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Abstract The equality problem is usually one’s first encounter with communication
complexity and is one of the most fundamental problems in the field. Although its
deterministic and randomized communication complexity were settled decades ago,
we find several new things to say about the problem by focusing on three subtle
aspects. The first is to consider the expected communication cost (at a worst-case
input) for a protocol that uses limited interaction—i.e., a bounded number of rounds
of communication—and whose error probability is zero or close to it. The second is
to treat the false negative error rate separately from the false positive error rate. The
third is to consider the information cost of such protocols. We obtain asymptotically
optimal rounds-versus-cost tradeoffs for equality: both expected communication
complexity and information complexity scale as �(ilogr−1 n), where r is the number
of rounds and ilogk n = log log · · · log n, with k logs. These bounds hold even when
the false negative rate approaches 1. For the case of zero-error communication cost,
we obtain essentially matching bounds, up to a tiny additive constant. We also provide
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some applications. As an application of our information cost bounds, we obtain new
bounded-round randomized lower bounds for the Intersection problem, in which
there are two players who hold subsets S, T ⊆ [n]. In many realistic scenarios, the
sizes of S and T are significantly smaller than n, so we impose the constraint that
|S|, |T | ≤ k. We study the minimum number of bits the parties need to communicate
in order to compute the entire intersection set S∩T , using r rounds. We show that any
r -round protocol has information cost (and thus communication cost) �(k ilogr k)
bits. We also give an O(r)-round protocol achieving O(k ilogr k) bits, which for
r = log∗ k gives a protocol with O(k) bits of communication. This is in contrast to
other basic problems such as computing the union or symmetric difference, for which
�(k log(n/k)) bits of communication is required for any number of rounds.

Keywords Communication complexity · Information theory · Lower bounds ·
Privacy · Big data · Round complexity · Distributed computing

1 Introduction

1.1 Context

Over the last three decades, communication complexity [51] has proved itself to be
among the most useful of abstractions in computer science. A number of basic prob-
lems in communication complexity have found awide range of applications throughout
the theory of computing, with equality, index, and disjointness being notable
superstars.

Revisiting these basic problems and askingmore nuanced questions or studying nat-
ural variants has extended their range of application. We highlight two examples. Our
first example is disjointness. The optimal�(n) lower bound for this problem [33,48]
was already considered one of the major results in communication complexity before
disjointnesswas revisited in themulti-party number-in-hand model to obtain a num-
ber of data stream lower bounds [3,4,15,27] culminating in optimal space bounds for
the (higher) frequency moments. Later, disjointness was revisited in an asymmet-
ric communication setting [46] yielding an impressive array of lower bounds for data
structures in the cell-probe model. Very recently, disjointnesswas revisited yet again
in a high-error setting, yielding deep insights into extended formulations for themax-
clique problem [9]. Our second example is index. The straightforward �(n) lower
bound on its one-way communication complexity [1] is already an important starting
point for numerous other lower bounds. Revisiting index in an interactive communi-
cation setting and considering communication tradeoffs has led to new classes of data
stream lower bounds for memory-checking problems [14,16,39]. Separately, lower
bounding the quantum communication complexity of index [44] has led, among
other things, to strong lower bounds for locally decodable codes [18,35].

1.2 Our Results

In this work we revisit the equality problem: Alice and Bob each hold an n-bit
string, and their task is to decide whether these strings are equal. This is arguably the
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most basic communication problem that admits a nontrivial protocol: using random-
ization and allowing a constant error rate, the problem can be solved with just O(1)
communication (this becomes O(log n) if one insists on private coins only); see, e.g.,
Kushilevitz and Nisan [37, Example 3.13] and Freivalds [26]. This is why a student’s
first encounter with communication complexity is usually through the equality prob-
lem. Such a fundamental problem deserves the most thorough of studies.

At first glance, the complexity of equalitymight appear “solved”: its deterministic
communication complexity is at least n, whereas its randomized complexity is O(1)
as noted above, as is its information complexity [6] (for more on this, see Sect. 1.3).
However, one can ask the following more nuanced question. What happens if Alice
and Bob want to be certain (or nearly certain) that their inputs are indeed equal when
the protocol directs them to say so? And what happens if Alice and Bob want to run
a protocol with limited interaction, i.e., a bounded number of back-and-forth rounds
of communication?

Formally, let eqn : {0, 1}n × {0, 1}n → {0, 1} denote the Boolean function that
underlies this communication problem, defined by eqn(x, y) = 1 ⇐⇒ x = y.
Consider the zero-error case: the players must always correctly output eqn(x, y) on
every input (x, y). However, the players may use a randomized protocol and their
goal is to minimize the expected number of bits they exchange. If their protocol is
required to use only one round—this means that Alice sends a message to Bob, who
then outputs the answer—then it is easy to see that Alice’s message must uniquely
identify her input to Bob. From this it is easy to show that on some input, x , Alice
must send at least n bits to Bob, even in expectation.

Things improve a lot if one allows two rounds of communication—Alice sends a
message to Bob, who replies to Alice, who then outputs the answer. Using standard
techniques, Alice can send Bob a 	log n
-bit1 fingerprint of x . When x �= y, this
fingerprint fails to demonstrate that eqn(x, y) = 0 with probability at most 1/n.
If necessary, Bob responds to this failure by sending y to Alice, which costs only
1 bit in expectation. The net result is an expected communication cost of O(log n)

on unequal inputs, and O(n) on equal inputs. Generalizing this idea, we obtain an
r -round protocol where the expected cost drops to O(ilogr−1 n) on unequal inputs,
where ilog j n := log log · · · log n (with j logs).

Our main high-level message in this work is that the above tradeoff between the
number of rounds and the communication cost is optimal, and that this remains the case
even allowing for some false positives, even allowing for a false negative rate of 1 −
o(1), and even if we consider information cost. We shall get precise about information
cost measures in Sect. 2, but for now we remark that an information cost lower bound
is stronger than a communication cost bound, even in our expected-cost model.

While our main focus is on equality, our rounds-versus-information tradeoff
can be applied to three other problems: or- equality, disjointness, and private-
intersection. (Based on developments since the initial announcement of our
results [12], these derivative results can be proved, and in a sense strengthened, using
alternative means: see the discussion at the end of Sect. 1.3. However, we feel there is

1 Throughout this paper we use “log” to denote the logarithm to the base 2.
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value in our simpler and more direct approach). It is well known that information cost
has clean direct-sum properties [4,5,17]. Together with our results for equality, this
easily gives us bounded-round randomized lower bounds for the or- equality prob-
lem, whose underlying function is oreqn,k : {0, 1}nk × {0, 1}nk → {0, 1}, defined by
oreqn,k(x1, . . . , xk, y1, . . . , yk) = ∨k

i=1 eqn(xi , yi ): Alice holds each xi ∈ {0, 1}n
and Bob holds each yi ∈ {0, 1}n . Our lower bound is of the form �(k ilogr k) for
k  2n . It holds only for subconstant false positive rates (because eq itself is too easy
at a constant false positive rate); however the lower bound does apply under a false
negative rate as high as 1 − o(1).

The oreq problem is closely related to disjointness, especially the variant called
small set disjointness or k-disjN . Here, Alice and Bob are given sets A, B ⊆ [N ]
respectively2, with the promise that |A| ≤ k and |B| ≤ k, where 1 ≤ k ≤ N . Their
goal is to output 1 iff A ∩ B = ∅. Using this close relation (see Lemma 7.3 for a
formal treatment), we obtain bounded-round lower bounds for k-disj as well, also of
the form �(k ilogr k), provided N � k2.

Yet another closely related problem is private- intersection, which we also
denote k-intN . Here, as in k-disj, Alice and Bob receive sets A, B ⊆ [N ] with
|A| ≤ k and |B| ≤ k. Each player should locally output the entire set A ∩ B. The
non-Boolean problem k-intN admits a similar �(k ilogr k) lower bound, this time
even in a constant-error setting. To complement this, we also give an upper bound
of O(k ilogr k) for k-intN using O(r) rounds; note that with O(log∗ k) rounds this
amounts to O(k) communication. This should be contrasted with other basic problems
such as computing the union or symmetric difference, for which �(k log(n/k)) bits
of communication is required with any number of rounds. Given our protocol it is
straightforward to obtain the same round/communication tradeoffs (up to an additive
O(log k) in communication) for computing the exact Jaccard similarity |A∩ B|/|A∪
B|, the exact Hamming distance, the exact number of distinct elements, and the exact
1 and 2-rarity [21], all when |A|, |B| ≤ k.

Our lower bound for k-intN applies directly to information cost, which is why we
think of it as a lower bound for private- intersection. A key property of information
cost is that it is a measure of privacy of a protocol for a function f . Klauck [36] defines
3 the privacy of a protocol � with respect to a distribution μ:

PRIVμ(�) := I(X : �(X,Y ) | Y, f (X,Y )) + I(Y : �(X,Y ) | X, f (X,Y )) .

This definition coincides with icostμ(�) up to the conditioning on f (X,Y )

in the mutual information expressions. However, in many cases, including this
paper, this conditioning does not asymptotically affect the definition, and one
has PRIVμ(�) = �(icostμ(�)). One can then naturally define PRIVδ( f ) =
infδ-error � maxinput dist μ PRIVμ(�), and one has that PRIVδ( f ) = �(ICδ( f )).

There is a large body of work on solving equality privately. These are known as
private equality tests in the cryptography and privacy literature [22,43]. The harder

2 We use [n] to denote the set {1, 2, . . . , n}.
3 We have replaced the max in Klauck’s definition with a sum; this agrees with Klauck’s original definition
up to a factor of 2.
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problem private- intersection is a fundamental problem studied in private datamin-
ing, see, e.g., Freedman et al. [25]. The problem is studied both under computational
assumptions on the players, as in Freedman et al., and also using information-theoretic
notions of privacy, such as PRIVδ( f ), as in the work by Ada et al. [2]. In this context,
it is worth noting that the bounded-round setting has a very good practical motivation:
the number of rounds of a protocol may in fact influence its latency drastically while
the actual number of bits communicated may not. This is because the more interactive
protocols are, i.e., the larger the number of rounds, the more coordination is needed
between the players, which may not be possible if, e.g., a player goes offline.

To obtain our information cost (hence, privacy) lower bound for private-
intersection, we combine our lower bound for eq with a recent direct sum theorem
with aborts, given by Molinaro et al. [42]. Roughly speaking, their theorem states
that the information complexity of solving all k copies of a problem is k times the
information complexity of solving each copy with a protocol that is allowed to output
“abort” with a constant 1/10 probability, but given that it does not output “abort”
the protocol must be correct with a very high 1 − 1/k probability.4 By changing
such a protocol for equality so that whenever it would have output “abort”, it
instead declares that x �= y, we show how to obtain an �(k ilogr k) information
cost bound for k-intN for any r -round protocol with constant success probability. As
I(� : A | B, A ∩ B) + I(� : B | A, A ∩ B) = I(� : A | B) + I(� : B | A) ± O(k),
it follows that PRIV1/3(private- intersection) = �(k ilogr k).

For a concise—yet technically precise—listing of our results, please see Sect. 2.

1.3 Related Work

The study of the equality problem dates back to the original communication
complexity paper of Yao [51], who showed that the deterministic communication com-
plexity of eqn is at least n, using a fooling set argument. Mehlhorn and Schmidt [40]
developed the rank lower bound technique, which can recover this result. They further
examined or- equality, giving a lower bound of nk bits for deterministic proto-
cols that compute oreqn,k via the rank technique. They also gave O(n + log n) and
O(n log n) bounds for the nondeterministic and co-nondeterministic communication
complexities oforeqn,n , respectively. Furthermore, they studied the “LasVegas” com-
munication complexity of oreqn,n , which brought them close to some of the things
we study here. Specifically, they gave a zero-error private-coin randomized protocol

4 It is crucial for us to use a strong direct sum theorem of [42] in the lower bound for private-
intersection. Unlike generic direct sum and direct product theorems which apply to any function, the
strong direct sum of [42] only applies to Equality-type functions but gives a much stronger guarantee
in the constant error regime that we study here. This is in contrast with the bounded round direct product
theorem of [30,31] (and other similar results such as [32]), who show that for r -round public-coin ran-

domized information complexity ICr,pub
1−(1−ε/2)�(kε2/r2)

( f k ) = �
(

(εk/r) · (IC
r,pub
ε ( f ) − O(r2/ε2))

)
,

where ε > 0 is arbitrary (the results of [30,31] are stated in terms of communication complexity but their
techniques also imply an information cost lower bound). One cannot apply this theorem to our problem, as

one would need to set ε = �(k−1/3) to obtain our results. Because ICr,pub
1/k1/3

(Equality) = o(k2/3) this

theorem gives a trivial bound.
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such that the expected communication cost on any inputs (x1, . . . , xn, y1, . . . , yn) is
at most O(n(log n)2).

Feder et al. [23] studied the randomized communication complexity of equal-
ity in the direct-sum setting. Here, players have k strings each and must compute
(eqn(x1, y1), . . . , eqn(xk, yk)): thus, the output is a k-bit string. Feder et al. showed
that O(k) communication suffices to compute equality on all k instances, with error
exponentially small in k. This shows that the “amortized” communication complex-
ity of eqn is O(1), even under tiny error. More recently, Braverman and Rao [10]
showed that amortized communication complexity nearly equals information com-
plexity. Furthermore, Braverman [6] gave a specific protocol for eqn that has zero
error and achieves internal information cost O(1) regardless of the input distribution.

The problem oreqn,k is potentially easier than the k-fold direct sum of eqn , and
has itself been studied a few times before. Chakrabarti et al. [17] showed that its
simultaneous-message complexity is �(k

√
n), which is k times the complexity of

eqn in that model. More recently, Kushilevitz and Weinreb [38] studied the determin-
istic complexity of oreqn,k under the promise that xi = yi for at most one i ∈ [k].
Computing oreqn,k under this “0/1 intersection” promise is closely related to the
clique-vs.-independent set problem. In this problem, Alice is given a clique in a graph.
Bob is given an independent set, and theymust decide if their inputs intersect. Kushile-
vitz and Weinreb were able to show that computing oreqn,k under this promise still
requires �(kn) communication whenever k ≤ n/ log n. Extending this lower bound
to the setting where k = n is an important open problem, with several implications.

For the k-disj problem, Håstad and Wigderson [29] gave an O(k)-bit randomized
protocol; amatching lower bound follows easily from the�(n) lower bound for general
disjointness. TheHåstad–Wigdersonprotocol is clever and crucially exploits both the
public randomness and the interactive communication between players. Sağlam and
Tardos [49] extend this protocol to interpolate between the one-round and unbounded-
round situations, showing that to compute k-disj in r rounds, �(k ilogr k) bits are
necessary and sufficient. This lower bound extends tight �(k log k) lower bounds for
one-round protocols recently given by Dasgupta et al. [20] and by Buhrman et al. [13].

A different thread of research has been studying the relationship between
information and communication complexities in the abstract, i.e., for general func-
tions and relations. Most results in this thread have been protocol compression
results [5,10,11,28,31] that show that information-efficient protocols can be turned
into communication-efficient ones. Therefore, to some extent, they imply information
cost lower bounds based on communication cost lower bounds. However, due to the
the subtleties of our error parametrization, we cannot directly infer our information
complexity lower bounds from communication lower bounds plus existing compres-
sion results. For instance, the communication lower bounds for or- equality and
disjointness due to Sağlam and Tardos [49]—which we learned of following the
initial announcement of this work [12]—imply lower bounds for information com-
plexity of those two problems when combined with compression results of Harsha
et al. [28]. Additionally, with the recent direct product theorem for bounded-round
communication complexity of Jain et al. [31] and the existing result equating infor-
mation and amortized communication of Braverman and Rao [10], these results also
extend to give information complexity lower bounds for bounded-round protocols for
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equality. Still, equality is one of the most important communication complexity
problems; as such, it deserves careful study. Our information cost lower bounds are
more direct and shed more light on this important problem. In particular, previous
results do not differentiate between errors for false positives and false negatives and
therefore cannot admit the high false negative rate our bounds apply to.

The recent work of Braverman et al. [8] is similar in spirit to some of our results.
They consider zero-error communication protocols for the even more fundamental
and function, obtaining exact information cost bounds. From this they derive nearly
exact communication bounds for low-error protocols for disjointness and k-disj.
They also consider rounds-vs.-information tradeoffs for and, showing that the infor-
mation complexity of r -round protocols decays as �(1/r2). Our work shows that
the information complexity of equality decays exponentially with each additional
round.

