
Functional Monitoring Without Monotonicity⋆

Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti

Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA

Abstract. The notion of distributed functional monitoring was recently
introduced by Cormode, Muthukrishnan and Yi [4] to initiate a formal
study of the communication cost of certain fundamental problems arising
in distributed systems, especially sensor networks. In this model, each
of k sites reads a stream of tokens and is in communication with a cen-
tral coordinator, who wishes to continuously monitor some function f of
σ, the union of the k streams. The goal is to minimize the number of
bits communicated by a protocol that correctly monitors f(σ), to within
some small error. As in previous work, we focus on a threshold version
of the problem, where the coordinator’s task is simply to maintain a
single output bit, which is 0 whenever f(σ) ≤ τ (1 − ε) and 1 when-
ever f(σ) ≥ τ . Following Cormode et al., we term this the (k, f, τ, ε)
functional monitoring problem.
In previous work, some upper and lower bounds were obtained for this
problem, with f being a frequency moment function, e.g., F0, F1, F2. Im-
portantly, these functions are monotone. Here, we further advance the
study of such problems, proving three new classes of results. First, we
provide nontrivial monitoring protocols when f is either H , the empir-
ical Shannon entropy of a stream, or any of a related class of entropy
functions (Tsallis entropies). These are the first nontrivial algorithms for
distributed monitoring of non-monotone functions. Second, we study the
effect of non-monotonicity of f on our ability to give nontrivial monitor-
ing protocols, by considering f = Fp with deletions allowed, as well as
f = H . Third, we prove new lower bounds on this problem when f = Fp,
for several values of p.

Keywords: Communication complexity, distributed algorithms, data
streams, sensor networks

1 Introduction

Energy efficiency is a key issue in sensor network systems. Communication, which
typically uses power-hungry radio, is a vital resource whose usage needs to be
minimized [7]. Several other distributed systems have a similar need for min-
imizing communication. This is the primary motivation for our present work,
which is a natural successor to the recent work of Cormode, Muthukrishnan
and Yi [4], who introduced a clean formal model to study this issue. The for-
malization, known as distributed functional monitoring, involves a multi-party

⋆ Work supported in part by an NSF CAREER Award CCF-0448277 and NSF grant
EIA-98-02068.

communication model consisting of k sites (the sensors, in a sensor network) and
a single central coordinator. Each site asynchronously receives “readings” from
its environment, formalized as a data stream consisting of tokens from a discrete
universe. The union of these streams defines an overall input stream σ that the
coordinator wishes to monitor continuously, using an appropriate protocol in-
volving private two-way communication channels between the coordinator and
each site. Specifically, the coordinator wants to continuously maintain approx-
imate knowledge of some nonnegative real-valued function f of σ. (We assume
that f is invariant under permutations of σ, which justifies our use of “union”
above, rather than “concatenation.”)

As is often the case in computer science, the essence of this problem is cap-
tured by a threshold version with Boolean outputs. Specifically, we have a thresh-
old τ ∈ R+ and an approximation parameter ε ∈ R+, and we require the co-
ordinator to continuously maintain an output bit, which should be 0 whenever
f(σ) ≤ τ(1 − ε) and 1 whenever f(σ) ≥ τ .1 Following [4], we call this the
(k, f, τ, ε) functional monitoring problem. This formulation of the problem com-
bines aspects of streaming algorithms, sketching and communication complexity.

Motivation. Plenty of recent research has studied such continuous monitoring
problems, for several special classes of functions f (see, e.g., [2, 6, 5, 12]). Appli-
cations have arisen not only in sensor networks, but also in more general network
and database settings. However, most of this past work had not provided formal
bounds on communication cost, an issue that was first addressed in detail in [4],
and that we continue to address here. Philosophically, the study of such moni-
toring problems is a vast generalization of Slepian-Wolf style distributed source
coding [13] in much the same way that communication complexity is a vast gen-
eralization of basic source coding in information theory. Furthermore, while the
problems and the model we consider here are strongly reminiscent of streaming
algorithms, there are notable additional challenges: for instance, maintaining an
approximate count of the total number of tokens received is a nontrivial prob-
lem in our setting, but is trivial in the streaming model. For a more detailed
discussion of prior research, we refer the reader to [4] and the references therein.

