proofs are
left to the appendix.

Claim 17. Conditioned on|y| ≤ n/2 − 2
√

n, we have
Pr[|y| ≥ n/2 − 2.1

√
n] ≤ 1

3 .

Claim 18. For all d < n/2 − 2.1
√

n, we have
Pr[∆(x2, y) ≥ n/2 + d

√
n] ≥ 0.95.

Its easy to see from the previous two claims that
w(x) > 0.95 · (2/3) > 4ε.

VI. CONCLUDING REMARKS

Our most important contribution here was to prove a
multi-round lower bound on a fundamental problem in
communication complexity, the Gap-Hamming Distance
problem. As a consequence, we extended several known
Ω(1/ε2)-type space bounds for various data stream
problems, such as the Distinct Elements problem, to
multi-pass algorithms. These resolve long-standing open
questions.

The most immediate open problem suggested by our
work is to resolve Conjecture 2. It appears that proving
the conjecture true is going to require a technique other
than round elimination, or else, anextremelypowerful
round elimination lemma that does not lose a constant
fraction of the input length at each step. On the other
hand, proving the conjecture false is also of great in-
terest, and such a proof might extend to nontrivial data
stream algorithms, albeit with a super-constant number
of passes.
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APPENDIX

We begin with a proof of Claim 14, which we state
here for convenience.

Claim 19 (Restatement of Claim 14).For any con-
stant c, it is possible to cover{0, 1}n with at most
2n−O(

√
n log n) Hamming balls, each with radiusr =

c
√

n.

Proof: We use the probabilistic method. Letr :=
c
√

n. For x ∈ {0, 1}n, let Bx := B(x, r) be the
Hamming ball of radiusr centered atx. For a t to
be determined later, pickx1, . . . , xt independently and
uniformly at random from{0, 1}n. We want to show that
with nonzero probability, the universe{0, 1}n is covered
by theset Hamming ballsBx1, . . . ,Bxt

.
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Now, fix any x ∈ {0, 1}n and any1 ≤ i ≤ t. Since
xi was picked uniformly at random, eachx is equally
likely to be inBxi

. Therefore,

Pr[x ∈ Bxi
] =

|Bxi
|

2n
≥ 2θ(

√
n log n)−n

where inequality stems from Fact 4.
Let BADx =

∧
1≤i≤t x 6∈ Bxi

be the event thatx
is not covered by any of the Hamming balls we picked
at random, and letBAD =

∨
BADx be the event that

somex is not covered by the Hamming balls. We want
to limit Pr[BAD]. BADx occurs whenx 6∈ Bxi

for all
xi. Therefore, using1 − x ≤ e−x for all real x,

Pr[BADx] =
(
1 − 2θ(

√
n log n)−n

)t

≤ e−t·2θ(
√

n log n)−n

.

By the union bound,

Pr[BAD] ≤ 2n Pr[BADx] = 2n− t
ln 22θ(n

√
n)−n

.

Picking t = ln 2(n + 1)2n−θ(
√

n log n) = 2n−θ(
√

n log n)

ensures thatPr[BAD] < 1. Therefore, there exists a set
of t = 2n−θ(

√
n log n) Hamming balls of radiusc

√
n that

cover{0, 1}n.
Recall thatw(x) = Pry∈Y~0

[GHD(x, y) 6= GHD(~0, y)].

Lemma 20 (Restatement of Lemma 16).For all
x, x′ ∈ {0, 1}n, w(x) ≤ w(x′) if and only if |x| ≤ |x′|,
with equality if and only if|x| = |x′|.

Proof: If |x| = |x′|, then w(x) = w(x′) by
symmetry. Further, note thatGHD(x, y) = 0 if and only
if GHD(−x, y) = 1. Therefore, it suffices to handle the
case where|y| ≤ n/2 − c

√
n and GHD(~0, y) = 0.

For the rest of the proof, we assume thatxi = x′
i,

except for thenth coordinate, wherexn = 0 andx′
n = 1.

Thus, |x| = |x′| − 1. We show thatw(x) < w(x′); the
rest of the lemma follows by induction.

Let Y be the set of strings with Hamming weight
|y| ≤ n/2 − c

√
n. PartitionY into the following three

sets:

• A := {y : |y| = n/2 + c
√

n ∧ yn = 0}.
• B := {y : |y| < n/2 + c

√
n ∧ yn = 0}.

• C := {y : yn = 1}.

Note the one-to-one correspondence between strings in
B and strings inC obtained by flipping thenth bit.
Now, consider anyy ∈ B such thaty witnesses(~0, x′)
but not (~0, x). Flipping thenth bit of y yields a string
y′ ∈ C such thatY witnesses(~0, x) but not (~0, x′).
Hence amongy ∈ B ∪ C there is an equal number of
witnesses forx andx′. For anyy ∈ A, yn = 0, whence
|y − x′| = |y − x| + 1. Therefore, anyy that witnesses
(~0, x) must also witness(~0, x′), whencew(x) ≤ w(x′).

Many claims in this paper require tight upper and
lower tail bounds for binomial and hypergeometric dis-
tributions. We use Chernoff bounds where they apply.
For other bounds, we approximate using normal distri-
butions. We use Feller [Fel68] as a reference.

Definition 8. For x ∈ R, let φ(x) := e−x2/2/
√

2π and

N(x) :=

∫ ∞

x

φ(y)dy.

N(x) is the cumulative distribution function of the
normal distribution. We use it in Fact 3 to approximate
T (x). Here, we’ll also use it to approximate tails of the
binomial and hypergeometric distributions.