1.4 Road Map

The rest of the paper is organized as follows. Sect. 2 gives careful definitions of our
model of computation and error and cost measures, followed by a listing of all our
results. The listing provides pointers to later sections of the paper where these results
are proved. Sect. 3 gives basic definitions and lemmas relating to information theory.

The next two sections provide some warm-up. Section 4 gives upper bounds for
equality including the iterated-log upper bound described informally above. Sec-
tion 5 gives matching lower bounds for expected communication complexity, first
under zero error and then under two-sided error. Though the proofs in Sects. 4 and 5
are not too complex, the combined story they tell is important. Together, these results
paint a nearly complete picture of the behavior of equality in a bounded-round
expected-communication setting, and highlight the importance of studying yes and
no instances separately. Nevertheless, the reader who is interested solely in informa-
tion cost lower bounds may safely skip these sections.

Section 6 contains the full proof of our Main Theorem, which gives an infor-
mation cost lower bound for equality. Section 7 obtains lower bounds for oreq
and k-disj as quick applications of the Main Theorem, and a lower bound for
private- intersection after suitably extending the Main Theorem to the setting
of protocols with abortion. Finally, Sects. 8 and 9 give our protocols for k-intN in the
two-party and multi-party settings, respectively.

2 Definitions and Formal Statement of Results

Throughout this paper we reserve the symbols “n” for input length of equality
instances, “k” for list length of or- equality instances and set size of k-disj instances,
and “N” for universe size of k-disj or k-intN instances. Many definitions and results
will be parametrized by these quantities but we shall not always make this parame-
trization explicit. We tacitly assume that n, k and N are sufficiently large integers.

Unless otherwise stated, all communication protocols appearing in this paper
are public-coin randomized protocols involving two players named Alice and Bob.
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Because our work concerns expected communication cost in a bounded-round set-
ting, we make the following careful definition of what communication is allowed.
In each round, the player whose turn it is to speak sends the other player a message
from a prefix-free subset5 of {0, 1}∗. This subset can depend on the communication
history. After the final round in the protocol, the player that receives the last message
announces the output: this announcement does not count as a round.

Let P be a communication protocol that takes inputs (x, y) ∈ X × Y . The
transcript of P on input (x, y) is defined to be the concatenation of the messages
sent by the players, in order, as they execute P on (x, y). We denote this transcript
byP(x, y) and remark that it is, in general, a random variable. We include the output
as the final “message” in the transcript. We denote the output of a transcript t by
out(t). We denote the length of a binary string z by |z|. The communication cost and
worst-case communication cost of P on input (x, y) are defined to be

cost(P; x, y) := E

[|P(x, y)|] , and cost*(P; x, y) := max |P(x, y)| ,

where the expectation and the max are taken over the protocol’s random coin tosses.
We now define complexity measures based on this notion of communication cost.

Ordinarily we would just define the communication complexity of a function f as the
minimum over protocols for f of the worst-case (over all inputs) cost of the protocol.
When f = eqn , such a measure turns out to be too punishing, and hides the subtleties
that we seek to study. Notice that the r -round protocol outlined in Sect. 1.2 achieves
its cost savings only on unequal inputs, i.e., on f −1(0). On inputs in f −1(1), the
protocol ends up costing at least n bits. The intuition is that it is much cheaper for
Alice and Bob to refute the purported equality of their inputs than to verify it. Indeed,
verification is so hard that interaction has no effect on the verification cost, whereas
each additional round of communication decreases refutation cost exponentially.

In fact, this intuition can be turned into precise theorems, both in zero-error and
positive-error settings, as we shall see. To formalize things, we now define a family
of complexity measures.

Definition 2.1 (Cost, Error, and Complexity Measures) Let P be a protocol that
computes a Boolean function f : X × Y → {0, 1}. We define its refutation cost,
verification cost, overall cost, refutation error (or false positive rate, or soundness
error), and verification error (or false negative rate, or completeness error) as follows,
respectively:

rcost(P) := max(x,y)∈ f −1(0) cost(P; x, y) ,

vcost(P) := max(x,y)∈ f −1(1) cost(P; x, y) ,

cost(P) := max(x,y)∈X ×Y cost(P; x, y) ,

rerr(P) := max(x,y)∈ f −1(0) Pr[out(P(x, y)) = 1] ,
verr(P) := max(x,y)∈ f −1(1) Pr[out(P(x, y)) = 0] .

5 A set of strings is said to be prefix-free if no string in the set is a proper prefix of any other.
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Let λ be a probability distribution on the input space X × Y . We then define the
λ-distributional error errλ(P) as well as the λ-distributional refutation cost, etc., as
follows:

rcostλ(P) := E(X,Y )∼λ[cost(P; X,Y ) | f (X,Y ) = 0] ,
vcostλ(P) := E(X,Y )∼λ[cost(P; X,Y ) | f (X,Y ) = 1] ,
costλ(P) := E(X,Y )∼λ[cost(P; X,Y )] ,
rerrλ(P) := E(X,Y )∼λ[Pr[out(P(X,Y )) = 1] | f (X,Y ) = 0] ,
verrλ(P) := E(X,Y )∼λ[Pr[out(P(X,Y )) = 0] | f (X,Y ) = 1] ,
errλ(P) := E(X,Y )∼λ[Pr[out(P(X,Y )) �= f (X,Y )] .

Weshall usually restrictP to be deterministicwhen considering these distributional
measures. Although these measures depend on both P and f , we do not indicate f
in our notation to keep things simple.

Let r ≥ 1 be an integer and let ε, δ ∈ [0, 1] be reals. We define the r -round
randomized refutation complexity and r -round λ-distributional refutation complexity
of f as follows, respectively:

R(r),ref
ε,δ ( f ) := min{rcost(P) : P uses r rounds, rerr(P) ≤ ε, verr(P) ≤ δ} ,

Dλ,(r),ref
ε,δ ( f ) := min{rcostλ(P) : P is deterministic and uses r rounds, rerrλ(P)

≤ ε, verrλ(P) ≤ δ} .

Wealso definemeasures of verification complexity andoverall complexity analogously,
replacing “rcost” above with “vcost” and “cost” respectively, and denote them by

R(r),ver
ε,δ ( f ) , Dλ,(r),ver

ε,δ ( f ) , R(r)
ε,δ( f ) , and Dλ,(r)

ε,δ ( f ) ,

respectively. We define the total complexity of f as follows:

R∗,(r)
ε,δ ( f ) := min{cost*(P) : P uses r rounds, rerr(P) ≤ ε, verr(P) ≤ δ} ,where

cost*(P) := max(x,y)∈X ×Y cost*(P; x, y) .

Notice that refutation, verification, and overall complexities use (expected) commu-
nication cost as the underlying measure, whereas total complexity uses the (more
standard) worst-case communication cost.

Definition 2.2 (Information Cost and Complexity) LetP, f , and λ be as above, and
suppose the players inP are allowed to use private coins in addition to a public random
string R. The λ-information cost of P and the r -round λ-information complexity of
f are defined as follows, respectively:
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icostλ(P) := I(XY : P(X,Y ) | R) ,

ICλ,(r)
ε,δ ( f ) := inf{icostλ(P) : P uses r rounds, rerr(P) ≤ ε, verr(P) ≤ δ} .

where I(_ : _ | _) denotes conditional mutual information. For readers familiar with
recent literature on information complexity [5,6], we note that this is technically the
“external” information cost rather than the “internal” one. However, we shall study
information costsmostlywith respect to a uniform input distribution, and in this setting
there is no difference between external and internal information cost [10].

It has long been known that information complexity lower bounds standard worst-
case communication complexity: this was the main reason for defining the notion [17].
The simple proof boils down to

I(XY : P(X,Y ) | R) ≤ H(P(X,Y )) ≤ max |P(X,Y )| .

In our setting, with communication cost defined in the expected sense, it is still the
case that

ICλ,(r)
ε,δ ( f ) ≤ R(r)

ε,δ( f ) (1)

This time the proof boils down to the inequality H(P(X,Y )) ≤ E[ |P(X,Y )| ],
which follows from Shannon’s source coding theorem (see Fact 3.6 below).

2.1 Summary of Results for Equality

The functions eqn and oreqn,k have been defined in Sect. 1 already. To formalize
our bounds for these problems, we introduce the iterated logarithm functions ilogk :
R+ → R+, which are defined as follows.

ilog0 z := max{1, z} , ∀ z ∈ R+ ,

ilogk z := max{1, log(ilogk−1 z)} , ∀ k ∈ N, z ∈ R+ .

For all practical purposes, we may pretend that ilog0 = id, and ilogk = log ◦ ilogk−1,
for k ∈ N.

We use ξ to denote the uniform distribution on {0, 1}n , and put μu := ξ ⊗ ξ . Thus
μu is the uniform distribution on inputs to eqn . Strictly speaking these should be
denoted ξn and μu,n , but we choose to let n be understood from the context. In all our
complexity bounds, we tacitly assume that n is sufficiently large. The various parts
of the summary theorems below are proved later in the paper, and we indicate on the
right where these detailed proofs can be found.

Theorem 2.3 (Zero-Error Bounds) The complexity of equality satisfies the follow-
ing bounds:

1. R(r),ref
0,0 (eqn) ≤ ilogr−1 n + 3.

2. R(r),ver
0,0 (eqn) ≤ n.
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3. R(r),ref
0,0 (eqn) = Dμu ,(r),ref

0,0 (eqn) ≥ ilogr−1 n − 1. [Theorem 5.2]

4. R(r),ver
0,0 (eqn) = Dμu ,(r),ver

0,0 (eqn) ≥ n. [Theorem 5.5]

Notice that these bounds are almost completely tight, differing at most by the tiny
additive constant 4. Next, we allow our protocols some error. We continue to have
very tight bounds for the verification cost (the case of one-sided error is especially
interesting: just set δ = 0 in the results below), and we have asymptotically tight
bounds in the other cases. To better appreciate the next several bounds, let us first
consider the “trivial” one-round protocol for eqn that achieves ε refutation error. This
protocol communicates min{n, log(1/ε)} bits: it’s as though the instance size drops
from n to min{n, log(1/ε)} when we allow this refutation error. This motivates the
following definition.

Definition 2.4 (Effective Instance Size) When considering protocols for eqn with
refutation and verification errors bounded by ε and δ, respectively, we define the
effective instance size to be

n̂ := min
{
n + log(1 − δ), log((1 − δ)2/ε)

}
.

Theorem 2.5 (Two-Sided-Error Bounds) The complexity of equality satisfies the
following bounds:

5. R(r),ref
ε,δ (eqn) ≤ (1− δ) ilogr−1 n̂+ 5. [Corollary 4.4]

6. R(r),ver
ε,δ (eqn) ≤ (1− δ)n̂ + 3. [Corollary 4.5]

7. Dμu ,(r),ver
ε,δ (eqn) ≥ (1− δ)(n̂ − 1) . [Theorem 5.13]

8. R(r),ver
ε,δ (eqn) ≥ 1

8 (1− δ)2(n̂ + log(1− δ) − 5). [Theorem 5.14]

9. Dμu ,(r),ref
ε,δ (eqn) = �((1 − δ)2 ilogr−1 n̂). This bound holds for all ε, δ such that

δ ≤ 1−2−n/2 and ε/(1− δ)2 < 1/8. [Theorem 5.11]
10. R(r),ref

ε,δ (eqn) = �((1 − δ)3 ilogr−1 n̂). This bound holds for all ε, δ such that

δ ≤ 1− 2−n/2 and ε/(1− δ)3 ≤ 1/64. [Theorem 5.12]

Observe that the “constant refutation error” setting ε = O(1) is not very interesting,
as it makes these complexities constant. But observe also that the situation is very
different for the verification error, δ: we continue to obtain strong lower bounds even
when δ is very close to 1. This is in accordance with our intuition that verification (of
equality) is much harder than refutation.

Finally, we turn to information complexity and arrive at the most important result of
this paper. For readers curious about the implications of protocol compression results
for the information complexity of equality, we refer the reader to the discussion in
Sect. 1.3.

Theorem 2.6 (Main Theorem: Information Complexity Bound) Suppose δ ≤ 1 −
8(ilogr−2 n̂)−1/8. Then

11. ICμu ,(r)
ε,δ (eqn) = �((1 − δ)3 ilogr−1 n̂). [Theorem 6.7]
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2.2 On Yao’s Minimax Lemma

Distributional lower bounds imply worst-case randomized ones by an averaging argu-
ment that constitutes the “easy” direction of Yao’s minimax lemma [50]. Yet, in
Theorem 2.5 we claim somewhat weaker randomized bounds than the correspond-
ing distributional ones. The reason is that in our setting, the averaging argument will
need to fix the random coins of a protocol so as to preserve multiple measures (e.g.,
refutation error as well as cost). Though this is easily accomplished, we pay a penalty
of small constant factor increase in our measures.

Ironically, the “hard” direction of Yao’s minimax lemma is particularly easy in the
case of eqn , because equality is in a sense uniform self-reducible. See Theorem 4.3,
where we show how to turn a protocol designed for the uniform distribution into a
randomized one with worst-case guarantees. In this way, the uniform distribution is
provably the hardest distribution for equality.

2.3 Applications of the Main Theorem

Our main theorem can be used to prove the following lower bounds for or- equality,
disjointness, and private- intersection. We now summarize our results for the
functions oreqn,k , k-disjN and k-intN , which were defined in Sect. 1. Whenever δ

appears in these results, it needs to be bounded sufficiently away from 1. Similarly,
ε needs to be nonnegative, and n and N need to be sufficiently large. We state these
results more precisely in Sect. 7.

Theorem 2.7 The following lower bounds hold:

1. For k ≤ 20.99n,wehaveR(r)
k−1, 0.99

(oreqn,k) = �(k ilogr k). [Theorem7.1]

2. For N ≥ k2.01, we haveR(r)
0.99, k−1(k-disjN ) = �(k ilogr k). [Theorem7.5]

3. For N ≥ k2.01, we have R(r)
1/3,1/3(k-intN ) = �(k ilogr k). [Theorem 7.8]

Based on developments since the original announcement of our main theorem [12],
one can in fact strengthen the first two results above. Sağlam and Tardos give
�(k ilogr k) lower bounds on R(r)

1/3, 1/3(oreqn,k) and R
(r)
1/3, 1/3(k-disjN ); the improve-

ment lies in not requiring subconstant error. The third result above can now be derived
in another way. A communication lower bound on private- intersection follows
directly from that on k-disj. One can then use the optimal bounded-round protocol
compression result of [28] (Lemma V.3) to derive the information cost lower bound.

We remind the reader that our main objective in this paper is the thorough study of
equality, including the direct development of information cost bounds for bounded-
round protocols and the analysis of verification vs. refutation error.

2.4 Upper Bound Results for Set Intersection

In Sect. 8 we give a randomized protocol for k-intN which achieves the optimal O(k)
bits of communication, and simultaneously achieves O(log∗ k) number of rounds. Our
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number of rounds provides a significant improvement on the earlier O(log k) rounds
needed to achieve the optimal O(k) bits of communication given in previous work for
set disjointness [29]. We also provide a more refined tradeoff, showing that with O(r)
rounds, one can achieve communication O(k ilogr k).

Theorem 2.8 For every integer r > 0 there exists a 6r-round constructive public-
coin protocol for k-intN with total expected communication O(k ilogr k) and success
probability 1 − 1/ poly(k).

In Sect. 9 we extend this to the setting in which there are m players in the private
messages model [7,47] and give a protocol with O(k ilogr k) average communication
per player, expected number of rounds O(r · max(1, logm

k )), and error probability
1 − 1/2k . We give a similar guarantee with a worst-case communication bound per
player.

Our protocols for two players are communication-optimal, up to a constant fac-
tor in the number of rounds r , in light of the results above. For m players and
O(log∗ k · max(1, logm

k )) rounds, our O(mk) communication is also optimal up to
constant factors [7,47].

3 Preliminaries

Here we collect some basic facts from probability theory and information theory. Then
we outline the theory of protocols with abortion, which is used in the final sections of
the paper while studying direct sum questions.

3.1 Probability, Entropy and Mutual Information

We will use the following fact about collision probability of a random function.