Our Results and Comparison with Prior Work. Our work studies (k, f, τ, ε) func-
tional monitoring for two natural classes of functions f : the empirical Shannon
entropy H (and its generalization: Tsallis entropy) and the frequency moments
Fp. For an input stream σ of tokens from the universe [n] := {1, 2, . . . , n}, let fi

denote the number of appearances of i in σ, where i ∈ [n]. For p ≥ 0, the pth fre-
quency moment Fp(σ) is defined to be

∑n
i=1 fp

i . Note that p can be non-integral
or zero: indeed, using the convention 00 = 0 makes F0(σ) equal to the number of
distinct tokens in σ. These functions Fp capture important statistical properties
of the stream and have been studied heavily in the streaming algorithms liter-
ature [1, 9]. The stream σ also implicitly defines a probability distribution over
[n], given by Pr[i] = fi/m, where m is the length of σ. For various applications,

1 Clearly, a solution to the value monitoring problem solves this threshold version, and
the value monitoring problem can be solved by running, in parallel, several copies
of a solution to this threshold version with geometrically spaced thresholds.

especially ones related to anomaly detection in networks, the entropy of this
distribution — also called the empirical entropy of the stream — is a measure of
interest. Abusing notation somewhat, we denote this as H(σ), when the underly-
ing entropy measure is Shannon entropy: thus, H(σ) =

∑n
i=1(fi/m) log(m/fi).

2

We also consider the family of functions Tα(σ) = (1 −∑n
i=1(fi/m)α)/(α − 1),

which are collectively known as Tsallis entropy [14] and which generalize Shan-
non entropy, as shown by considering the limit as α→ 1.

We study the effect of non-monotonicity of f on the (k, f, τ, ε) problem: the
bounds of Cormode et al. [4] crucially exploited the fact that the functions being
monitored were monotone nondecreasing. We obtain three new classes of results.
First, we provide nontrivial monitoring protocols for H , and the related functions
Tα. For this, we suitably extend recent sketching algorithms such as those due to
Bhuvanagiri and Ganguly [3] and Harvey et al. [8]. These are the first nontrivial
algorithms for monitoring non-monotone functions.3 Our algorithms, which are
simple and easily usable, can monitor continuously until the end of the stream,
even as the f(σ) crosses the threshold multiple times. This is the desired behavior
when monitoring non-monotone functions.

Secondly, we prove lower bounds for monitoring f = Fp with deletions al-
lowed: i.e., the stream can contain “negative tokens” that effectively delete earlier
tokens. In contrast with the good upper bounds in [4] for monitoring Fp without
deletions (a monotone problem), we show that essentially no good upper bounds
are possible. Using similar techniques, we also give a lower bound for monitoring
H that is necessarily much milder, and in the same ballpark as our upper bound.

Thirdly, we prove new lower bounds for the monotone problems f = Fp, with-
out deletions, for various values of p. These either improve or are incomparable
with previous bounds [4]; see Table 1 for a side-by-side comparison.

Problem Previous Results Our Results

H , deterministic

O(m), trivially

Ω(kε−1/2 log m)

H , randomized eO(kε−3 log4 m), Ω(ε−1/2 log m)

Fp, dels., determ. Ω(m)

Fp, dels., rand. Ω(m/k)

F1, deterministic O(k log(1/ε)), Ω(k log(1/(εk))) Ω(k log(1/ε))

F0, randomized eO(k/ε2), Ω(k) Ω(1/ε), Ω(1/ε2) if round-based

Fp, p > 1, rand. eO(k2/ε + (
√

k/ε)3), Ω(k), for p = 2 Ω(1/ε), Ω(1/ε2) if round-based

Table 1: Summary of our results (somewhat simplified) and comparison with previous
work [4]. Dependence on τ is not shown here, but is stated in the relevant theorems.

Notation, etc. We now define some notation that we use at various points.
We use |σ| to denote the length of the stream σ and σ1 ◦ σ2 to denote the

2 Throughout this paper we use “log” to denote logarithm to the base 2 and “ln” to
denote natural logarithm.

3 Muthukrishnan [10] gives an upper bound for monitoring a non-monotone function,
but with additive error.

concatenation: σ1 followed by σ2. We typically use S1, . . . , Sk to denote the k
sites, and C to denote the coordinator, in a (k, f, τ, ε) functional monitoring
protocol. We tacitly assume that randomized protocols use a public coin and
err with probability at most 1/3 at each point of time. These assumptions do
not lose generality, as shown by appropriate parallel repetition and the private-
versus-public-coin theorem of Newman [11]. We use m to denote the overall
input length (i.e., number of tokens) seen by the protocol under consideration.
We state our communication bounds in terms of m, k and ε, and sometimes τ .

2 An Algorithm for Monitoring Entropy

We now give a randomized algorithm for (k, H, τ, ε) functional monitoring. We
shall also give algorithms for the Tsallis entropies Tα, which generalize Shannon
entropy, H . These provide the first nontrivial communication upper bounds for
the monitoring of non-monotone functions.