Lemma 21 (Feller, Chapter VII, Lemma 2.). For all
x > 0,

φ(x)

(
1

x
− 1

x3

)
< N(x) < φ(x)

1

x
.

Theorem 22 (Feller, CHapter VII, Theorem 2.). For
fixedz1, z2,

Pr[n/2 + (z1/2)
√

n ≤ |y| ≤ n/2 + (z2/2)
√

n]

∼ N(z1) − N(z2).

Theorem 23. For any γ such thatγ = ω(1) and γ =
o(n1/6), we have

∑

k>n/2+γ
√

n/2

(
n

k

)
∼ N(γ).

Claim 24 (Restatement of Claim 17).Conditioned on
|y| ≤ n/2 − 2

√
n,

Pr[|y| ≥ n/2 − 2.1
√

n] ≤ 1/3.

Proof: By Theorem 22 and Lemma 21, we have

Pr[n/2 − 2.1
√

n ≤ |y| ≤ n/2 − 2
√

n]

∼ N(4) − N(4.2)

≤ φ(4)/4 − φ(4.2)(4.2−1 − 4.2−3)

≤ 2.0219 ∗ 10−5

By Fact3,Pr[|y| ≥ n/2 − 2
√

n] ≤ 2−3·22−2 = 2−14 =
6.1035 · 10−5. Putting the two terms together, we get

Pr[|y| ≥ n/2 − 2.1
√

n||y| ≤ n/2 − 2
√

n]

≤ 2.0219 · 10−5

6.1035 · 10−5
≤ 1/3.

Claim 25 (Restatement of Claim 18).For all d <
n/2 − 2.1

√
n,

Pr[∆(x2, y) ≥ n/2 + 2
√

n] ≥ 0.95.
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Proof: The proof follows from the following claim,
instantiated withc = 2 andα = 2.1.

Claim 26. For all α > c, |x| = γn, and all γ ≥ 1 −
(1 − c/α)/4,

Pr
|y|=n/2−α

√
n
[∆(x, y) ≥ n/2 + c

√
n]

≥ 1 − exp

(
−2(α − c)α2(1 + o(1))

3α + c

)
.

Proof: Let m := |x| = γn and letn1 = n/2−α
√

n.
Then, the probability that a randomy with |y| = n2

can be expressed using the hypergeometric distribution
Hyp(k; n, m, n1). Let them set bits ofx be the defects.
The probability ofk of the n1 bits of y are defective is
Hyp(k; n, m, n1). Note that∆(x, y) = (m− k)+ (n1−
k) = m + n1 − 2k. Therefore,

∆(x, y) ≥ n/2 + c
√

n ⇔ k ≤ m + n1

2
− n

4
− c

2

√
n

=
γn

2
− α + c

2

√
n

We have

Pr
|y|=n1

[
∆(x, y) ≥ n/2 + c

√
n
]

= Pr
K∼Hyp(k;n,m,n1)

[
K ≤ γn

2
− α + c

2

√
n

]
.

Next, we use a concentration of measure result due to
Hush and Scovel [HS05]. Here, we present a simplified
version.

Theorem 27 (Hush, Scovel).Let m = γn > n1 =
n/2 − α

√
n, and letβ = n/m(n − m).

Pr[K − E[K] > η] < exp(−2βη2(1 + o(1))).

The expected value of a random variableK distributed
according toHyp(K; n, m, n1) is

E[K] =
mn1

n
=

γn

n

(n

2
− α

√
n
)

=
γn

2
− γα

√
n.

Setη := (α − c)
√

n/4. Note that

E[K] + η =
γn

2
− γα

√
n +

α − c

4

√
n

≤ γn

2
− α + c

2

√
n =

m + n1

2
− n

4
− c

2

√
n.

where the inequality holds becauseγ ≥ 1−(1−c/α)/4.
Note also that(1 − c/α)/4 = (α − c)/4α, so 1 − (1 −
c/α)/4 = (3α + c)/4α. By Theorem 27,

Pr

[
K >

γn

2
− α + c

2

√
n

]
= Pr[K − E[K] > η]

< exp

(
−2nη2(1 + o(1))

m(n − m)

)

= exp

(
−2(α − c)2(1 + o(1))

16γ(1 − γ)

)

≤ exp

(
−2(α − c)2(4α)2(1 + o(1))

16(α − c)(3α + c)

)

= exp

(
−2(α − c)α2(1 + o(1))

3α + c

)

It follows that Pr[K ≤ γn
2 − α+c

2

√
n] ≥ 1 −

exp
(
− 2(α−c)α2(1+o(1))

3α+c

)
.

Claim 28. For any xL ∈ {0, 1}nL, GHD(xL, yL) is
defined for at least a≥ e−2(c′)2/5c′-fraction of yL ∈
{0, 1}nL.

Proof: Without loss of generality, assumexL = ~0.
Then, GHD(xL, yL) is defined for ally such that|y| ≤
nL/2 − c′

√
nL or |y| ≥ nL/2 + c′

√
nL. Note that for

any constantx > c′,

Pr
y

[
|y| ≤ nL

2
− c′

√
nL

]

≥ Pr
[nL

2
− x

√
nL ≤ |y| ≤ nL

2
− c′

√
nL

]

≥ N(2c′) − N(2x)

≥ φ(2c′)

(
1

2c′
− 1

(2c′)3

)
− φ(2x)

2x

=
e−(2c′)2/2

√
2π

(

(
1

2c′
− 1

(2c′)3

)
− e−2x2

2x
√

2π

≥ e−2(c′)2

10c′
.

Pr[|y| ≥ nL/2+c′
√

nL] is bounded in the same fashion.
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