Fact 3.1 Given a subset S ⊆ [n] for size |S| ≥ 2, i ≥ 0 and t = �(|S|i+2), a random
function h : [n] → [t] has no collisions with probability at least 1 − 1/|S|i , namely
for all x, y ∈ S such that x �= y it holds that h(x) �= h(y). Moreover, a random hash
function satisfying such a guarantee can be constructed using only O(log n) random
bits.

Definition 3.2 Let λ be a probability distribution on a finite set S and let T ⊆ S
be an event with λ(T ) �= 0. We write λ | T to denote the distribution obtained by
conditioning λ on T . To be explicit, λ | T is given by

(λ | T )(x) =
{
0 , if x /∈ T ,

λ(x)/λ(T ) , if x ∈ T .

Also, we write H(λ) to denote the entropy of a random variable distributed according
to λ, i.e., H(λ) = H(X), where X ∼ λ.

Lemma 3.3 With λ, S and T as above, let f : S → R+ be a nonnegative function.
Then EX∼λ|T [ f (X)] ≤ EX∼λ[ f (X)]/λ(T ).
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We collect together some basic results in information theory whose proofs can be
found in any standard textbook, e.g., Cover and Thomas [19, Chapter 2].

Fact 3.4 Let X,Y, Z and X1, X2, . . . denote random variables, possibly correlated.
Let supp(X) denote the support set of X . The following facts hold.

1. Entropy span: 0 ≤ H(X) ≤ log | supp(X)|.
2. H(X | Y ) ≤ H(X), and thus I(X : Y ) ≥ 0.
3. Chain rule: I(X1, X2, . . . , Xn : Y | Z) =∑n

i=1 I(Xi : Y | X1, . . . , Xi−1, Z).
4. Subadditivity: H(X,Y | Z) ≤ H(X | Z) + H(Y | Z), where the equality holds if

and only if X and Y are independent conditioned on Z .
5. Fano’s inequality: Let A be a random variable, which can be used as “predictor”

of X , namely there exists a function g such that Pr[g(A) = X ] ≥ 1 − δ for some
δ < 1/2. If | supp(X)| ≥ 2 then

H(X | A) ≤ δ log(| supp(X)| − 1) + Hb(δ) ,

where Hb(δ) = δ log(1/δ)+ (1− δ) log(1/(1− δ)) is the binary entropy function.

Fact 3.5 (Kraft Inequality) Let S ⊆ {0, 1}∗ be a prefix-free set. Then

∑

x∈S
2−|x | ≤ 1 .

Fact 3.6 (Source Coding Theorem) Let X be a random variable taking values in a
prefix-free set S ⊆ {0, 1}∗. Then

E[ |X | ] ≥ H(X) .

Lemma 3.7 Let Z ,W be jointly distributed random variables. Let E be an event.
Then,

I(Z : W ) ≥ Pr[E ] I(Z : W | E ) − 1 .

Proof Let D be the indicator random variable for E . Then we have

I(Z : W | D)=Pr[E ] I(Z : W | E )+Pr[¬E ] I(Z : W | ¬E ) ≥ Pr[E ] I(Z : W | E ).

(2)
Note that I(Z : D | W ) ≤ H(D | W ) ≤ H(D) ≤ 1. Using the chain rule for mutual
information twice, we get

I(Z : W | D) ≤ I(Z : WD) = I(Z : W ) + I(Z : D | W ) ≤ I(Z : W ) + 1 . (3)

The lemma follows by combining inequalities (2) and (3). ��
To appreciate the next two lemmas, it will help to imagine that d  n.
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Lemma 3.8 Let Z ,W be jointly distributed random variables, with Z taking values
in {0, 1}n, and let E be an event. Then

H(Z | W ) ≥ n − d �⇒ H(Z | W,E ) ≥ n − (d + 1)/Pr[E ] .

In particular, taking W to be a constant, we have H(Z) ≥ n − d �⇒ H(Z | E ) ≥
n − (d + 1)/Pr[E ].
Proof We use the fact that the entropy of Z can be at most n, even after arbitrary
conditioning. This gives

n − d ≤ H(Z | W )

= Pr[E ] H(Z | W,E ) + (1 − Pr[E ])H(Z | W,¬E ) + Hb(Pr[E ])
≤ Pr[E ] H(Z | W,E ) + (1 − Pr[E ])n + 1 .

The lemma follows by rearranging the above inequality. ��
Lemma 3.9 Let Z be a random variable taking values in {0, 1}n and let z ∈ {0, 1}n.
Then

H(Z) ≥ n − d �⇒ Pr[Z = z] ≤ (d + 1)/n .

Proof The lemma follows by rearranging the following inequality, which is a conse-
quence of Lemma 3.8:

0 = H(Z | Z = z) ≥ n − d + 1

Pr[Z = z] .

��

3.2 Protocols with Abortion

For our eventual lower bound on private- intersection (Sect. 7.3), we shall need
the concept of communication protocols that are allowed to abort. Consider a com-
munication problem given by a function f : X × Y → Z , and a protocol P that
attempts to compute f . We shall allow P to output the special value ⊥, indicating
“abort,” in addition to values inZ . The next definition captures the desired semantics
of such a protocol.

Definition 3.10 (Protocols with abortion) Let f be a function andPD a deterministic
protocol of the above form, and let μ be a probability distribution over X × Y , the
domain of f .We say thatPD (β, δ)-computes f with respect toμ if, with (X,Y ) ∼ μ,
we have

1. (abortion probability) Pr[PD(X,Y ) =⊥] ≤ β, and
2. (failure probability) Pr[PD(X,Y ) �= f (X,Y ) | PD(X,Y ) �=⊥] ≤ δ.
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If P is a randomized protocol for f , we view it as a distribution over deter-
ministic protocols and we say that it (α, β, δ)-computes f with respect to μ if
PrPD∼P [PD (β, δ)-computes f w.r.t. μ] ≥ 1 − α.

We also need to define an appropriate notion of conditional information complexity
for protocols with abortion, for which we shall use the notation ICμ

α,β,δ( f | ν). Let f
be as above and let λ be a distribution over the augmented spaceX ×Y ×D , where
D is some finite set. Then λ induces marginals μ on X × Y and ν on D . We say
that ν partitions μ if, with (X,Y, D) ∼ λ and d ∈ supp(D), the distribution of (X,Y )

conditioned on D = d is a product distribution.

Definition 3.11 (Conditional information complexity) Let P, f, λ be as above. The
conditional information cost of P under λ is defined as I(P(X,Y ) : X,Y | D),
where (X,Y, D) ∼ λ. The conditional information complexity of f with respect to λ,
denoted by ICμ,δ( f | ν), is defined as the infimum of conditional information costs
of protocols that compute f with worst-case error at most δ.

The information complexity of f with aborts, denoted by ICμ
α,β,δ( f | ν), is the

infimum of conditional information costs of protocols with abortion that (α, β, δ)-
compute f . The bounded-round analogs ICμ,(r)

δ ( f | ν) and ICμ,(r)
α,β,δ( f | ν) are defined

by taking the respective infimums over only r -round protocols.

4 Upper Bounds for Equality

In this section, we provide deterministic and randomized protocols for eqn with low
refutation cost and low verification cost. Recall Definition 2.4, which introduced the
quantity n̂ = min

{
n + log(1 − δ), log (1−δ)2

ε

}
as the effective instance size. One can

derive one-sided-error and zero-error versions of these results by setting δ and/or ε to
zero as needed, and using the convention log(w/0) = +∞ for w > 0. One can in fact
tighten the analysis for the case ε = δ = 0 to obtain the bounds in Theorem 2.3.

Theorem 4.1 Suppose n, r ∈ N and ε, δ ∈ [0, 1] are such that δ < 1 − 2−n/2 and
ilogr−1 n̂ ≥ 4. Then

Dμu ,(r),ref
ε,δ (eqn) ≤ (1 − δ) ilogr−1 n̂ + 5 .

Proof To gain intuition, we first consider δ = 0, in which case we have n̂ =
min{n, log(1/ε)}. The basic idea was already outlined in Sect. 1. Since we need only
handle a random input, we do not need fingerprints. Instead, Alice and Bob take turns
revealing increasingly longer prefixes of their inputs: in the j th round, the player to
speak sends the next ≈ ilogr− j n̂ bits of her input. Whenever a player witnesses a
mismatch in prefixes, she cuts off the protocol (and the protocol outputs 0). If the
protocol ends without a cutoff, it outputs 1. The protocol described so far clearly has
no false negatives, and after filling in some details (see below), we can show that it
has the desired refutation cost and refutation error.

To achieve further savings for nonzero δ,wepartition {0, 1}n into sets S, T ⊆ {0, 1}n
such that |S| ≈ (1 − δ)2n . Each player cuts off the protocol at her first opportunity if
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her input lies in T . Otherwise, they emulate the above protocol on the smaller input
space S × S.

We now describe our protocol precisely. Set

n′ := n + 	log(1 − δ)
 ,

n′′ := min
{
n′, 2 + 	log((1 − δ)2/ε)


}
,

t j :=
{
	ilogr− j n̂
 , if 1 ≤ j < r ,

n′′ −∑r−1
j=1 t j , if j = r .

Choose an arbitrary partition of {0, 1}n into subsets S and T such that |S| = 2n
′
. Fix

an arbitrary bijection g : S → {0, 1}n′
.

The protocol—which we call P—works as follows on input (x, y) ∈ {0, 1}n ×
{0, 1}n . Wewrite x[i1 : i2] to denote the substring xi1xi1+1 . . . xi2 of x . Each nonempty
message in the protocol will be either the string “0”, indicating cutoff, or “1” followed
by a payload string. Each player maintains a variable � that records the length of the
prefix that has been compared so far; initially they set � ← 0.

The players keep track of whether a cutoff has occurred. Once a cutoff occurs,
all further messages in the protocol will be empty strings. Once r rounds have been
completed, the appropriate playerwill output 0 if a cutoff has occurred, and1otherwise.

Round j proceeds as follows. Let P ∈ {Alice, Bob} be the player who speaks in this
round, and let z ∈ {x, y} be their input. If necessary, P cuts off if z ∈ T . Now suppose
that a cutoff has not yet occurred. If j = 1, then P sends the substring g(z)[1 : t1], sets
� ← t1, and the round ends. Otherwise, suppose P receives a non-cutoff message with
payload w. If P finds that w �= g(z)[� + 1 : � + t j−1] then she cuts off the protocol,
else if j < r , she continues the protocol by sending 1 followed by the next t j bits of
g(z), i.e., she sends g(z)[� + t j−1 + 1 : � + t j−1 + t j ], sets � ← � + t j−1 + t j , and
the round ends.

The protocol’s logic is shown in pseudocode form below, for readers who prefer
that presentation.

It is easy to see that verrμu (P) ≤ δ, since players only cut off on an (x, x) input
when x ∈ T . Next, note that a false positive occurs only when (x, y) ∈ S × S
and g(x)[1 : n′′] = g(y)[1 : n′′]. When n′′ = n′ (which corresponds, roughly, to
ε < (1 − δ)2−n), Alice and Bob end up comparing all bits of g(x) and g(y), and we
get rerrμu (P) = 0. In the other case, we have n′′ = 2 + 	log((1 − δ)2/ε)
. Letting
(X,Y ) ∼ μu , we have

rerrμu (P) = Pr[(X,Y ) ∈ S × S | X �= Y ] · Pr [g(X)[1 : n′′]
= g(Y )[1 : n′′] | g(X) �= g(Y )

]

≤ (2n′−n)2 · 2
n′−n′′ − 1

2n′ − 1
≤ 22	log(1−δ)
 · 2−n′′

≤ 22(1+log(1−δ)) · ε

4(1 − δ)2
= ε .
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Algorithm 1: Round j of the protocolP . Here t0 = 0 and “Round r + 1” is the
output announcement.
if j ≤ r then

if cutoff then send emptystring;
else

if z ∈ T then cutoff ;
w ← payload of most recently received message;
if w �= g(z)[� + 1 : � + t j−1] then cutoff ;
send “1” followed by g(x)[� + t j−1 + 1 : � + t j−1 + t j ], and set � ← � + t j−1 + t j ;

else
if cutoff then output 0;
else

w ← payload of most recently received message;
if w �= g(z)[� + 1 : � + t j−1] then output 0;
else output 1;

Finally, we analyze the refutation cost. Let a j denote the expected total communi-
cation in rounds ≥ j , conditioned on not cutting off before round j . For convenience,
set ar+1 = 0. We claim that a j ≤ 3 for all j > 2 and prove so by induction from
r + 1 � 3. The base case ( j = r + 1) is trivial. Conditioned on not cutting off before
the j th round, the player whose turn it is to speak receives t j−1 bits to comparewith her
own input. Estimating as above, this will fail to cause a cutoff with probability at most
2−t j−1 . Therefore, the player to speak will send at most 1 bit in this round to indicate
cutoff (or not) plus, with probability at most 2−t j−1 , will continue the communication,
which will cost t j bits in this round and a j+1 bits in expectation in subsequent rounds.
The net result is that

a j ≤1+2−t j−1(t j + a j+1)≤1+ 1

ilogr− j n̂

(
	ilogr− j n̂
 + 3

)
≤ 2 + 4

ilogr− j n̂
≤ 3 .

The first two rounds are slightly different, because each player summarily cuts off
when her input lies in T . In the first round, Alice cuts off with probability at most δ. In
the second round, conditioned on Alice not cutting off, Bob cuts off with probability
all but (1 − δ)2−t1 . The refutation cost of r -round protocols is therefore bounded by

rcostμu (P) = a1 ≤ 1 + (1 − δ)t1 + (1 − δ)
(
1 + (1 − δ)2−t1(t2 + a3)

)

≤ 1 + (1 − δ)(	ilogr−1 n̂
 + 1) + (1 − δ)2
	ilogr−2 n̂
 + 3

ilogr−2 n̂

≤ 1 + (1 − δ) ilogr−1 n̂ + 2(1 − δ) + (1 − δ)2
(

1 + 4

ilogr−2 n̂

)

≤ 1 + (1 − δ) ilogr−1 n̂ + 2(1 − δ) + 2(1 − δ)2

≤ 5 + (1 − δ) ilogr−1 n̂ .

��

123



Algorithmica

Theorem 4.2 With n, r, ε, δ as above, we have Dμu ,(r),ver
ε,δ (eqn) ≤ (1 − δ)n̂ + 3.

Proof We construct a one-round protocol achieving the stated verification cost, using
S, T, g as in Theorem 4.1. On input (x, y), Alice cuts off if x ∈ T . Otherwise, she
sends Bob a prefix of g(x) of length min{n + 	log(1 − δ)
, 2 + 	log((1 − δ)2/ε)
.
Bob outputs 0 (“unequal”) if (i) Alice cut off, (ii) y ∈ T , or (iii) Alice’s prefix does
not match that of g(y).

As in the previous proof, this protocol—call it Q—only produces false negatives
when inputs lie in T , so that verrμu (Q) ≤ δ. And as before, we get rerrμu (Q) = 0 for
small ε and rerrμu (Q) ≤ 22	log(1−δ)
 · ε

4(1−δ)2
≤ ε otherwise. As for verification cost,

the protocol always sends a bit to indicate cutoff (or not), and for all (x, x) ∈ S× S the
protocol sends atmost n̂+2 bits. Thus, vcostμu (Q) ≤ 1+(1−δ)(n̂+2) ≤ (1−δ)n̂+3.

��
Theorem 4.3 LetP be an r-round deterministic protocol for eqn. Then, there exists
an r-round randomized protocol Q for eqn with verr(Q) = verrμu (P), rerr(Q) =
rerrμu (P), rcost(Q) = rcostμu (P), and vcost(Q) = vcostμu (P).

Proof Construct Q as follows. Alice and Bob use public randomness to generate a
uniformbijectionG : {0, 1}n → {0, 1}n .On input (x, y), they runP on (G(x),G(y)).
Note that if x = y then (G(x),G(y)) is uniform over eq−1

n (1), and if x �= y then
(G(x),G(y)) is uniform over eq−1

n (0). Thus, distributional guarantees for P under
the uniform distribution become worst-case guarantees for Q. ��

Together with Theorems 4.1 and 4.2, this gives upper bounds for randomized pro-
tocols.

Corollary 4.4 R(r),ref
ε,δ (eqn) ≤ (1 − δ) ilogr−1 n̂ + 5.