At a high level, our algorithms monitor changes (in the L1 sense) in the
empirical probability distribution defined by the input streams. For probability
distributions µ, ν on the set [n], we write ‖µ− ν‖1 =

∑n
i=1 |µ(i)− ν(i)|. We use

three technical lemmas, whose proofs are left to the full version of the paper. The
first two relate L1-changes in the empirical distribution to changes in H(σ) and
Tα(σ), respectively. The third says that a small infusion of new tokens causes
only a small L1-change in the distribution.

Lemma 1. Let σ and σ′ be streams of tokens from [n], and µ and ν denote
the empirical distributions induced by σ and σ ◦ σ′ respectively. Let m = |σ|. If
|σ′| ≤ m, then, |H(σ ◦ σ′)−H(σ)| ≤ ‖ν − µ‖1 log(2m).

Lemma 2. Let σ, σ′, µ, ν and m be defined as in Lemma 1. Then, for all α > 1,
|Tα(σ ◦ σ′)− Tα(σ)| ≤ ‖ν − µ‖1 ·min {log(2m), α/(α− 1)}.

Lemma 3. Let σ, σ′, µ, ν and m be defined as in Lemma 1. Then if |σ′| < ℓ,
then ‖ν − µ‖1 < 2ℓ/m.

We also need an entropy sketching scheme, such as the one provided by the
following result, due to Harvey, Nelson and Onak [8].

Fact 1. Let ε > 0. There is an algorithm that mantains a data structure (called
a “sketch”) SH(σ), based on an input stream σ, such that (1) based on SH(σ),
we can compute an estimate Ĥ(σ) ∈ [H(σ) − ε, H(σ) + ε], (2) we can suitably
combine SH(σ1) and SH(σ2) to obtain SH(σ1 ◦σ2), and (3) SH(σ) can be stored

using Õ(ε−2 log m log n log(mn)) bits.4 Here, the Õ notation hides factors poly-
nomial in log log m and log(1/ε). ⊓⊔

4 The eO(ε−2 log m) bound in [8] is on the number of words of storage, each O(log(mn))
bits long, and does not include O(log n) space for a pseudorandom generator.

The Algorithm. We proceed in multiple rounds. At the end of the ith round, let
ρij be the overall stream seen at site Sj , let σi = ρi1 ◦ · · · ◦ρik, and let mi = |σi|.
In round 0, sites directly forward input tokens to the coordinator C, who ends
the round after seeing a c0 := 100 items. Then, C uses SH from Fact 1 to get
an estimate Ĥ(σ0) of H(σ0) with an additive error of ε̂ := ετ/4.

For rounds i > 0, C and S1, . . . , Sk simulate a (k, F1, τi,
1
2) monitoring algo-

rithm, such as the one from [4], using error 1
2 and threshold τi := min{mi−1,

mi−1λi/(2 log(2mi−1))}, where λi = τ(1− ε
4)− Ĥ(σi−1) if Ĥ(σi−1) < τ(1− ε

2),

and λi = Ĥ(σi−1)− τ(1− 3ε
4) otherwise. λi is the slack of the estimate Ĥ(σi−1)

from τ (or τ(1− ε) in the latter case), while allowing for error of the estimates.
The choice of τi ensures that the simulated F1 monitoring algorithm notifies
the coordinator by outputting 1 when too many items (as determined from the
technical lemmas) have been received in the round. When this happens, C sig-
nals each Sj that round i is ending, whereupon Sj sends it SH(ρij). Then, C

computes SH(σi), updates its estimate Ĥ(σi), and outputs 1 iff Ĥ(σi) ≥ τ(1− ε
2).

Theorem 1. The above is a randomized algorithm for (k, H, τ, ε) functional

monitoring that communicates Õ(kε−3τ−3 log3 m logn log(mn)) bits.

Proof. We first analyze the correctness. In round 0, it is trivial for the coordinator
to output the correct answer. Now, for round i > 0, suppose the coordinator
outputs 0 at the end of round i − 1. Then, we must have Ĥ(σi−1) ≤ τ(1 −
ε
2), whence H(σi−1) < τ(1 − ε

4) by the bound on the sketching error. By the
correctness of the F1 monitoring algorithm, we receive at most τi items during
round i. Therefore by Lemmas 1 and 3, when going from σi−1 to σi, the total
entropy will be less than τ throughout round i. Hence, the coordinator is free to
output zero through the end of round i. If the coordinator instead outputs 1 at
the end of round i− 1, we are guaranteed to remain above τ(1 − ε) similarly.