Corollary 4.5 R(r),ver
ε,δ (eqn) ≤ (1 − δ)n̂ + 3.

5 Bounded-Round Communication Lower Bounds for Equality

In this section, we prove all of our communication cost lower bounds on eqn . We
deal with information cost in the next section. We think of these lower bounds as
“combinatorial” (as opposed to “information theoretic”). An important ingredient in
some of these combinatorial lower bounds is the round elimination technique, which
dates back to the work of Miltersen et al. [41].

The proofs in this section will use Kraft’s Inequality (Fact 3.5), Shannon’s source
coding theorem (Fact 3.6), as well as the following approximation lemma.

Lemma 5.1 For a ≤ 2n/2, t ≤ log∗ n − 2, and x ∈ [ 1a , 1
]
, we have ilogt−1 n ≥

ilogt (2nx) ≥ (1 − log a
n

)
ilogt−1 n.

Proof The upper bound is trivial. We prove the lower bound by induction on t . We
have log(2nx) = n+ log x ≥ n− log a >

(
1− log a

n

)
n, and the claim holds for t = 1.

For t > 1, we have

ilogt (2nx) ≥ log
(
1 − log a

n

)
+ log

(
ilogt−2 n

)
[by induction hypothesis]
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≥ −2 log a

n
+ ilogt−1 n [using 1 − w ≥ 2−2w for 0 ≤ w ≤ 1/2]

≥
(
1 − log a

n

)
ilogt−1 n [using ilogt−1 n ≥ 2].

��

5.1 Lower Bounds for Zero-Error Protocols

In this section, we provide nearly exact bounds for zero-error protocols.

Theorem 5.2 For all r < log∗ n we have Dμu ,(r),ref
0,0 (eqn) ≥ ilogr−1 n − 1.

To prove this theorem, we must analyze equality protocols on finite sets of arbi-
trary size. Given a finite set S, define eqS to be the equality problem, but when
x, y ∈ S. In the following theorem, we let μu be uniform over S × S.

Theorem 5.3 For all integers r > 0, we have Dμu ,(r),ref
0,0 (eqS) ≥ ilogr |S| − 1.

Proof Assume ilogr |S| > 1as otherwise there is nothing to prove.Definem = log |S|.
It might be helpful to think of m as an integer, but this is not necessary.

The proof proceeds by induction on r . When r = 1, Alice must send her entire
input to achieve zero error in a single round. This costs 	m
 > ilog1 |S| − 1 bits, and
the theorem holds. Now, assume Dμu ,(�),ref

0,0 (eqT ) ≥ ilog� |T | − 1 for all finite sets
T , and let P be an optimal (� + 1)-round deterministic protocol for eqS . We aim
to show that rcostμu (P) ≥ ilog�+1 |S| − 1 = ilog� m − 1. Let m1, . . . ,mt be the
possible messages Alice sends in the first round of P . For 1 ≤ i ≤ t , Let Ai denote
the set of inputs on which Alice sends mi , and let �i denote the length of mi . Assume
without loss of generality that �1 ≤ �2 ≤ · · · ≤ �t . SinceP is optimal, we must have
|A1| ≥ |A2| ≥ · · · ≥ |At |: otherwise, we can permute which messages are sent on
which sets Ai and reduce the overall cost of the protocol.

We analyze the cost of P by conditioning on Alice’s first message. Under the
uniform distribution, Alice sends mi with probability pi := |Ai |/2m . If y /∈ Ai , Bob
refutes equality and the protocol aborts. Thus, over x �= y inputs, the probability that
Bob aborts is (|Ai | − 1)/(2m − 1). Furthermore, conditioned on the events that (i)
Alice’s first message is mi and that (ii) Bob doesn’t abort, Alice and Bob’s inputs are
each uniform over Ai . Thus, the remaining communication is at least Dμu ,(�),ref

0,0 (eqAi ).

Fix τ := 2/ ilog�−1m. Call the i th message small if pi ≤ τ and large otherwise.
We bound

rcostμu (P) =
∑

1≤i≤t

pi
(
�i + |Ai | − 1

2m − 1
Dμu ,(�),ref
0,0 (eqAi )

)

≥
∑

1≤i≤t

pi
(

− log pi + (pi − 2−m)Dμu ,(�),ref
0,0 (eqAi )

)

≥
∑

smallmi

pi (− log pi )
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+
∑

largemi

pi
(

− log pi + (pi − 2−m)(ilog� |Ai | − 1)
)

≥ Pr[small message] · (ilog�(m) − 1)

+
∑

largemi

pi
(

− log pi + pi ilog
� |Ai | − pi − 1

)

= Pr[small message] · (ilog�(m) − 1) +
∑

largemi

pi f (pi ) ,

where we define f (x) := − log x + x ilog�(2mx) − x − 1. The first inequality holds
by the source coding theorem (Fact 3.6) and the third inequality holds because pi ≤ τ

for all small messages.
We now claim that f ′(x) > 0 for all x ∈ [τ, 1]. We prove this by explicitly

calculating the derivative of f .
If x ≥ τ , then −1/(x ln 2) ≥ − ilog�−1(m)/(2 ln 2). By Lemma 5.1, we have

f ′(x) = − 1

x ln 2
+ ilog�(2mx) − 1

(ln 2)(ln x · 2m)
∏�−2

j=0 ln(ilog
j x · 2m)

− 1

≥ − ilog�−1 m

2 ln 2
+ ilog�−1m − (ilog�−1 m) ilog� m

m
− o(1) − 1

= ( ilog�−1 m
)
(

1 − 1

2 ln 2

)

− 1 − o(1) = �(ilog�−1 m) ,

which proves the claim. It now follows that for large messages, f (pi ) is minimized at
f (τ ). Note that

f (τ ) = − log τ + τ ilog�(2mτ) − τ − 1

≥ ilog� m − 1 + 2

ilog�−1 m
ilog�−1m

(
1 − ilog�(m) − 1

m

)
− 2

ilog�−1 m
− 1

> ilog� m − 1 .

Plugging this back into our inequality for the cost of P , we get

rcostμu (P) ≥ Pr[small message] · (ilog� m − 1)

+Pr[large message] · (ilog� m − 1) = ilog� m − 1 .

��
Theorem 5.4 Dμu ,(r),ver

0,0 (eqn) ≥ n. Note that this lower bound is independent of r .

Proof Let P be a deterministic zero-error protocol for eqn . As the protocol has
no error, the communication matrix is partitioned into monochromatic rectangles. In
particular, there are 2n 1-rectangles, since each (x, x) input must map to a different
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rectangle.6 Let Tx and �x denote the protocol transcript corresponding to (x, x) and the
length of this protocol transcript, respectively. Note that {Tx } form a prefix-free coding
of {0, 1}n . By Kraft’s inequality, we have

∑
x 2

−�x ≤ 1. Therefore, in expectation
E[2−�x ] ≤ 2−n , and by Jensen’s inequality, we get the following.

−n ≥ logE[2−�x ] ≥ E[log(2−�x )] = −E[�x ] .

Multiplying each side of the inequality by−1,we haveEx [�x ] ≥ n. This is precisely
vcostμu (P), thus the proof is complete. ��
Theorem 5.5 R(r),ver

0,0 (eqn) ≥ n. As above, this lower bound is independent of r .

Proof Let P be a randomized zero-error protocol for eqn . Given any string s, let
Ps denote the deterministic protocol obtained by fixing the public randomness to s.
Proceeding along the same lines as in the proof of Theorem 5.4, we have E[�x,s] ≥ n,
where �x,s is the length of the protocol transcript in Ps on input (x, x). This holds
for every Ps , hence Ex,s[�x,s] ≥ n. Therefore, there exists x such that Es[�x,s] ≥ n.
Recalling the definition of vcost, we have vcost(P) ≥ cost(P; x, x) = Es[�x,s] ≥ n,
completing the proof. ��

5.2 Refutation Lower Bounds for Protocols with Two-Sided Error

In this section, we give combinatorial lower bounds on the refutation cost of equality
protocols that admit error. All of the bounds in this section will be asymptotic rather
than nearly exact. For this reason, we will strive for simplicity of the proofs at the
possible expense of some technical accuracy. For instance, we will often drop ceilings
or floors in the mathematical notation. We will also assume that players have the
ability to instantly abort a protocol when equality has been refuted. This is easily
implemented, as seen in Sect. 5.1 at negligible communication cost. We prefer to
avoid the technical machinery needed to express this explicitly.

Definition 5.6 An 〈n, r, ε, δ, c〉-equality protocolP is a r -round deterministic pro-
tocol with rerrμu (P) ≤ ε, verrμu (P) ≤ δ, and rcostμu (P) ≤ c.

For the sake of brevity, we often drop the “equality” and simply refer to an
〈n, r, ε, δ, c〉-protocol. Our first lemma demonstrates that disallowing false negatives
changes the communication complexity very little.

Lemma 5.7 If there exists a 〈n, r, ε, δ, c〉-equality protocol, then there exists a
〈n′, r, ε′, 0, c′〉-equality protocol, where n′ = n+ log(1− δ), ε′ = 2ε/(1− δ)2, and
c′ = 2c/(1 − δ)2.

Proof Let S = {x : out(P(x, x)) = 0} be the set of inputs on whichP gives a false
negative, and let T = {0, 1}n \ S. SinceP has false negative rate δ under the uniform
distribution, we have |T | ≥ (1 − δ)2n = 2n

′
.

6 If (x, x) and (y, y) were in the same rectangle, then so would (x, y) and (y, x). Thus, the protocol would
err on these inputs.
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First create a new eqn protocol P ′ which works as follows. On input (x, y),
Alice aborts and outputs 0 if x ∈ S; otherwise, the players emulate P and output
out(P(x, y)). Note that P ′ makes precisely the same false negatives as in P , and
aborting when x ∈ S can only decrease the false positive rate and the expected com-
munication on inputs in eq−1

n (0). Thus, P ′ is also a 〈n, r, ε, δ, c〉-protocol.
Next, fix an arbitrary bijection g : {0, 1}n′ → T , and construct an eqn′ protocol

Q in the following way. On input (X,Y ), players emulateP ′ on input (g(X), g(Y ))

and output out(P ′(g(X), g(Y ))). Note that g(X), g(Y ) ∈ T , so there are no false
negatives. There can be as many false positives as inP ′. However, the sample space
is smaller (22n

′ −2n
′
vs 22n−2n), so the false positive rate can increase. By Lemma 3.3,

the overall error is at most 2ε/(1 − δ)2. Similarly, the communication in Q on any
input (X,Y ) is the same as the communication inP ′ on input (g(X), g(Y )), but since
the sample space is smaller (again 22n

′ −2n
′
vs. 22n−2n), the expected communication

can increase. However, the overall increase in communication is at most a factor of
2/(1 − δ)2 by Lemma 3.3. ��
Lemma 5.8 (Combinatorial Round Elimination for equality) If there is an 〈n, r, ε,〉
0, c-equality protocol, then there is an 〈n − 3c − 2, r − 1, 12ε23c, 0, 12c23c〉-
equality protocol.

Proof Let P be a 〈n, r, ε, 0, c〉-protocol.
Let Z(x, y) = 1 if the protocol errs on input (x, y), and let Z(x, y) = 0 otherwise.

Then we have

Ex
[
Ey �=x [|P(x, y)|]] ≤ c, and Ex

[
Ey �=x [Z(x, y)]] ≤ ε .

Call x good if (1) Ey �=x [P(x, y)|] ≤ 3c, and (2) Ey �=x [Z(x, y)] ≤ 3ε. By two
applications of Markov’s inequality and a union bound, at least 2n/3 of the x are
good. Next, fix Alice’s first message m so it is constant over the maximal number of
good x . Any message m sent on a good x must have |m| < 3c (otherwise it would
violate the goodness of x). It follows that m is constant over a set A of good x of size
|A| ≥ 2n−3c−2. This induces a (r − 1)-round protocolQ for eqA. It remains to bound
the cost and error of Q. Applying Lemma 3.3 twice, we have that the cost and error
are bounded by (respectively)

rcostμu (Q) = Ex∈A
[
Ey∈A,y �=x [|P(x, y)|]]

≤ 2n

2n−3c−2 Ex∈A
[
Ey∈{0,1}n ,y �=x [|P(x, y)|]] ≤ 12c23c ,

verrμu (Q) = Ex∈A
[
Ey∈A,y �=x [Z(x, y)]]

≤ 2n

2n−3c−2 Ex∈A
[
Ey∈{0,1}n ,y �=x [Z(x, y)]] ≤ 12ε23c .

��
Corollary 5.9 Let n, j, r, d be integers with n > d, d sufficiently large, and r ≥ 1.
Suppose there exists an 〈n, r, ε�, 0, �〉-protocol, where � = 1

6 ilog
j d. Then, there

exists an 〈n − 3� − 2, r − 1, ε�′, 0, �′〉-protocol with �′ = 1
6 ilog

j−1 d.
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Proof This boils down to the following estimations, which are valid for all sufficiently
large d.

12�23� = 2(ilog j d)2
1
2 ilog j d = 2 ilog j d

√

ilog j−1 d <
1

6
ilog j−1 d .

��
Theorem 5.10 (Lower Bound for Protocols with False Negatives Disallowed) Let n
be a sufficiently large integer, ε < 1/4 a real, and r ≥ 1. Fix ñ := min{n, log(1/ε)}.
Then, Dμu ,(r),ref

ε,0 (eqn) = �(ilogr−1 ñ).

Proof In this proof we tacitly assume ilogr−1 ñ ≥ 100.
Suppose for the sake of a contradiction that there exists a 〈n, r, ε, 0, 1

6 ilog
r−1 ñ〉-

protocolP . Applying Lemma 5.8 gives an 〈n − 3
5 ilog

r−1 ñ, r − 1, ε
6 ilog

r−2 ñ, 0,〉
1
6 ilog

r−2 ñ-protocolP ′. Next, applyingCorollary 5.9 repeatedly, a total of r−2 times,

gives an 〈n − 3
5

∑r−1
j=1 ilog

j ñ, 1, ε
6 ñ, 0, ñ

6 〉-protocol. Finally, applying Lemma 5.8

once more gives an 〈n − 3
5

∑r−1
j=0 ilog

j ñ, 0, 2εñ2ñ/2, 0, 2ñ2ñ/2〉-protocol Q.
Note that since Q has false negative rate zero, Q must output 1 with certainty.

Thus, Q errs on all X �= Y inputs; i.e.,Q has false positive rate 1.
On the other hand, ñ ≤ log(1/ε), so the false positive rate ofQ is 2εñ2ñ/6 ≤ √

ε <

1/2. This is a contradiction as long as the problem remains nontrivial.
Since ilog j ñ ≥ 100, we have

∑r−1
j=t+1 ilog

j ñ < 1
5 ilog

t ñ. Also notice that since

ñ ≤ n, we have n − 3
5

∑r−1
j=0 ilog

j ñ > n/5. Thus, we have a zero-round protocol for
eqn′ for some n′ = �(n) that has false positive rate < 1/2 but must output 1 with
certainty, a contradiction.

Theorem 5.11 (Lower Bound for Protocols with Two-Sided Error) Let n be a suffi-
ciently large integer, and let ε, δ be reals such that δ ≤ 1−2−n/2 and ε/(1−δ)2 < 1/8.
Let n̂ be as given in Definition 2.4. Then, Dμu ,(r),ref

ε,δ (eqn) = �((1 − δ)2 ilogr−1 n̂).

Proof Fix d = min{n/2, log((1 − δ)2/2ε)}, so that log d = �(log n̂). Suppose, to
the contrary, that there exists an 〈n, r, ε, δ, 1

12 (1 − δ)2 ilogr−1 d〉-protocol P . Since
n + log(1 − δ) > n/2, Lemma 5.7 gives an 〈n/2, r, 2ε/(1 − δ)2, 0, 1

6 ilog
r−1 d〉-

protocol. The rest of the proof echoes the proof of Theorem 5.10. ��
Next, we prove a combinatorial lower bound for randomized communication com-

plexity.

Theorem 5.12 Let n be a sufficiently large integer, ε and δ reals such that δ <

1 − 21−n/2 and 64ε < (1 − δ)3. Then, R(r),ref
ε,δ (eqn) = �((1 − δ)3 ilogr−1 n̂), where

n̂ is as in Definition 2.4.

Proof Let P be an r -round randomized protocol with rerr(P) = ε, verr(P) = δ,
and rcostμu (P) = c. Define z = 1 − δ, ε̂ = 4ε/(1 − δ), and ĉ = 4c/(1 − δ). Let
Ps denote the deterministic protocol obtained from P by setting its random string
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to s. Call a string s good if (i) verrμu (Ps) ≤ 1 − z/2, (ii) rerrμu (Ps) ≤ ε̂, and (iii)
rcostμu (Ps) ≤ ĉ. Applying a Markov argument to each of these three conditions, we
see that

Pr[s is bad] <
1 − z

1 − z/2
+ z

4
+ z

4
< 1 ,

where we used (1 − z)/(1 − z/2) < 1 − z/2. Thus there exists a good string s. Note
thatPs is a [n, r, ε̂, δ̂, ĉ]-protocol, and by Theorem 5.11, ĉ = �((1− δ)2 ilogr−1 n̂).
Therefore, c = �((1 − δ)3 ilogr−1 n̂). ��

5.3 Verification Lower Bounds for Protocols with Two-Sided Error

Theorem 5.13 Dμu ,(r),ver
ε,δ (eqn) ≥ (1 − δ)(n̂ − 1), where n̂ is as in Definition 2.4.

Proof Fix a deterministic protocolP achieving rerrμu (P) = ε and verrμu (P) = δ.
This protocol naturally partitions the communicationmatrix for eqn into combinatorial
rectangles. Let R1, . . . , Rc be the rectangles on whichP outputs 1. Let si denote the
number of (x, x) inputs in Ri . Since P has false negative rate δ, we have

∑
i si =

2n(1 − δ). Let pi = si/2n and qi = pi/(1 − δ). Notice that pi is the probability that
(x, x) ∈ Ri for a uniformly chosen x . Similarly, qi is the probability that (x, x) ∈ Ri

conditioned on P verifying equality on (x, x).
We now analyze the false positive rate. Recall that there are 22n − 2n total x �= y

inputs. It is easy to see that Ri contains at least s2i − si false positives. Therefore, we
have

ε ≥ 1

22n − 2n

c∑

i=1

(s2i − si ) =
c∑

i=1

si (si − 1)

2n(2n − 1)
≥

c∑

i=1

pi (pi − 2−n)

= −2−n(1 − δ) +
c∑

i=1

p2i .

Rearranging terms and noting that qi = pi/(1 − δ), we have

E[qi ] =
c∑

i=1

q2i = 1

(1 − δ)2

c∑

i=1

p2i ≤ 1

(1 − δ)2

(
ε + 2−n(1 − δ)

)

= ε

(1 − δ)2
+ 2−n

(1 − δ)
≤ 2 · 2−n̂ .

Next, we analyze the verification cost ofP . Let �i denote the length of the protocol
transcript for inputs in the rectangle Ri . Observe that the transcripts P(x, x) with
out(P(x, x)) = 1 give a prefix-free encoding of the set of rectangles {R1, . . . , Rc}.
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Therefore,

vcostμu (P) =
∑

x∈{0,1}n
|P(x, x)|

2n
≥

c∑

i=1

pi�i = (1 − δ)

c∑

i=1

qi�i

≥ (1 − δ)

c∑

i=1

qi (− log qi )

= −(1 − δ) E[log qi ] ≥ −(1 − δ) logE[qi ]
≥ −(1 − δ)(−n̂ + 1) = (1 − δ)(n̂ − 1) ,

where the second inequality is from the source coding theorem (Fact 3.6) and the third
is from Jensen’s inequality. ��

Theorem 5.14 R(r),ver
ε,δ (eqn) > 1

8 (1 − δ)2(n̂ + log(1 − δ) − 5).

Proof Suppose there exists a randomized protocol P with rerr(P) ≤ ε, verr(P) ≤
δ, and vcost(P) ≤ m. For a string s, let Ps denote the deterministic proto-
col obtained from P by fixing the public randomness to s. By the cost and
error guarantees of P , for all (x, y) ∈ eq−1

n (1) we have Es [cost(Ps; x, y)] ≤
m and Es [Pr[out(Ps(x, y)) = 0]] ≤ δ, while for (x, y) ∈ eq−1(0) we have
Es [Pr[out(Ps(x, y)) = 1]] ≤ ε. In particular, letting (X,Y ) ∼ μu , we have

Es,X,Y [Pr[out(Ps(X,Y )) = 1 | X �= Y ]] ≤ ε ,

Es,X,Y [Pr[out(Ps(X,Y ) = 0 | X = Y ]] ≤ δ ,

Es,X,Y [cost(Ps; X,Y ) | X = Y ] ≤ m .

Define z = 1 − δ, ε̂ = 4ε/(1 − δ), δ̂ = 1 − z/2, and m̂ = 4m/(1 − δ). Call a
string s good if (i) verr(Ps) ≤ 1− z/2, (ii) rerr(Ps) ≤ ε̂, and (iii) vcostμu (P) ≤ m̂.
Applying a Markov argument to each condition,

Pr[s is bad] <
1 − z

1 − z/2
+ z

4
+ z

4
< 1 ,

where we used (1− z)/(1− z/2) < 1− z/2. Thus, there exists a good string s. Note
thatPs is a deterministic (ε̂, δ̂)-error eqn protocol. Using Definition 2.4 to figure the
new effective instance size and applying Theorem 5.13, we obtain

4m

1 − δ
≥ vcostμu (Ps) ≥ z

2

(

min
{
n + log(z/2), log

z(z/2)2

4ε

}
− 1

)

≥ z

2
(n̂ + log z − 5) .

The proof is completed by rearranging the above inequality and substituting
z = 1 − δ. ��
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The analysis in the above proof is very loose when δ is bounded away from 1. In
particular, when there are no false negatives (i.e., when δ = 0), we are able to show
that R(r),ver

ε,0 ≥ cn̂ for every constant c < 1.

6 Bounded-Round Information Complexity of Equality

In this section we prove Theorem 2.6, which we think of as the most important result
of this paper. We wish to lower bound the bounded-round information complexity of
equalitywith respect to the uniformdistribution. Recall thatwe are concerned chiefly
with protocols that achieve very low refutation error, though they may have rather
high verification error. We will prove our lower bound by proving a round elimination
lemma for eqn that targets information cost, and then applying this lemma repeatedly.

This proof hasmuchmore technical complexity than our earlier lower bound proofs.
Let us see why. There are two main technical difficulties and they arise, ultimately,
from the same source: the inability to use (the easy direction of)Yao’sminimax lemma.
When proving a lower bound on communication cost, Yao’s lemma allows us to fix the
random string used by any purported protocol, which immediately moves us into the
cleanworld of deterministic protocols. This hammer is unavailable to uswhenworking
with information cost. Themostwe can do is to “average away” the public randomness.
We then have to deal with private coin randomized protocols the entire way through
the round elimination argument. As a result, our intermediate protocols, obtained by
eliminating some rounds of our original protocol, do not obey straightforward cost
and error guarantees. This is the first technical difficulty, and our solution to it leads
us to the concept of a “kernel” in Definition 6.1 below.

The second technical difficulty is that we are unable to switch to the simpler case
of zero verification error like we did in the proof of Theorem 2.5, Parts (9) and (10).
Therefore, all our intermediate protocols continue to have verification error. Since
errors scale up with each round elimination, and the verification error starts out high,
we cannot afford even a constant-factor scaling. Wemust play very delicately with our
error parameters, which leads us to the somewhat complicated parametrization seen
in Definition 6.2 below.

6.1 The Round Elimination Argument

Definition 6.1 (Kernel) Let p and q be probability distributions on {0, 1}n , let S ⊆
{0, 1}n , and let � ≥ 0 be a real number. The triple (p, q, S) is defined to be an �-kernel
if the following properties hold.

[K1] H(p) ≥ n − � and H(q) ≥ n − �.
[K2] p(S) ≥ 2−� and q(S) ≥ 1

2 .
[K3] For all x ∈ S we have q(x) ≥ 2−n−�.

Some intuition about kernels might be helpful here. Recall that in the combinatorial
round elimination lemma of Lemma 5.8, we show that after fixing one round of
communication, we are still able to solve eq on inputs uniformly distributed over
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a smaller set, albeit with some degredation in cost/error parameters. As mentioned
above, we are not able to maintain straightfoward cost and error guarantees in the
information-theoretic setting. However, the idea that we can solve eq when inputs
are uniformly distributed over a still-large set should still intuitively hold. Instead
of uniformly distributed inputs, we’d like to argue that after eliminating a round of
communication, we’re able to solve eq when inputs are almost uniform over some
smaller set.

Our kernel definition captures enough of this intuition to make the information-
theoretic round elimination work. The set S plays the role of the smaller set players
will solve eq on post-round-elimination. Instead of uniform inputs, Alice and Bob’s
inputs come from some high-entropy product distribution. Moreover, the support of
these distributions on S is not too low. To maintain the cost/error guarantees, we need
Bob’s inputs to be reasonably spread out over S. Finally, we need to additionally
parameterize how close to uniform the input distributions are; this parameter degrades
in the round elmination, along with our error guarantees. Nevertheless, we’re able to
show that as rounds of communication are eliminated, we retain eq protocols on inputs
that remain “reasonably close to uniform” over a reasonably large set S. Our specific
protocol parameterization lies below.

Definition 6.2 (Parametrized Protocols) Suppose we have an integer r ≥ 1, and
nonnegative reals �, a, b, and c. A protocolP for eqn is defined to be an [r, �, a, b, c]-
protocol if there exists an �-kernel (p, q, S) such that the following properties hold.

[P1] The protocol P is private-coin and uses r rounds, with Alice speaking in the
first round.

[P2] We have err p⊗q|S×S(P) = Pr(X,Y )∼p⊗q [out(P(X,Y )) �= eqn(X,Y ) |
(X,Y ) ∈ S × S] ≤ 2−a .

[P3] We have verr p⊗ξ |S×S(P) = PrX∼p[out(P(X, X)) = 0 | X ∈ S] ≤ 1 − 2−b.
[P4] We have icost p⊗q(P) ≤ c.

We alert the reader to the fact that [P2] considers overall error, and not refutation
error. We encourage the reader to take a careful look at [P3] and verify the equality
claimed therein. It is straightforward, once one revisits Definition 2.1 and recalls that
ξ denotes the uniform distribution on {0, 1}n .

Since we have a number of parameters at play, it is worth recording the following
simple observation.

Fact 6.3 Suppose that �′ ≥ �, c′ ≥ c, a′ ≤ a, and b′ ≥ b. Then every �-kernel is also
an �′-kernel, and every [r, �, a, b, c]-protocol is also an [r, �′, a′, b′, c′]-protocol.
Theorem 6.4 (Information-Theoretic Round Elimination for equality) If there
exists an [r, �, a, b, c]-protocol with r ≥ 1 and c ≥ 4, then there exists an
[r − 1, �′, a′, b′, c′]-protocol, where

�′ := (c + �)2�+2b+7 , a′ := a − (c + �)2�+2b+8 ,

b′ := b + 2 , c′ := (c + 2)2�+2b+6 .
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Proof Let P be an [r, �, a, b, c]-protocol, and let (p, q, S) be an �-kernel satisfying
the conditions in Definition 6.2. AssumeWLOG that each message inP is generated
using a fresh random string. Let X ∼ p and Y ∼ q be independent random variables
denoting an input toP . Let M1, . . . , Mr be random variables denoting the messages
sent in P on input (X,Y ), with Mj being the j th message; note that these variables
depend on X,Y , and the random strings used by the players. We then have

c ≥ icost p⊗q(P) = I(XY : M1M2 . . . Mr ) = I(X : M1)+I(XY : M2 . . . Mr | M1) ,

(4)
where the final step uses the chain rule for mutual information, and the fact that M1
and Y are independent. In particular, we have I(X : M1) ≤ c, and so H(X | M1) =
H(X) − I(X : M1) ≥ n − � − c. By Lemma 3.8,

H(X | M1, X ∈ S) ≥ n − � + c + 1

p(S)
≥ n − (� + c + 1)2� . (5)

Let M be the set of messages that Alice sends with positive probability as her
first message in P , given the random input X , i.e., M := {m : Pr[M1 = m] > 0}.
Consider a particular message m ∈ M . Let P ′

m denote the following protocol for
eqn . The players simulateP on their input, except that Alice is assumed to have sent
m as her first message. As a result,P ′

m has r −1 rounds and Bob is the player to send
the first message inP ′

m. Let πm and q ′ be the distributions of (X | M1 = m∧ X ∈ S)

and (Y | Y ∈ S), respectively.
Observe that icostπm⊗q ′

(P ′
m) = I(XY : M2 . . . Mr | M1 = m∧ (X,Y ) ∈ S × S).

Letting L denote a random first message distributed identically to M1, we now get

EL
[
icostπL⊗q ′

(P ′
L)
] = I(XY : M2 . . . Mr | M1, (X,Y ) ∈ S × S)

≤ I(XY : M2 . . . Mr | M1) + 1

p(S)q(S)
≤ (c + 1)2�+1 , (6)

where the first inequality uses Lemma 3.7 and the fact that X,Y are independent
conditioned on M1 (since M1 is a function of X only) and the second inequality
uses (4) and Property [K2]. Examining Properties [P2] and [P3], we obtain

EL
[
errπL⊗q ′

(P ′
L)
] = err p⊗q|S×S(P) ≤ 2−a , (7)

EL
[
verrπL⊗ξ (P ′

L)
] = verr p⊗ξ |S×S(P) ≤ 1 − 2−b . (8)

Definition 6.5 (Good message) A messagem ∈ M is said to be good if the following
properties hold:

[G1] H(πm) = H(X | M1 = m ∧ X ∈ S) ≥ n − (� + c + 1)2�+b+3,
[G2] icostπm⊗q ′

(P ′
m) ≤ 2�+b+4(c + 1),

[G3] errπm⊗q ′
(P ′

m) ≤ 2−a+b+3,
[G4] verrπm⊗ξ (P ′

m) ≤ 1 − 2−b−1.

123



Algorithmica

Notice that for all m ∈ M we have H(X | M1 = m, X ∈ S) ≤ n. Hence,
viewing (5), (6), (7) and (8) as upper bounds on the expected values of certain non-
negative functions of L , we may apply Markov’s inequality to these four conditions
and conclude that

Pr[L is good]≥1−2−b−3− 2−b−3− 2−b−3 − 1 − 2−b

1 − 2−b−1 ≥ 2−b−1 − 3 · 2−b−3>0 .

Thus, there exists a good message. From now on, we fixm to be such a good message.
Wemay rewrite the left-hand side of [G4] as EZ∼πm [Pr[out(P ′

m(Z , Z)) = 0]]. So
if we define the set T := {x ∈ S : Pr[out(P ′

m(x, x)) = 0] ≤ 1 − 2−b−2
}
and apply

Markov’s inequality again, we obtain

πm(T ) ≥ 1 − 1 − 2−b−1

1 − 2−b−2 ≥ 2−b−2 . (9)

Defining the distribution p′ := πm | T and the set S′ := {x ∈ T : p′(x) ≥ 2−n−�′ },
we now make two claims.

Claim 1 The triple (q ′, p′, S′) is an �′-kernel.
Claim 2 We have err p

′⊗q ′|S′×S′
(P ′

m) ≤ 2−a′
, verrq

′⊗ξ |S′×S′
(P ′

m) ≤ 1 − 2−b′
, and

icost p
′⊗q ′

(P ′
m) ≤ c′.

Notice that these claims essentially say thatP ′
m has all the properties listed in Defin-

ition 6.2, except that Bob startsP ′
m. Interchanging the roles of Alice and Bob inP

′
m

gives us the desired [r − 1, �′, a′, b′, c′]-protocol, which completes the proof of the
theorem.

It remains to prove the above claims. We start with Claim 1. Starting with the lower
bound onH(πm) given by Property [G1] of the goodmessagem, and using Lemma 3.8
followed by (9), we obtain

H(p′) = H(πm | T ) ≥ n− (c + � + 1)2�+b+3 + 1

πm(T )
≥ n−(c+�+2)2�+2b+5 ≥ n−�′ .

(10)
We may lower bound H(q ′) using Properties [K1] and [K2] for (p, q, S) and applying
Lemma 3.8. We have

H(q ′) = H(Y | Y ∈ S) ≥ n − � + 1

q(S)
≥ n − 2(� + 1) ≥ n − �′ .