To bound the communication cost, we need to estimate both the number of
rounds, and the number of bits exchanged in each round. It is easy to see that
for each round i, λi ≥ ετ/4. Suppose the stream ends during round r + 1. Then,

m ≥ mr ≥ mr−1 + τr/2 ≥ mr−1 (1 + min{1/2, τε/(16 log(2mr−1))})
≥ mr−1 (1 + min{1/2, τε/(16 log(2m))}) = mr−1β (say),

where the second inequality follows from the guarantee of the F1 monitoring
algorithm. Iterating the above recurrence for mr, we get m ≥ c0β

r, whence
r ≤ log(m/c0)/ logβ = O(max{logm, log2 m/(τε)}), where the final bound uses
ln(1 + x) ≥ x/(x + 1) for all x > 0. In each round, we use O(k log m) bits
to send τi to the sites and O(k) bits for the F1 algorithm. These terms are
dominated by the sizes of the sketches that the sites send. Using the size bound
from Fact 1 and the above bound on r, we can bound the total communication
by Õ(kε−3τ−3 log3 m log n log(mn)), for m large enough (i.e., if log m ≥ τε). ⊓⊔

Our algorithm for monitoring Tsallis entropy is similar. Lemma 2 bounds Tα

just as Lemma 1 bounds H , and a suitable sketch STα
, analogous to SH , can be

obtained from [8]. We postpone the details to the full paper.

Theorem 2. There is a randomized algorithm for (k, Tα, τ, ε) functional moni-

toring that communicates Õ(kε−3τ−3 log3 m log n log(mn)) bits. ⊓⊔

3 Lower Bounds for Non-monotone Functions

We now give lower bounds for estimating entropy, and later, Fp. We give de-
terministic bounds first, and then randomized bounds. We abuse notation and
let H denote both the empirical entropy of a stream and the binary entropy
function H : [0, 1]→ [0, 1] given by H(x) = −x log x− (1 − x) log(1− x).

Theorem 3. For any ε < 1/2 and m ≥ k/
√

ε, a deterministic algorithm solving
(k, H, τ, ε) functional monitoring must communicate Ω(kε−1/2 log(εm/k)) bits.

Proof. We use an adversarial argument that proceeds in rounds. Each round, the
adversary will force the protocol to send at least one bit. The result will follow by
showing a lower bound on the number of rounds r that the adversary can create,
using no more than m tokens. Let τ = 1, and let z be the unique positive real
such that H(z

2z+1) = 1 − ε. Note that this implies H(z
2z+1) > 1/2 > H(1/10),

whence z
2z+1 > 1/10, hence z > 1/8. An estimation of H using calculus shows

that z = Θ(1/
√

ε). Fix a monitoring protocol P . The adversary only uses tokens
from {0, 1}, i.e., the stream will induce a two-point probability distribution.

The adversary starts with a “round 0” in which he sends nine 1s followed
by a 0 to site S1. Note that at the end of round 0, the entropy of the stream is
H(1/10) < 1/2. For i ∈ {0, 1, . . . , r}, let ai denote the number of 0s and bi the
number of 1s in the stream at the end of round i. Then a0 = 1 and b0 = 9. For
all i > 0, the adversary maintains the invariant that bi = ⌈ai(z + 1)/z⌉. This
ensures that at the end of round i, the empirical entropy of the stream is

H

(
ai

ai + bi

)
≤ H

(
ai

ai(1 + (z + 1)/z)

)
= H

(
z

2z + 1

)
= 1− ε ,

which requires the coordinator to output 0.
Consider the situation at the start of round i, where i ≥ 1. If each player

were to receive ⌈(bi−1 − ai−1)/k⌉ 0-tokens in this round, then at some point the
number of 0s in the stream would equal the number of 1s, which would make the
empirical entropy equal to 1 and require the coordinator to change his output to
1. Therefore, there must exist a site Sji

, ji ∈ [k], who would communicate upon
receiving these many 0-tokens in round i. In actuality, the adversary does the
following in round i: he sends these many 0s to Sji

, followed by as many 1s as
required to restore the invariant, i.e., to cause bi = ⌈ai(z + 1)/z⌉. Clearly, this
strategy forces at least one bit of communication per round. It remains to bound
r from below. Note that the adversary’s invariant implies bi− ai ≤ ai/z + 1 and
ai + bi ≤ ai(2z + 1)/z + 1 = ai(2 + 1/z) + 1. Therefore, we have

ai = ai−1 +

⌈
bi−1 − ai−1

k

⌉
≤ ai−1 +

⌈
1 + ai−1/z

k

⌉
≤ ai−1

(
1 +

1

zk

)
+ 2 .

Setting α = (1 + 1/zk) and iterating gives ar ≤ a0α
r + 2(αr − 1)/(α − 1) =

a0α
r +2zk(αr− 1) = αr(a0 +2zk)− 2zk. Using our upper bound on ai + bi, the

above inequality, and the facts that a0 = 1 and that z > 1/8, we obtain

ar + br ≤ αr (1 + 2zk) (2 + 1/z)− 2zk(2 + 1/z) + 1

≤ (2 + 1/z) (1 + 2zk)αr ≤ (2 + 1/z) (1 + 2zk) er/zk ≤ 60zker/zk .