Thus, (q ′, p′, S′) satisfies Property [K1] for an �′-kernel. It is immediate that it also
satisfies Property [K3]: by definition, for all x ∈ S′, we have p′(x) ≥ 2−n−�′

.
It remains to verify Property [K2], which entails showing that p′(S′) ≥ 1

2 and that

q ′(S′) ≥ 2−�′
. We can lower bound p′(S′) as follows:

p′(S′) = 1 −
∑

x∈{0,1}n\S′
p′(x) = 1 −

∑

x∈{0,1}n
p′(x)<2−n−�′

p′(x) ≥ 1 − 2−�′ ≥ 1

2
. (11)
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To prove the second inequality, we first derive a lower bound on H(p′ | S′), thence on
|S′|, and finally on q ′(S′). We already showed that H(p′) ≥ n − (c + � + 2)2�+2b+5,
at (10). By Lemma 3.8 and (11), we get

H(p′ | S′) ≥ n − (c + � + 2)2�+2b+5 + 1

p′(S′)
≥ n −

(
(c + � + 2)2�+2b+6 + 2

)

≥ n − (c + � + 4)2�+2b+6 ,

and so |S′| ≥ 2n−(c+�+4)2�+2b+6
. Since q ′ = q | S and S′ ⊆ S, we have

q ′(S′) ≥ q(S′) ≥ |S′|min
y∈S′ q(y) ≥ |S′|min

y∈S q(y) ≥ 2n−(c+�+4)2�+2b+6
2−n−�

= 2−�−(c+�+4)2�+2b+6
,

where the final inequality uses Property [K3]. Recalling the definition of �′ and apply-
ing a crude estimate (using the bound c ≥ 4), we get q ′(S′) ≥ 2−�′

. This finishes the
proof of Claim 1.

We now prove Claim 2. Of the three bounds we need to prove, the verification
error bound is the easiest. Recalling how T was defined, and noting that S′ ⊆ T , we
immediately obtain

verrq
′⊗ξ |S′×S′

(P ′
m) = EY ′∼q ′ [Pr[out(P ′

m(Y ′,Y ′)) = 0] | Y ′ ∈ S′] ≤ 1 − 2−b−2 .

To establish the overall error bound, we use

err p
′⊗q ′|S′×S′

(P ′
m) ≤ err p

′⊗q ′
(P ′

m)

p′(S′)q ′(S′)
≤ errπm⊗q ′

(P ′
m)

πm(T )p′(S′)q ′(S′)
≤ 2−a+b+3

2−b−2 · 1
2 · 2−�′

(12)

= 2−a+2b+6+(c+�)2�+2b+7 ≤ 2−a+(c+�)2�+2b+8
, (13)

where the final inequality in (12) follows from Property [K2] for an �′-kernel and
Property [G3], and (13) just uses a crude estimate (this time c ≥ 1 suffices). It remains
to establish the information cost bound in Claim 2. We do this as follows.

icost p
′⊗q ′

(P ′
m) = I(XY : M2 . . . Mr | M1 = m ∧ X ∈ T ∧ Y ∈ S)

≤ I(XY : M2 . . . Mr | M1 = m ∧ (X,Y ) ∈ S × S) + 1

Pr[X ∈ T | M1 = m ∧ (X,Y ) ∈ S × S] (14)

= icostπm⊗q ′
(P ′

m) + 1

πm(T )
(15)

≤ 2b+�+4(c + 1) + 1

2−b−2 ≤ (c + 2)2�+2b+6 , (16)

where (14) uses Lemma 3.7, (15) uses the independence of X and Y and (16) uses
Property [G2] and Eq. (9).
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This completes the proof of Claim 2 and, with it, the proof of the theorem. ��
The following easy corollary of Theorem 6.4 will be useful shortly.

Corollary 6.6 Let ñ, j, r ∈ N and a, b ∈ Rwith ñ sufficiently large, j ≥ 1, r ≥ 1, and
b ≥ 0. Suppose there exists an [r, �, a−�, b, �]-protocol, with b ≤ � = 1

8 ilog
j ñ. Then

there exists an [r−1, �′, a−�′, b+2, �′]-protocol with b+2 ≤ �′ = (ilog j−1 ñ)1/2 ≤
1
8 ilog

j−1 ñ.

Proof This simply boils down to the following estimation, which is valid for all suf-
ficiently large ñ:

(� + �)2�+2b+8 = 27(ilog j ñ)2(3/8) ilog j ñ

= 27(ilog j−1 ñ)3/8 log(ilog j−1 ñ) ≤ (ilog j−1 ñ)1/2 .

��

6.2 Finishing the Proof

We are now ready to state and prove themain lower bound on protocols with two-sided
error.

Theorem 6.7 (Restatement of Main Theorem) Let ñ = min{n+ log(1− δ), log((1−
δ)/ε)}. Suppose δ ≤ 1 − 8(ilogr−2 ñ)−1/8. Then we have ICμu ,(r)

ε,δ (eqn) = �((1 −
δ)3 ilogr−1 ñ).

Proof We may assume that r ≤ log∗ ñ, for otherwise there is nothing to prove. The
slight difference between ñ above and n̂, as in Definition 2.4, is insignificant and can
be absorbed by the �(·) notation.

Suppose, to the contrary, that there exists an r -round randomized protocol P∗
for eqn , with rerrμu (P∗) ≤ ε, verrμu (P∗) ≤ δ and icostμu (P∗) ≤ 2−16(1 −
δ)3 ilogr−1 ñ. Recall that we denote the uniform distribution on {0, 1}n by ξ and that
μu = ξ ⊗ ξ . We have

errμu (P∗) = (1 − 2−n) rerrμu (P∗) + 2−n verrμu (P∗) ≤ ε + 2−n(δ − ε) ≤ ε + 2−n .

Let P∗
s be the private-coin protocol for eqn obtained from P∗ by fixing the public

randomstring ofP∗ to be s.WehaveEs[errμu (P∗
s )] ≤ ε+2−n ,Es[verrμu (P∗

s )] ≤ δ,
and Es[icost(P∗

s )] ≤ 2−16(1 − δ)3 ilogr−1 ñ. By Markov’s inequality, there exists s
such that P∗

s simultaneously has errμu (P∗
s ) ≤ 4(ε + 2−n)/(1 − δ), verrμu (P∗

s ) ≤
(1 + δ)/2, and icost(P∗

s ) ≤ 2−14(1 − δ)2 ilogr−1 ñ: this is because

1 − 1 − δ

4
− 2δ

1 + δ
− 1 − δ

4
= (1 − δ)2

2(1 + δ)
> 0 .

Let P = P∗
s for this s. Then (ξ, ξ, {0, 1}n) is a 0-kernel and P is an

[r, 0, log 1−δ
4(ε+2−n)

, log 2
1−δ

, 2−14(1−δ)2 ilogr−1 ñ]-protocol. Recalling Fact 6.3 and
using log 1−δ

ε+2−n ≥ ñ − 1, we see that

123



Algorithmica

P is an
[
r, 0, ñ − 3, log 1

1−δ
+ 1, 2−14(1 − δ)2 ilogr−1 ñ

]
-protocol.

Put � j := 1
8 ilog

j ñ for j ∈ N. Applying round elimination (Theorem 6.4) to P and
weakening the resulting parameters (using Fact 6.3) gives us an [r − 1, �r−1, ñ −
�r−1, log 1

1−δ
+ 3, �r−1]-protocol P ′.

The upper bound on δ gives us log 1
1−δ

+ 3 ≤ �r−1, and so the conditions for
Corollary 6.6 apply. StartingwithP ′ and applying that corollary repeatedly, each time
using the looser estimate on �′ in that corollary, we obtain a sequence of protocols with
successively fewer rounds. Eventually we reach a [1, �1, ñ− �1, log 1

1−δ
+ 2(r − 1)+

1, �1]-protocol. Applying Theorem 6.4 one more time, and using the tighter estimate
on �′ this time, we get a [0, ñ1/2, ñ − ñ1/2, log 1

1−δ
+ 2r + 1, ñ1/2]-protocol Q.

Weakening parameters again, we see thatQ is a [0, ñ1/2, 1
2 ñ, 1

3 log ñ, ñ1/2]-protocol.
Let (p, q, S) be the ñ1/2-kernel for Q. By Property [K1], we have H(q) ≥ n − ñ1/2.
Using Lemma 3.8 and Property [K2], we then have

H(q | S) ≥ n − ñ1/2 + 1

q(S)
≥ n − (2ñ1/2 + 2) . (17)

Since Q involves no communication, it must behave identically on any two input
distributions that have the same marginal on Alice’s input. In particular, this gives us
the following crucial equation:

Pr
X∼p

[out(Q(X, X))=1 | X ∈ S] = Pr
(X,Y )∼p⊗q

[out(Q(X,Y )) = 1 | (X,Y ) ∈ S×S] .
(18)

Let α denote the above probability. Considering the left-hand side of (18), we have

α = 1 − verr p⊗ξ |S×S(Q) ≥ 2− 1
3 log ñ = ñ−1/3 . (19)

On the other hand, whenever Q outputs 1 on an input (x, y), then either x = y or Q
errs on (x, y). Therefore, considering the right-hand side of (18), we have

α ≤ Pr
(X,Y )∼p⊗q

[X = Y | (X,Y ) ∈ S × S]
+ Pr

(X,Y )∼p⊗q
[out(P(X,Y )) �= eqn(X,Y ) | (X,Y ) ∈ S × S]

≤ max
x∈S Pr

Y∼q|S[Y = x] + err p⊗q|S×S(Q)

≤ 2ñ1/2 + 3

n
+ 2− 1

2 ñ (20)

≤ 2ñ−1/2 + 3ñ−1 + 2− 1
2 ñ , (21)

where (20) follows from (17) by applying Lemma 3.9, and (21) uses ñ ≤ n.
The bounds (19) and (21) are in contradiction for sufficiently large ñ, which com-

pletes the proof. ��
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7 Applications of the Main Theorem

7.1 Lower Bounds for Or-Equality and Disjointness

In this section we apply our new understanding of the bounded-round information
complexity of equality to obtain two other lower bounds: one for or- equality,
and the other for the much-studied disjointness problem with small-sized sets. As
we shall see, both lower bounds are tight in certain error regimes.

Theorem 7.1 (Lower Bound for Or-Equality) Let k, n, r ∈ N and δ, ε ∈ [0, 1]. Put
ε′ = ε + k/2n and ñ = log 1−δ

ε′ . For δ < 1 − 8(ilogr−2 ñ)−1/8, we have

R(r)
ε,δ(oreqn,k) ≥ k · ICμ,(r)

ε′,δ (eqn) = �(k(1 − δ)3 ilogr−1 ñ) .

Proof We just need to show the first inequality and then apply Theorem 2.6. That
inequality is proved via standard direct sum arguments for information complex-
ity [4,5,17]. In fact, the old simultaneous-message lower bound for oreqn,k from
Chakrabarti et al. [17] applies more-or-less unchanged. For completeness, we now
give a self-contained proof.

Let P be an r -round protocol for oreqn,k with rerr(P) ≤ ε, verr(P) ≤ δ,
and R(r)

ε,δ(oreqn,k) ≥ max{rcost(P), vcost(P)}. Alice and Bob solve eqn by the
following protocol Q j , where j is some fixed index in {1, 2, . . . , k}. Given an input
(x, y) ∈ {0, 1}n × {0, 1}n , they generate X := (X1, . . . , Xk) ∼ ξ⊗k and Y :=
(Y1, . . . ,Yk) ∼ ξ⊗k respectively, using private coins. They “plug in” x and y into the
j th coordinates of X and Y respectively, thereby creating

Z j,x := (X1, . . . , X j−1, x, X j+1, . . . , Xk) and

W j,y := (Y1, . . . ,Y j−1, y,Y j+1, . . . ,Yk) ,

respectively. Finally, they emulate P on input (Z j,x ,W j,y). Observe that

oreqn,k(Z j,x ,W j,y) �= eqn(x, y) �⇒ (x �= y) ∧ (∃ i ∈ [k] \ { j} : Xi = Yi
)
.

Therefore, verr(Q j ) ≤ verr(P) ≤ δ and, by a union bound,

rerr(Q j ) ≤ rerr(P) +
n∑

i=1

Pr[Xi = Yi ] ≤ ε + k/2n = ε′ .

Since Q j solves eqn with these error guarantees, it follows that icostμ(Q j ) ≥
ICμ,(r)

ε′,δ (eqn).
Now, let (X,Y ) ∼ μ and let R denote the public randomness used by P . We can

now lower bound R(r)
ε,δ(oreqn,k) as follows:

R(r)
ε,δ(oreqn,k) ≥ maxx1,...,xk ,y1,...,yk∈{0,1}kn×{0,1}kn cost(P; x1, . . . , xk, y1, . . . , yk)
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≥ E[cost(P; X1, . . . , Xk,Y1, . . . ,Yk)]
≥ H(P(X1, . . . , Xk,Y1, . . . ,Yk)) (22)

≥ I(P(X1, . . . , Xk,Y1, . . . ,Yk) : X1Y1 . . . XkYk | R)

≥
k∑

j=1

I(P(X1, . . . , Xk,Y1, . . . ,Yk) : Xi ,Yi | R) (23)

=
k∑

j=1

I(Q j (X,Y ) : XY | R)

=
k∑

j=1

icostμ(Q j ) ≥ k · ICμ,(r)
ε′,δ (eqn) , (24)

where (22) uses Fact 3.6 and (23) uses the independence of {X1Y1, . . . , XkYk} and the
resulting subadditivity of mutual information, and (24) holds because, for all j ∈ [k],
the distributions of (Q j (X,Y ), X,Y,R) and (P(X1, . . . , Xk,Y1, . . . ,Yk), X j ,Y j ,

R) are identical. This completes the proof. ��
By plugging in ε = 0, δ = 0 in Theorem 7.1 we obtain the following corollary.

Corollary 7.2 R(r)
0,0(oreqn,k) = �(k ilogr−1(n − log k)).

Armed with the above lower bound, we now derive a lower bound for k-disj via
a simple reduction, which is probably folklore. For completeness, we again give a
formal proof. A similar observation has also been made by Sağlam and Tardos [49].
Note that the reduction interchanges verification and refutation errors.

Lemma 7.3 (Reductions from oreq to k-disj and from eqk to k-intN ) Let k, N be
integers such that N ≥ kc for some constant c > 2. Let n = ⌊log ( Nk

)⌋
. If there

exists a protocol P for k-disjN then there exists a protocol Q for oreqn,k such
that rerr(Q) ≤ verr(P) and verr(Q) ≤ rerr(P) and vcost(Q) ≤ rcost(P) and
rcost(Q) ≤ vcost(P). Moreover, the same reduction can be applied between eqkn
and k-intN .

Proof Given an input instance (x1, . . . , xk, y1, . . . , yk) of oreqn,k , we can transform
it into an instance (A, B) of k-disjN as follows:

A = {x1, x2 + 2n, x3 + 2 · 2n, . . . , xk + (k − 1)2n}
B = {y1, y2 + 2n, y3 + 2 · 2n, . . . , yk + (k − 1)2n} .

It is easy to observe that A ∩ B �= ∅ iff ∃ i ∈ [k] such that xi = yi because xi ∈
{0, 1, . . . , 2n − 1}. Therefore, oreqn,k(x1, . . . , xk, y1, . . . , yk) = ¬k-disjN (A, B),
which completes the proof. The reduction from eqkn to k-intN is the same. ��
Corollary 7.4 We have:

R(r)
δ,ε(k-disjN ) ≥ R(r)

ε,δ(oreq%log(N/k)&,k)
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R(r)
δ,ε(k-intN ) ≥ R(r)

ε,δ

(
eqk%log(N/k)&

)
.

Combining Corollary 7.4 with Theorem 7.1, we arrive at the following theorem.

Theorem 7.5 (Lower Bound for k-Disjointness) Let k, N , r ∈ N, ε, δ ∈ [0, 1] and
c > 2 be such that N ≥ kc and δ < 1 − 8(ilogr−2 ñ)−1/8, where ñ = log 1−δ

ε+k2/N
.

Then

R(r)
δ,ε(k-disjN ) = �

(
k(1 − δ)3 ilogr−1 ñ

)
.

In particular, with δ = 1 − �(1) and ε ≤ k−�(1), we have R(r)
δ,ε(k-disjN ) =

�(k ilogr k).

By plugging in ε = δ = 0 above we arrive at a further special case that is worth
highlighting.

Corollary 7.6 With N ≥ k2+�(1), we have R(r)
0,0(k-disjN ) = �(k ilogr k).

7.2 Tightness

Our lower bounds in Sect. 7.1 have the weakness that they apply only in zero-error
or small-error settings. However, they are still tight in the following sense. We can
design protocols that give matching upper bounds under similarly small error settings.
For oreq, we give such a protocol below. For k-disj, a suitable analysis of a recent
protocol of Sağlam and Tardos [49] gives similar results.

Theorem 7.7 For all r < log∗ k, there exists a r-round protocol P for oreqn,k

with worst-case communication cost O(k ilogr k), rerr(P) < 2−∏r
j=1 ilog

j k , and
verr(P) = 0.

Proof We begin with a high-level sketch of the proof, before giving formal proof
details. Alice begins the protocol by sending, in parallel, k different t-bit equality
tests, one for each of her inputs. Note that for any i where xi �= yi , Bob witnesses
non-equality with probability 1 − 2−t . Assuming oreqn,k(x, y) = 0, there will be
roughly k/2t coordinates i where xi �= yi has not yet been witnessed. Bob now
tells Alice which of his coordinates remain “alive” and sends t ′-bit equality tests for
each of these coordinates, where t ′ = 2t . Note that Bob’s overall communication is
roughly k bits, and that after receiving this message, Alice witnesses non-equality
on all but a 2−t ′ -fraction of unequal pairs. In each round, players end up sending an
exponentially longer equality test on an exponentially smaller number of coordinates.
When communication ends, players output oreq(x1, . . . , xk, y1, . . . , yk) = 1 unless
xi �= yi has been witnessed for all i . One potential issue with the above protocol is
that too many coordinates could remain, and players wouldn’t be able to communicate
exponentiallymore bits about the remaining coordinates. This could happen bothwhen
anunusually large number of equality tests fail, or just for the simple reason that xi = yi
for many coordinates. In either case, the players simply abort and output oreqn,k = 1.
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This will cause an increase in error, but the increase will be small, and it will only
increase the false positive rate. A formal proof lies below.

Before formally analyzing the complete protocol, we introduce some additional
terminology and notation. For 0 ≤ j ≤ r , let z j := ilogr− j k and δ j := 1/z j . For
1 ≤ j < r , let t j := 2z j−1, and let tr := 2

∏r
j=1 ilog

j k. Finally, let c1 := 2k and for

2 ≤ j ≤ r , let c j := 2k
∏ j−1

i=1 δi . Note that tr = (4k ilogr k)/cr .
Now we are ready to formally describe our protocol. The protocol proceeds in a

number of rounds. Throughout, players maintain a vector w ∈ {0, 1}k (initialized to
w = 1k), where wi = 0 iff xi �= yi has been witnessed. Coordinate i is deemed
“live” if wi = 1. Each round of communication is a three part message—first, a
bit indicating whether to abort the protocol; second, an updated description of which
coordinates remain live, and finally an equality test for each remaining live coordinate.
Say coordinate i is live after j rounds if xi �= yi has not been witnessed by the first
j rounds of equality tests. Note that the player that receives the j th message that
determines which coordinates are live after j rounds. The sender of the j th message
must wait until round j + 2 to learn which coordinates failed the j th equality test. We
describe this more completely below.

In the first round of communication, Alice sends a t1-bit equality test for each of
the k live coordiantes, at a total cost of kt1 = 2kz0 = O(k ilogr k) bits. Assuming
the protocol has not yet aborted, in the j th round of communication (1 < j ≤ r ),
the player to speak first updates her copy of w by considering the ( j − 1)th message:
first, she notes which i were live at the end of round j − 2 using the second part of the
( j − 1)th message. Then, for each live i , she sets uses the third part of the message to
test equality on (xi , yi ), setting wi = 0 if xi �= yi has been witnessed. At this point,
w describes the set of coordinates that are live after j − 1 rounds. Now, if more than
c j coordinates remain live, she sends “1”, signifying that the protocol should abort
and output oreqn,k = 1. Otherwise, she sends 0, followed by a description of which
coordinates remain live, followed by a t j -bit equality test for each of the remaining
live coordinates. In this way, the j th message is at most O(1 + k + c j t j ) bits.

The receiver of the final message updates his copy of w, evaluates each equality
test, and outputs oreqn,k = 1 if any coordinates remain live. Otherwise, he outputs
oreqn,k = 0.

The overall communication is O(kr+∑r
j=1 c j t j ). Note that c1t1 = 4k ilogr k, and

cr tr = 4k ilogr k. Furthermore, since z j > 2 for all j ≥ 1, we have for all 2 ≤ j < r

c j t j =
⎛

⎝2k
j−1∏

i=1

δi

⎞

⎠ · (2z j−1) = 4k
j−2∏

i=1

δi = c j−1t j−1δ j−2 <
c j−1t j−1

2
.

Thus, the summation
∑r−1

j=1 c j t j telescopes, and the overall communication is

O(kr + k ilogr k) = O(k ilogr k).7 Note also that the protocol outputs oreqn,k = 0

7 For some values of k, r , we might have r > ilogr k. In fact, it is possible to describe the set of c j live

coordinates using log(
( k
c j

)
) bits. This sum also telescopes, so it is possible to reduce the O(kr) cost of

describing {c j } to just O(k) bits. Thus, the overall cost remains O(k ilogr k).
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only when xi �= yi was witnessed for every i . Thus, the protocol produces no false
negatives.

A false positive can happen for one of two reasons: either the protocol aborts
(outputting oreqn,k = 1), or one or more coordinates remain live at the end of the
protocol, despite having xi �= yi for all i .

In the former case, note that (conditioned on not aborting before round j) we have at
most c j live coordinates during round j . Players execute a t j -bit equality test during
this round. Thus, a coordinate remains live after this test with probability at most
2−t j = 2−2z j−1 = δ2j < δ j/2. By a Chernoff bound and the fact that c j+1 = c jδ j ,
the probability that more than c j+1 coordinates remain live after round j is at most

e−c j δ2j /8 < e−k1−ε
for any ε > 0 and large enough k. In the latter case, note that

the final equality test uses tr = 2
∏r

j=1 ilog
j k bits. Therefore, players fail to witness

xi �= yi with probability at most 2−tr = 2−2
∏r

j=1 ilog
j k . By a union bound, the overall

false positive rate is at most 2−∏r
j=1 ilog

j k . ��

7.3 Private Intersection and Strong Direct Sum for Equality

We now prove our result for private- intersection.

Theorem 7.8 (Lower Bound for private- intersection) Let k, N , r ∈ N and c > 2
be such that N ≥ kc. Then:

R(r)
1/3,1/3(k-intN ) = �(k ilogr k) .

Using the reduction from Corollary 7.4 it suffices to show the lower bound for
eqkn , where n = %log(N/k)&. In the proof we will use the following modification
of the strong direct sum theorem of [42] (Theorem 2.1), which uses protocols with
abortion (see definitions in Sect. 3.2). The simulation procedure used in the proof of
this theorem in [42] preserves the number of rounds in the protocol, which allows us
to state their theorem as:

Theorem 7.9 (StrongDirect Sum [42]) Let δ ≤ 1/3. Then for every function f : X ×
Y → Z and distribution λ on X × Y × D with marginal μp on X × Y and

marginal νp on D, such that μp is partitioned by νp, it holds that IC
μk
p,(r)

δ ( f k |νkp) ≥
�(k) IC

μp,(r)
1
20 , 1

10 , δ
k
( f |νp).

Using the direct sum above it remains to show the following:

Lemma 7.10 There exists a distribution onX ×Y ×D withmarginalsμp onX ×Y
and νp on D , such that νp partitions μp and

IC
μp,(r)
1/20,1/10,δ/k(eqn|νp) = �(ilogr k) .

Proof In the proof we can use the same hard distribution as in [42]. To construct μp

and νp, let D0 be a random variable uniformly distributed on {0, 1} and let D be a
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random variable uniformly distributed on {0, 1}n . Let (X,Y) be a random variable
supported on {0, 1}n × {0, 1}n such that, conditioned on D0 = 0 we have X and Y
distributed independently and uniformly on {0, 1}n , and conditioned on D0 = 1 we
haveX = Y = D. Letμp be the distribution of (X,Y) and let νp be the distribution of
(D0D). Note that νp partitions μp. Also, this distribution satisfies that Pr[X = Y] ≥
1/3 and Pr[X �= Y] ≥ 1/3.

Let W be a random variable distributed according to νp. Let E be an indicator
variable over the private randomness ofP which is equal to 1 if and only if conditioned
on this private randomnessP satisfies that it aborts with probability at most 1/10 and
succeeds with probability at least 1 − δ/k conditioned on non-abortion. Given such
protocol with abortion P we transform it into a protocol P ′ which never aborts,
has almost the same information complexity and gives correct output on non-equal
instances with high probability, while being correct on equal instances with constant
probability. This is done by constructingP ′ so that wheneverP outputs “abort”, the
output of P ′ is X �= Y , otherwise P = P ′. Under the distribution μp conditioned
on the event E = 1 the protocol P ′ has the property that if X �= Y , then it outputs
X = Y with probability at most (1/k)/Prμp [X �= Y ] ≤ 3/k. However, if X = Y ,
then the protocol may output X �= Y with probability 1/10+ (1/k)/Prμ′

p
[X = Y ] ≤

1/10+ 3/k ≤ 1/5, where the latter follows for k ≥ 30. Thus, conditioned on E = 1,
the protocol P ′ has failure probability ε = 1/k on non-equal instances X �= Y , and
constant failure probability δ = 1/5 on equal instances X = Y , as desired. In this
regime we can use Theorem 2.6.

We have:

IC
μp,(r)
1/20,1/10,δ/k(eqn|νp) ≥ I(P : X,Y |W )

= �(I(P : X,Y |W, E = 1)) − 1

= �(I(P ′ : X,Y |W, E = 1)) − 2.

Here the inequality is by definition of information compelxity and the equalities
follows from Fact 3.4 together with the fact that H(E) ≤ 1, Pr[E = 1] = 19/20, and
the fact that the transcripts of the protocolsP andP ′ only differ in a single bit. The
right-hand side can be bounded as follows.

Proposition 7.11

I(P ′ : X,Y |W, E = 1)) = �(ICμ,(r)
1/k,1/5(eqn)).

Proof This follows from the construction of the distributions μp and νp that we use.
If D0 = 0 thenX = Y and the information revealed byP is equal to zero. Otherwise,
if D0 = 1 then the distribution of (X,Y) is uniform. Because the latter happens with
probability 1/2 we have I(P ′ : X,Y |W, E = 1)) ≥ 1/2 · ICμ,(r)

1/k,1/5(eqn)) as desired.��
Using Proposition 7.11 we have IC

μp,(r)
1/20,1/10,δ/k(eqn|νp) = �(ICμ,(r)

1/k,1/5(eqn)). The
proof is completed by noting that setting ε = 1/k and δ = 1/5 in Theorem 2.6 gives
ICμ,(r)

1/k,1,5(eqn) = �(ilogr k).
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8 Two-Party Set Intersection

In this section we give upper bounds in both private and public randomness model. In
the private random string model, the players do not share a random string, but rather
are allowed to use private randomness. By a result of Newman [45], any problem
that can be solved in the public random string model can be solved in the private
random string model, adding only O(log log T ) to the communication complexity,
where T is the number of different inputs to the players. One unfortunate aspect of
this reduction is that it is non-constructive in the sense that for each input length n,
the protocol either uses a hard-wired advice string that depends on n, or the players
must search for the advice string, which doesn’t require communication but can result
in unnecessary computation. We give our upper bounds in the public random string
model, but describe how to translate them into constructive protocols in the private
random string model, preserving optimality.

We start by describing a simple protocol with linear communication in Sect. 8.1 and
then show how to achieve an optimum round vs. communication trade-off in Sects. 8.2
and 8.3.

8.1 Warmup: An O(
√
k)-Round Protocol

Theorem 8.1 There exists an O(
√
k)-round constructive randomized protocol for

k-intN with success probability 1 − 1/ poly(k). In the model of shared randomness
the total expected communication is O(k) and in the model of private randomness it
is O(k + log log N )

Proof W.l.o.g we can assume that N = kc for a constant c > 2 since if the universe
size is N > kc then parties can pick a random hash function H : [N ] → [kc], which
gives no collisions on the elements in S ∪ T with probability at least 1− 1/�(kc−2).

The parties pick a random hash function h : [N ] → [k]. For a set U ⊆ [N ] we use
notation Ui = h−1(i) ∩U for the preimage of i in U . Using preimages Si and Ti the
parties construct a collection of instances of Equality, which contains an instance of
Equality(s, t) for every (s, t) ∈ Si × Ti for every i ∈ [k].

Formally, for two sets of instances of a communication problem C , say C1 =
C(x1, y1), . . . ,C(xi , yi ) and C2 = C(x ′

1, y
′
1), . . . ,C(x ′

j , y
′
j ) let’s denote their con-

catenation, which corresponds to solving C1 and C2 simultaneously as

C1 � C2 = (x1, y1), . . . , (xi , yi ), (x
′
1, y

′
1), . . . (x

′
j , y

′
j ).

Let’s denote as Ei = ⊔(s,t)∈(Si×Ti ) eq(s, t) the collection of instances of equality
corresponding to hash value i . The collection of all instances constructed by the parties
is E =⊔k

i=1 Ei .
The expected number of instances E[|E |] is given as:

E[|E |] = E

[
k∑

i=1

|Si ||Ti |
]

=
k∑

i=1

E[|Si ||Ti |]
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≤
k∑

i=1

E[|(S ∪ T )i |2] =
k∑

i=1

Var [|(S ∪ T )i |] + E[|(S ∪ T )i |]2 (25)

Given that for a set Z , the random variable |Zi | is distributed according to a binomial
distribution B(|Z |, 1/k), for each i we have Var [| (S ∪ T )i |] ≤ 2k ·(1/k)(1−1/k) ≤
2 and E[| (S ∪ T )i |] ≤ 2 so E[|E |] ≤ 6k.

We use the following result of [23]:

Theorem 8.2 ([23]) There exists a constructive randomized protocol for eqkn with

O(
√
k) rounds, which has success probability 2−�(

√
k). In the public randomness

model the expected total communication is O(k) and in the private randomness model
it is O(k + log n).

In the shared randomness model the result now follows immediately. In the private
randomness model the parties need to construct two random hash functions H and
h, using Fact 3.1 with only O(log N ) + O(log k) = O(log N ) random bits. These
bits are exchanged through the channel in the first round of the protocol and are
added to the total communication, bringing it down to O(k + log N ). To further
reduce the communication we can use the hashing scheme of Fredman, Komlos and
Szemeredi [24] as the first step of the protocol. In [24] it is shown that mapping
elements [N ] by taking a remainder modulo a random prime q = Õ(k2 log n) gives
no collisions on a subset of size O(k) with probability 1 − 1/ poly(k). Applying this
result to S ∪ T we can reduce the length of strings in the instances of equality down
to O(log k + log log N ). Thus, we can now specify the pairwise independent hash
function using only O(log k+ log log N ) random bits. See Appendix A.1.1 in [34] for
a detailed discussion.

8.2 Auxiliary Protocols

We first describe auxiliary protocolsBasic- Intersection (Lemma 8.3) and Equal-
ity (Fact 8.5) that we use as building blocks in our main algorithm in Sect. 8.3. For
a two-party communication protocol P we denote the output of the protocol for the
first party asPA(x, y) and for the second party as PB(x, y).

Lemma 8.3 (Protocol Basic- Intersection (S, T )) For any integer i ≥ 1, there
exists a public-coin protocolP such that for any S, T ⊂ [n], the sets S′ = PA(S, T )

and T ′ = PB(S, T ) satisfy the following properties:

1. S′ ⊆ S, T ′ ⊆ T .
2. If S ∩ T = ∅ then S′ ∩ T ′ = ∅ with probability 1.
3. If S ∩ T �= ∅ then (S ∩ T ) ⊆ (S′ ∩ T ′). Also, with probability 1 − 1/Ni it holds

that S′ = T ′ = (S ∩ T ).