Therefore, we can have ar + br ≤ m, provided r ≤ zk ln(m/(60zk)). Recalling
that z = Θ(1/

√
ε), we get the claimed lower bound of Ω(kε−1/2 log(εm/k)). ⊓⊔

Our next lower bounds are for functional monitoring of frequency moments when
we allow for deletions. Specifically, we now consider update streams that consist
of tokens of the form (i, v), where i ∈ [n] and v ∈ {−1, 1}, to be thought of as
updates to a vector (f1, . . . , fn) of frequencies. The vector is initially zero and
is updated using fi ← fi + v upon receipt of the token (i, v): in English, each
update either adds or deletes one copy of item i.

As usual, we let m denote the length of an update stream whose tokens
are distributed amongst several sites. Our next results essentially show that no
nontrivial savings in communication is possible for the problem of monitoring
frequency moments in this setting. These bounds highlight the precise problem
caused by the non-monotonicity of the function being monitored. They should
be contrasted with the much smaller upper bounds achievable in the monotone
case, when there are no deletions (see Table 1).

Our proofs are again adversarial and proceed in rounds. They use appropriate
instantiations of the following generic lemma.

Definition 1. An update stream is said to be positive if it consists entirely of
tokens from [n] × {1}, i.e., insertions only. The inverse of an update stream
σ = 〈(i1, v1), . . . , (im, vm)〉 is defined to be σ−1 := 〈(im,−vm), . . . , (i1,−v1)〉.
A function G : Z

n
+ → R+ on frequency vectors is said to be monotone if G is

nondecreasing in each parameter, separately. We extend such a G to a function
on streams (or update streams) in the natural way, and write G(σ) to denote
G(f), where f is the frequency vector determined by σ.

Lemma 4. Let G : Z
n
+ → R+ be monotone and let P be a protocol for the

(k, G, τ, ε) functional monitoring problem with deletions allowed. Let σ0, σ1, . . . , σk

be a collection of positive update streams such that (1) G(σ0) ≤ τ(1 − ε), and
(2) G(σ0 ◦ σ1 ◦ . . . ◦ σk) ≥ τ . If P is a deterministic protocol, then the number
of bits communicated is at least

⌊
|(m− |σ0|) / (2 ·maxj∈[k]{|σj |})

⌋
. If P is a δ-

error randomized protocol, then the expected number of bits communicated is at
least ((1− δ)/k) ·

⌊
(m− |σ0|) / (2 ·maxj∈[k]{|σj |})

⌋
.

Proof. Let S1, . . . , Sk be the k sites involved in P . The adversary will send certain
tokens to certain sites, maintaining the invariant that the coordinator is always
required to output 0. In round 0, the adversary sends σ0 to S1; by condition (1),
this maintains the invariant.

Let s = maxj∈[k]{|σj |} and r = ⌊(m − |σ0|)/2s⌋. The adversary uses r ad-
ditional rounds maintaining the additional invariant that at the start of each
such round the value of G is G(σ0). Consider round i, where i ∈ [r]. By condi-
tion (2), if the adversary were to send σj to Sj in this round, for each j ∈ [k],
the coordinator’s output would have to change to 1.

Suppose P is a deterministic protocol. Then, since the coordinator’s output
would have to change to 1, there must exist a site Sji

, with ji ∈ [k], that would
have to communicate upon receiving σji

in this round. In actuality, the adversary
sends σji

◦ σ−1
ji

to Sji
and nothing to any other site in round i. Clearly, this

maintains both invariants and causes at least one bit of communication. Also,
this adds at most 2s tokens to the overall input stream. Thus, the adversary can
cause r bits of communication using |σ0|+ 2sr ≤ m tokens in all, which proves
the claim for deterministic protocols.

The proof when P is a δ-error randomized protocol proceeds in a similar
manner. The difference is that each round i has an associated collection of prob-
abilities (pi1, . . . , pik), where pij = Pr[Sj communicates in round i upon receiving
σj]. As before, condition (2) implies that were each Sj to receive σj in this round,
correctness would require C’s output to change to 1. Thus,

1− δ ≤ Pr[P is correct] ≤ Pr[C receives a bit in round i] ≤ ∑k
j=1 pij ,

where the final inequality uses a union bound. Therefore, there exists a site Sji
,

with ji ∈ [k], having piji
≥ (1 − δ)/k. Again, as in the deterministic case, the

adversary actually sends σji
◦ σ−1

ji
to Sji

and nothing to any other site in round
i. By linearity of expectation, the expected total communication with r rounds
is at least r(1 − δ)/k, which proves the lemma. ⊓⊔

The theorems that follow are for randomized protocols with error δ = 1/3.

Theorem 4. The expected communication cost of a randomized (k, F0, τ, ε) func-
tional monitoring protocol that allows for deletions is Ω(min{m/k, m/ετ}). ⊓⊔

Proof. Let a := max{1, ⌈ τε
k ⌉}, and instantiate σ0 as a stream of τ − ka distinct

elements and σ1, . . . , σk each as a stream of a distinct elements. Note that ka ≥
τε, so F0(σ0) = τ−ka ≤ τ(1−ε). Furthermore, note that F0(σ0◦σ1◦· · ·◦σk) = τ ,
hence the streams satisfy the conditions of Lemma 4 with G = F0. Applying
that lemma, and noting that |σj | = a gives us a lower bound of ((1 − δ)/k) ·
⌊(m− |σ0|)/(2a)⌋ = Ω(min{m/k, m/ετ}) for m large enough. ⊓⊔

Note that Lemma 4 implies a slightly stronger result for deterministic proto-
cols that monitor frequency moments; however, a linear lower bound is already
known, even without deletions, by the same techniques used in [1] to prove lower
bounds in the streaming model.

The proofs of the next two theorems are similar to that of Theorem 4 and
appear in the full version of the paper.

Theorem 5. The expected communication cost of a randomized (k, Fp, τ, ε) mon-
itoring protocol (with p > 0) that allows deletions is Ω(min{m/k, m/τ1/pε}). ⊓⊔

Theorem 6. The expected communication cost of a randomized (k, H, τ, ε) func-
tional monitoring protocol is Ω(ε−1/2 log(εm/k)) bits. ⊓⊔

We note that Yi and Zhang [16] study problems similar to ours but in terms
of competitive ratio. The bounds in this section rely on the construction of hard
instances which might not be possible in their case.

4 Frequency Moments Without Deletions: New Bounds

We finish with another set of lower bounds, this time for monitoring Fp (for
various p) without deletions. Our bounds either improve or are incomparable
with previous lower bounds: see Table 1.

Theorem 7. A deterministic protocol that solves (k, F1, τ, ε) functional moni-
toring must communicate at least Ω

(
k log k+τ

k+ετ

)
bits. In particular, when τ ≥

k/εΩ(1), it must communicate Ω (k log(1/ε)) bits.

Proof. Again we use an adversary, who proceeds in rounds: each round, he gives
just enough tokens to a single site to force that site to communicate.

Let a0 = 0 and, for i ≥ 1, let ai be the total number of tokens received by
all sites (i.e., the value of F1 for the input stream) at the end of round i. The
adversary maintains the invariant that ai ≤ τ(1 − ε), so that the coordinator
must always output 0. For j ∈ [k], let bij be the maximum number of tokens
that site j can receive in round i without being required to communicate. The
correctness of the protocol requires ai−1 +

∑k
j=1 bij < τ , for otherwise the

desired output can change from 0 to 1 without the coordinator having received
any communication. Let j∗ = argminj∈[k]{bij}. In round i, the adversary sends
bij∗ + 1 tokens to site j∗, forcing it to communicate. We have

ai = ai−1 + bij∗ + 1 ≤ ai−1 +
τ − ai−1

k
+ 1 = 1 +

τ

k
+

(
1− 1

k

)
ai−1 .

Letting α = 1− 1/k and iterating the above recurrence gives ai ≤ (1 + τ/k)(1−
αi)/(1 − α) = (k + τ)(1 − αi). Now note that α ≥ e−2/k, so when i ≤ r :=
k
2 ln k+τ

k+ετ , we have αi ≥ k+ετ
k+τ , so that ai ≤ (τ+k)·(k+τ−k−ετ/(k+τ) = τ(1−ε).

This shows that the adversary can maintain the invariant for up to r rounds,
forcing Ω(r) bits of communication, as claimed. ⊓⊔

Our next lower bounds use reductions from a fundamental problem in com-
munication complexity: the “gap Hamming distance” problem, denoted GHDc,
where c ∈ R+ is a parameter. In this problem, Alice and Bob are given x, y ∈
{0, 1}n respectively and want to output 1 if ∆(x, y) ≥ n

2 + c
√

n and 0 if
∆(x, y) ≤ n

2 − c
√

n; they don’t care what happens if the input satisfies neither
of these conditions. We shall need the following lower bounds on the randomized
communication complexity R(GHDc), as well as the one-way randomized com-
munication complexity (where the only communication is from Alice to Bob)
R→(GHDc). Proofs of these bounds, as well as further background on the prob-
lem, can be found in Woodruff [15].