The total communication in the protocol is

O (i · (|S| + |T |) log(|S| + |T |))

and the protocol can be executed in 4 rounds.
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Note that Lemma 8.3 guarantees that S′ ∩T ′ is always a superset of the intersection.
Also, if the sets S′ and T ′ are equal then each of them is exactly the intersection of S
and T .

Proof The parties first exchange the sizes of their sets |S| and |T | and determine m =
|S| + |T |. Using shared randomness they pick a random hash function h : [n] → [t],
where t = �(mi+2). They exchange sets h(S) and h(T ) using total communication
O(i · m logm). The outcome of the protocol is PA(S, T ) = h−1(h(T )) ∩ S and
PB(S, T ) = h−1(h(S)) ∩ T . Since exchanging the sizes of the sets takes two rounds
and another two rounds are required to exchange h(S) and h(T ), the total number of
rounds of communication is 4.

By construction we have S′ = h−1(h(T )) ∩ S ⊆ S and similarly T ′ ⊆ T so the
first property holds. If S ∩ T = ∅ then S′ ∩ T ′ = (h−1(h(T )) ∩ S) ∩ (h−1(h(S)) ∩
T ) ⊆ (S ∩ T ) = ∅ and the second property holds. Because S ⊆ h−1(h(S)) and
T ⊆ h−1(h(T )) we have

S ∩ T ⊆ (h−1(h(T )) ∩ S) ∩ (h−1(h(S)) ∩ T ) = S′ ∩ T ′,

the first part of the third property. Moreover, if the hash function h has no collisions
among S ∪ T then

S′ = h−1(h(T )) ∩ S = T ∩ S

and

T ′ = h−1(h(S)) ∩ T = S ∩ T .

The proof is completed using the analysis of collision probability given by Fact 3.1. ��
We have the following corollary.

Corollary 8.4 If for the protocol P in Lemma 8.3 it holds that PA(S, T ) =
PB(S, T ) then

PA(S, T ) = PB(S, T ) = S ∩ T .

In our main protocol in Sect. 8.3 we will use an eqn test with the following guar-
antees to verify correctness of the protocol Basic- Intersection. The following
guarantee is achieved by a protocol, which uses a random hash function h into k
bits.

Fact 8.5 There exists a public-coin protocolP for eqn with the following properties.

1. If x = y then PA(x, y) = PB(x, y) = 1 with probability 1.
2. If x �= y then PA(x, y) = PB(x, y) = 0 with probability at least 1 − 1/2k .

The total communication in the protocol is O(k) and it can be executed in two
rounds.
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8.3 The Main Protocol

In this section we give the full protocol, proving Theorem 2.8.

Proof For r = 1 the parties use shared randomness to pick a hash function h : [N ] →
[kc] for c > 2. Then each of the parties uses ck log k bits to exchange h(S) and h(T )

respectively. By Fact 3.1 the probability that h has a collision on a set S∪ T is at most
1 − 1/�(kc−2).

For r > 1 consider a tree T of depth r with the set of nodes at the i-th level for
0 ≤ i ≤ r denoted as Li (these are the nodes at distance i from the leaves). Let the
degree at the i-th level for 2 ≤ i ≤ r be equal to di = ilogr−i k/ ilogr−i+1 k and
the degree at the first level is d1 = ilogr−1 k. Note that this guarantees that the total
number of leaves in the tree is k. For a node v ∈ T , let c(v) denote the set of children
of v. For a node v ∈ T , let C (v) denote the set of all leaves in the subtree of v. Note
that for a node v ∈ Li the number of such leaves is |C (v)| = ilogr−i k.

Definition 8.6 (Set assignment) A set assignment A to the leaves of T is a vector
A = (A1, . . . ,Ak), consisting of k sets. We say that the set A� is assigned to a
corresponding leaf � in T .

Every set assignment to the leaves of T naturally induces a set assignment on all
internal vertices of T .

LetA = (A1, . . . ,Ak) be a set assignment for the leaves of T . For every internal
node v ∈ T we denote an assignment induced at this vertex byA asAv = ∪i∈C (v)Ai .

Now we describe the protocol used by the parties. First, Alice and Bob use shared
randomness to pick a hash function h : [N ] → [k]. Using this hash function they define
initial assignments of sets S−1 and T−1 respectively as follows. For a leaf � ∈ [k] of
T , let S−1

� = h−1(h(�)) ∩ S and T−1
� = h−1(h(�)) ∩ T .

Then the protocol proceeds in r stages. In stage i for 0 ≤ i < r the parties construct
new assignments to the leaves of T , which induce new assignments on the internal
nodes. We will show that after r stages the parties obtain an assignment to the leaves,
such that with high probability the set induced by this assignment in the root of T
is exactly S ∩ T . We use notation Si and T i respectively for the i-th assignment that
the parties make to the leaves of the tree. The description of the i-th stage is given as
Algorithm 2. This completes the description of the protocol.

In the rest of the proof we first analyze the correctness probability of the protocol
above (the key lemma is Lemma 8.7) and then total communication (Lemma 8.10).
The proof of Theorem 2.8 is completed by observing that the protocol can be executed
in O(r) rounds.

Lemma 8.7 After stage i for every leaf u ∈ T it holds that Siu = T i
u with probability

at least 1 − 1/(ilogr−i−1 k)4, taken over all the randomness of the protocol.

Proof If u is in the subtree of a node v, which is not failed at level i then we know
that Sv = Tv and thus Su = Tu for each u ∈ C (v) with probability at least 1 −
1/(ilogr−i−1 k)4 by the guarantee of the Equality(Sv, Tv) test. Otherwise, u is in
the subtree of a failed node v at level i . In this case the claim follows because we
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Algorithm 2: Protocol for k-intN . Round i .
Input: Sets S, T ∈ [k]k , assignments Si−1, T i−1.
1: For every v ∈ Li run the protocol Equality(Si−1

v , T i−1
v ) with success probability

1 − 1/(ilogr−i−1 k)4.
2: LetF be the set of vertices for which the equality protocol above returns Si−1

v �= T i−1
v . We call

these vertices failed.
3: For every v ∈ F and every leaf u ∈ C (v) run Basic- Intersection(Si−1

u , T i−1
u ) with success

probability 1 − 1/(ilogr−i−1 k)4 and assign Siu = PA(Si−1
u , T i−1

u ) and T i
u = PB (Si−1

u , T i−1
u )

respectively.
4: For every v /∈ F and every leaf u ∈ C (v) assign Siu = Si−1

u and T i
u = T i−1

u .

run Basic- Intersection protocol for this leaf with success probability at least 1 −
1/(ilogr−i−1 k)4. ��

We call a node v ∈ Li correct if after stage i it holds that Siv = T i
v .

Corollary 8.8 Every node v ∈ Li is correct with probability at least 1 −
1/(ilogr−i−1 k)3. In particular, the root of the tree is correct with probability at least
1 − 1/k3.

Proof From Lemma 8.7 applied to the level i it follows that after the execution of
stage i for every leaf u ∈ C (v) it holds that Siu = T i

u with probability at least
1 − 1/(ilogr−i−1 k)4. Hence, by a union bound over all ilogr−i k such leaves with
probability at least

1 − ilogr−i k/(ilogr−i−1 k)4 ≥ 1 − 1/(ilogr−i−1 k)3

we have Siv = T i
v . ��

The correctness proof of the protocol now follows from Corollary 8.8 together with
the following invariant applied to the root of the tree after round r − 1.

Proposition 8.9 If for a node v ∈ T Alice and Bob assign Siv and T
i
v to it respectively

then if Siv = T i
v then Siv = T i

v = Sv ∩ Tv .

Proof Note that this invariant is maintained by Basic- Intersection (Corollary 8.4).
During the execution of the protocol the sets S′

v and T ′
v only change when we apply

Basic- Intersection to the leaves inT . Clearly, if the invariant is maintained for all
leaves then it is also maintained for all internal nodes as well. ��

Now we analyze the total communication in the protocol. For a leaf u ∈ T let nu
denote the expected number of times the Basic- Intersection protocol was run on
the sets assigned to u.

Lemma 8.10 For every leaf u ∈ T it holds that E[nu] = O(1).
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Proof For a leaf u let’s denote it’s unique predecessor in level i as pi (u). Formally,
pi (u) = v if and only if v ∈ Li and u is in the subtree of v. We can express E[nu] as:

E[nu] =
r−1∑

i=0

Pr[pi (u) is failed] · (4 ilogr−i k)

≤
r−1∑

i=0

di · Pr [v is an incorrect child of pi (u)] (4 ilogr−i k),

≤
r−1∑

i=0

ilogr−i k

ilogr−i+1 k
· 1

(ilogr−i k)3
· (4 ilogr−i k) = O(1)

where the first inequality holds by a union bound and the second by Corollary 8.8. ��
The total expected communication in the protocol can be expressed as the sum of

the total communication for Equality and Basic- Intersection. The total commu-
nication for Equality is:

r−1∑

i=0

|Li |(4 ilogr−i k) = O(k ilogr k) +
r−1∑

i=1

(k/ ilogr−i k) · (4 ilogr−i k)

= O(k ilogr k) + O(rk) = O(k ilogr k).

The expected total communication for Basic- Intersection is by Lemma 8.3 equal
to:

E

[
k∑

i=1

(|Si |+|Ti |) log(|Si |+|Ti |) · ni
]

=
k∑

i=1

E

[
(|Si | + |Ti |) log(|Si | + |Ti |)

]
E[ni ],

where the equality follows from the independence of the random variables. Because
for every i we haveE[ni ] = O(1) by Lemma 8.10, to complete the proof it is sufficient
to show that E[(|Si |+ |Ti |) log(|Si |+ |Ti |)] = O(1) and thus the total communication
forBasic- Intersection is O(k).We haveE[(|Si |+|Ti |) log(|Si |+|Ti |)] ≤ E[(|Si |+
|Ti |)2], where the right-hand side is constant by the same argument as used to bound
each term in (25). Finally, the bound on the number of rounds of communication
follows from the fact the communication in each of the r stages for the Equality
tests can be done in parallel in two rounds (Fact 8.5). After in four more rounds we
can perform all Basic- Intersection protocols in parallel (Lemma 8.3). This gives
6r rounds of communication. ��

9 Multi-Party Set Intersection in the Message Passing Model

In the multi-party case we have m players, each holding a set Si ⊆ [n] such that
|Si | ≤ k. The goal of the parties is to output a set S = ⋂m

i=1 Si . We allow arbitrary
communication between the parties (i.e. any player i can send a message to any player
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j). In each round of the protocol the parties first perform some local computation
and then can exchange messages. This is known as the message passing model (see
e.g. [7]). We consider two optimization goals: minimizing the total communication
(or equivalently average communication per player) and minimizing the worst-case
communication per player. In both cases we keep the number of rounds as small as
possible.

First, observe that we can amplify the success probability of the two-party protocol
in Theorem 2.8 to be 1 − 1/2k while keeping the expected total communication
O(k ilogr k) and only incurring a penalty in the number of rounds: the protocol will
have expected O(r) rounds instead of worst-case 6r rounds. This follows by repeating
the protocol if it hasn’t succeeded. The latter condition can be checked by exchanging
k-bit equality checks after the protocol terminates. With a total of O(1) expected
repetitions this gives expected O(r) number of rounds and success probability which
is only limited by the equality checks and is thus 1 − 1/2k by Fact 8.5.

Using this observation we obtain a protocol with the following guarantee for the
average-case multi-party setting.

Corollary 9.1 (Average-case) For every r > 0 there exists a protocol for m-party
Set Intersection in the message passing model with expected average communication

per player O(k ilogr k), expected number of rounds O
(
r · max(1, logm

k )
)
and error

probability 1 − 1/2k .

Proof First, the set ofm players is partitioned into groups of size at most 2k . Consider
one such group, which consists of players holding sets S1, . . . , S2k . The player holding
S1 is chosen as a coordinator.Within the group all players execute themodified version
of the two-party protocol described above with the coordinator, who computes sets
Ti = S1 ∩ Si for each 2 ≤ i ≤ 2k . This step is repeated until the coordinator succeeds

in verifying that
⋂2k

i=2 Ti = ⋂2k
i=1 Si with probability at least 1 − 1/2k . This is done

by using a 2k-bit equality check with each of the players. By Fact 8.5 the equality
check succeeds with probability 1 − 1/22k and hence by a union bound over the 2k

players in the group the desired success probability follows. Once all m′ = 	m/2k

coordinators succeed in verifying their sets the protocol is executed recursively among
them for their respective sets.

The number of active players decreases exponentially between the levels and thus
the total communication is dominated by the first level. The first level has average
complexityO(k ilogr k)per player and expectedO(r) rounds using the same reasoning
as for the case of two-parties discussed above. The total number of levels of recursion
is max

(
1, log2k m

) = max{1, k−1 logm}, which gives the claimed bound on the total
number of rounds. ��

Taking r = log∗ k in Corollary 9.1 we get average communication O(k) per player,
whichmatches the lower bounds of [7,47]who show that average communication�(k)
is necessary for solving Set Intersection and Set Disjointness in the message
passing model.

In the protocol from Corollary 9.1 every coordinator has to perform O(2kk ilogr k)
communication per level. By increasing the number of rounds we can amortize this
cost among the players.
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Corollary 9.2 (Worst-case) For every r > 0 there exists a multi-party protocol in the

messagepassingmodelwithworst-case communication O
(
k2 ilogr k · max

(
1, logm

k

))

per player, expected number of rounds O(rk max(1, logm
k )) and error probability

1 − 1/2k .

Proof The protocol is executed recursively in max
(
1, logm

k

)
levels and in each level

the players are assigned to groups of size at most 2k as in Corollary 9.1. Consider
one such group. Instead of using a coordinator in each level the players are assigned
to the leaves of a complete binary tree of depth k. They run the two-party protocol
recursively in pairs. This gives expected number of rounds O(rk) per level and the
bound on the number of rounds follows. When the two-party protocol is executed for
the top two nodes in the tree (the children of the root) the parties also perform a k-bit
equality check in order to certify the correctness of the result with probability 1−1/2k .
If this check fails then the entire computation in the tree is repeated, which gives O(1)
repetitions in expectation using the same reasoning as before. Finally, adding up over
all nodes on a path of length k the worst-case communication per level is O(k2 ilogr k)
which gives the bound on the desired worst-case communication per player. ��

10 Concluding Remarks

We have gained new insight into the complexity of equality, one of the cornerstones
of the theory of communication complexity. To do so, it was important to consider the
expected communication cost of a protocol on a fixed input, and to limit the amount
of interaction that our players can use. It was also important to treat 1-inputs (i.e.,
equal pairs) and 0-inputs separately. Our results have applications to other important
communication problems, namely disjointness and private- intersection.

The upper bounds in Sect. 7.1 show that our oreq and k-disj lower bounds are not
absolutely improvable: they are already tight in small-error settings. One drawback
in our direct-sum approach is that the error requirements in our oreq and k-disj
lower bounds needs to be similar to the (small) error for equality protocols. On the
other hand, the Sağlam–Tardos approach [49], which directly attacksoreq, overcomes
this to obtain the same communication lower bound even under constant error. This
raises the interesting theoretical question of whether a direct-sum approach can be
strengthened to “boost” the error.

In recentwork ondirect sumquestions in communication complexity, there has been
some exciting progress on a relatedmatter. Molinaro,Woodruff, and Yaroslavtsev [42]
show how to obtain constant-error direct sum theorems from small-error hardness of
the underlying problem. Unfortunately, their technique depends crucially on the k-fold
direct sum problem’s output being a k-tuple consisting of the solutions to all of the
k independent instances of the underlying problem. In our setting, these k bits are
combined into a single bit by an or operation, which gives out much less information,
causing their technique to fail. Showing similar results for problems with a single-
bit output is a challenging open problem whose resolution ought to yield even more
insights about communication complexity.
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Our results for private- intersection raise two main open questions. First, it is
open whether the number of rounds in our two-party protocol (Theorem 2.8) can be
reduced from 6r to r while preserving the total communication of O(k ilogr k). This
would match results of [49] for k-disj. The second open question is to design better
multi-party protocols than those that we obtain in Sect. 9. Our multi-party protocols
are obtained by using our two-party protocol as a black-box and we expect that it
might be possible to obtain better results by analyzing the problem directly.
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