Theorem 8. Suppose c > 0 is a constant. Then R(GHDc) = Ω(
√

n) and
R→(GHDc) = Ω(n). Here, the Ω notation hides factors dependent upon c.5 ⊓⊔

It is conjectured that the general randomized bound is in fact as strong
as the one-way version. This is not just a tantalizing conjecture about a basic
communication problem. Settling it would have important consequences because,
for instance, the gap Hamming distance problem is central to a number of results
in streaming algorithms. As we shall soon see, it would also have consequences
for our work here.

Conjecture 1. For sufficiently small constants c, we have R(GHDc) = Ω(n).

Theorem 9. For any ε ≤ 1/2, a randomized protocol for (k, F0, τ, ε) functional
monitoring must communicate Ω(1/ε) bits.

Proof. We give a reduction from GHD1. Let P be a randomized protocol for
(k, F0, τ, ε) functional monitoring. Set N := ⌊1/ε2⌋ and τ = 3N/2 +

√
N . We

design a two-party public coin randomized communication protocolQ for GHD1

on N -bit inputs that simulates a run of P involving the coordinator, C, and two
sites, S1 and S2. Let x ∈ {0, 1}N be Alice’s input in Q and let y ∈ {0, 1}N be
Bob’s input. Alice creates a stream σa := 〈a1, . . . , aN 〉 of tokens from [N]×{0, 1}
by letting ai := (i, xi) and Bob similarly creates a stream σb := 〈b1, . . . , bN 〉,
where bi := (i, yi). They then simulate a run of P where S1 first receives all
of σa after which S2 receives all of σb. They output whatever the coordinator
would have output at the end of this run.

The simulation itself occurs as follows: Alice maintains the state of S1, Bob
maintains the state of S2, and they both maintain the state of C. Clearly, this
can be done by having Alice send to Bob all of S1’s messages to C plus C’s
messages to S2 (and having Bob act similarly). The total communication in Q
is at most that in P .

We now show that Q is correct. By construction, the combined input stream
σ = σa ◦σb seen by P has 2∆(x, y) tokens with frequency 1 each and N−∆(x, y)
tokens with frequency 2 each. Therefore F0(σ) = N + ∆(x, y). When ∆(x, y) ≥
N/2 +

√
N , we have F0(σ) ≥ τ and Q, following P , correctly outputs 1. On the

other hand, when ∆(x, y) ≤ N/2−
√

N , we have

F0(σ) ≤ 3N

2
−
√

N = τ

(
1− 2

√
N

3N/2 +
√

N

)
≤ τ

(
1− 1√

N

)
≤ τ(1− ε) .

Thus Q correctly outputs 0. Since Q is correct, by Theorem 8, it must commu-
nicate at least Ω(

√
N) = Ω(1/ε) bits. Therefore, so must P . ⊓⊔

Theorem 10. For any ε < 1/2 and any constant p > 1, a randomized protocol
for (k, Fp, τ, ε) functional monitoring must communicate Ω(1/ε) bits.

5 The bounds in [15] restrict the range of c, but this turns out not to be necessary.

Proof. For simplicity, we assume here that p ≥ 2. As before, we reduce from
GHD1 on N := ⌊1/ε2⌋-bit inputs. For this reduction, we set τ := (N/2 +√

N)2p +(N −2
√

N). Let P be a protocol for (k, Fp, τ, ε) functional monitoring.
We design a protocol Q for GHD1 on input (x, y) that simulates a run of P
involving two sites, creating two streams 〈(i, xi)〉i∈[N] and 〈(i, yi)〉i∈[N], exactly
as before; however, in this reduction, the output of Q is the opposite of the
coordinator’s output at the end of the run of P .

We now show that Q is correct. The input stream σ seen by P has the same
frequency distribution as before, which means that Fp(σ) = 2∆(x, y) + (N −
∆(x, y))·2p = N ·2p −∆(x, y)(2p − 2). When ∆(x, y) ≤ N/2−

√
N , we have

Fp(σ) ≥ N · 2p− (N/2−
√

N)(2p − 2) = (N/2 +
√

N)2p + (N − 2
√

N) = τ .

Therefore P outputs 1, which means Q correctly outputs 0. On the other hand,
when ∆(x, y) ≥ N/2 +

√
N , we have

Fp(σ) ≤ N · 2p − (N/2 +
√

N)(2p − 2)

= τ

(
1− 2

√
N2p − 4

√
N

(N/2 +
√

N) · 2p + (N − 2
√

N)

)
≤ τ(1− 1/

√
N) ≤ τ(1− ε) ,

where the penultimate inequality uses p ≥ 2. Therefore P outputs 0, whence Q
correctly outputs 1. Theorem 8 now implies that Q, and hence P , must commu-
nicate Ω(

√
N) = Ω(1/ε) bits. ⊓⊔

We remark that if Conjecture 1 holds (for a favorable c), then the lower
bounds in Theorems 9 and 10 would improve to Ω(1/ε2). This further strength-
ens the motivation for settling the conjecture.

We also consider a restricted, yet natural, class of protocols that we call
round-based protocols; the precise definition follows. Note that all nontrivial
protocols in [4] are round-based, which illustrates the naturalness of this notion.

Definition 2. A round-based protocol for (k, f, τ, ε) functional monitoring is
one that proceeds in a series of rounds numbered 1, . . . , r. Each round has the
following four stages. (1) Coordinator C sends messages to the sites Si, based on
the past communication history. (2) Each Si read its tokens and sends messages
to C from time to time, based on these tokens and the Stage 1 message from C
to Si. (3) At some point, based on the messages it receives, C decides to end the
current round by sending a special, fixed, end-of-round message to each Si. (4)
Each Si sends C a final message for the round, based on all its knowledge, and
then resets itself, forgetting all previously read tokens and messages.

It is possible to improve the lower bounds above by restricting to round-based
protocols, as in Definition 2. The key is that if the functional monitoring protocol
P in the proofs of Theorems 9 and 10 is round-based, then the corresponding
communication protocol Q only requires messages from Alice to Bob. This is
because Alice can now simulate the coordinator C and both sites S1 and S2,

during P ’s processing of σa: she knows that S2 receives no tokens at this time,
so she has the information needed to compute any messages that S2 might need
to send. Consider the situation when Alice is done processing her tokens. At this
time the Stage 4 message (see Definition 2) from S1 to C in the current round
has been determined, so Alice can send this message to Bob. From here on, Bob
has all the information needed to continue simulating S1, because he knows that
S1 receives no further tokens. Thus, Bob can simulate P to the end of the run.

Theorem 11. Suppose p is either 0 or a constant greater than 1. For any ε ≤
1/2, a round-based randomized protocol for (k, Fp, τ, ε) functional monitoring
must communicate Ω(1/ε2) bits.

Proof. We use the observations in the preceding paragraph, proceed as in the
proofs of Theorems 9 and 10 above, and plug in the one-way communication
lower bound from Theorem 8. ⊓⊔

References

1. Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approxi-
mating the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. Pre-
liminary version in Proc. 28th Annu. ACM Symp. Theory Comput., pages 20–29,
1996.

2. Brian Babcock and Chris Olston. Distributed top-k monitoring. In Proc. Annual

ACM SIGMOD Conference, pages 28–39, 2003.
3. Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data

streams. In Proc. 14th Annual European Symposium on Algorithms, pages 148–159,
2006.

4. Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for distributed func-
tional monitoring. In Proc. 19th Annual ACM-SIAM Symposium on Discrete Al-

gorithms, pages 1076–1085, 2008.
5. Graham Cormode, S. Muthukrishnan, and Wei Zhuang. What’s different: Dis-

tributed, continuous monitoring of duplicate-resilient aggregates on data streams.
In Proc. 22nd International Conference on Data Engineering, page 57, 2006.

6. Abhinandan Das, Sumit Ganguly, Minos N. Garofalakis, and Rajeev Rastogi. Dis-
tributed set expression cardinality estimation. In Proc. 30th International Confer-

ence on Very Large Data Bases, pages 312–323, 2004.
7. Deborah Estrin, Ramesh Govindan, John S. Heidemann, and Satish Kumar. Next

century challenges: Scalable coordination in sensor networks. In MOBICOM, pages
263–270, 1999.

8. Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming
entropy via approximation theory. In Proc. 49th Annual IEEE Symposium on

Foundations of Computer Science, pages 489–498, 2008.
9. S. Muthukrishnan. Data streams: Algorithms and applications. In Proc. 14th

Annual ACM-SIAM Symposium on Discrete Algorithms, page 413, 2003.
10. S. Muthukrishnan. Some algorithmic problems and results in compressed sensing.

In Proc. 44th Annual Allerton Conference, 2006.
11. Ilan Newman. Private vs. common random bits in communication complexity.

Information Processing Letters, 39(2):67–71, 1991.

12. Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to mon-
itoring threshold functions over distributed data streams. ACM Trans. Database

Syst., 32(4), 2007.
13. D. Slepian and J. K. Wolf. Noiseless coding of correlated information sources.

IEEE Trans. Inf. Theory, 19(4):471–480, 1973.
14. Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistics. J. Stat.

Phys., 52:479–487, 1988.
15. David P. Woodruff. Efficient and Private Distance Approximation in the Commu-

nication and Streaming Models. PhD thesis, MIT, 2007.
16. Ke Yi and Qin Zhang. Multi-dimensional online tracking. In Proc. 19th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 1098–1107, 2009.

