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Abstract. The Earth Mover Distance (EMD) between point sets A and
B is the minimum cost of a bipartite matching between A and B. EMD
is an important measure for estimating similarities between objects with
quantifiable features and has important applications in several areas in-
cluding computer vision. The streaming complexity of approximating
EMD between point sets in a two-dimensional discretized grid is an im-
portant open problem proposed in [8, 9].

We study the problem of approximating EMD in the streaming model,
when points lie on a discretized circle. Computing the EMD in this set-
ting has applications to computer vision [13] and can be seen as a special
case of computing EMD in on a discretized grid. We achieve a (1 ± ε)
approximation for EMD in Õ(ε−3) space, for every 0 < ε < 1. To our
knowledge, this is the first streaming algorithm for a natural and widely
applied EMD model that matches the space bound asked in [9].

1 Introduction

For two multisets A,B of points of equal sizes in a space S , the Earth
Mover Distance (EMD) between A and B is defined as the minimum
cost of a perfect matching between points in A and B, where the cost
function is identical to the distance function equipped with the space S .
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When restricted on specific spaces, the Earth Mover Distance becomes a
natural measure for estimating the similarity between two objects with
quantifiable features, and thus has found important applications in var-
ious areas. Starting with the work of [16, 17], the Earth Mover Distance
has attracted significant attention and interest in the area of computer
vision. This is because an image, in different contexts, can be represented
as a collection of representative features, such as pixels in a color space
[17], object contours [4], hue histograms [18], SIFT-like descriptors [7],
circular histograms [13], and others [5]. The Earth Mover Distance is
thus an appropriate measure of similarity between images. The consid-
ered point spaces can vary according to different applications. In many
situations, the space is a d-dimensional integer grid [∆]d for some integers
∆ and d, with ℓ1-distance being the distance metric.4 For example, an
image can be represented as a set of pixels each of which is a point in the
3-dimensional color space [17]. Another important application of EMD in
computer vision is to compare one-dimensional circular histograms [13],
where the point space is a (discretized) circle in the 2D Euclidean space
and the distance between two points on the circle is the length of the
shortest arc connecting them on the circle. Due to its particular struc-
ture, the EMD over such space is also called the Circular Earth Mover
Distance (CEMD) [13].

Since the computation of EMD can be easily reduced to the weighted bi-
partite matching problem, it can be solved optimally in O(n3) time and
O(n2) space, where n is the size of the point-sets. Nevertheless, in many
applications, the sizes of the point-sets are very large, and we may need
to select a large number (sometimes millions) of feature sets and compute
all the corresponding EMD’s. Thus, the commonly used matching algo-
rithm is not satisfactory. This motivates the exploration of approximation
algorithms for EMD that run faster or use less working space. When con-
sidering space-bounded computation, an extensively-studied algorithmic
setting is the streaming model, in which the input data are given in a
streaming fashion and only limited working and storing space is allowed.
This model dates back to [10] and was popularized by Alon, Matias and
Szegedy [1]. For a survey of related results we refer the readers to [11].

An important open problem in the streaming literature, proposed in [8],
is whether EMD over 2-dimensional integer grids [∆]2 with ℓ1-distance
admits a constant factor approximation algorithm in the one-pass stream-
ing model that uses logO(1)(n∆) space, where n is the size of the given
point-sets. Currently the best known algorithm, due to Andoni et al. [2],
can maintain an O(1/ε)-approximation of the exact value of EMD be-
tween two point-sets in [∆]2 using O(∆ε logO(1)(n∆)) space and update
time for 0 < ε < 1. This amount of space still has a ∆Θ(1) gap from
the conjectured bound in [8, 9]. Furthermore, Naor and Schechtman [12]
showed that any ℓ1 embedding of EMD on [∆]2 incurs distortion Ω(

√
∆),

suggesting that embeddings alone are unlikely to produce space-efficient
O(1)-approximations of EMD. On the other hand, things get much easier
when dealing with 1-dimensional grids [∆]1. It is folklore that the EMD
between two point-sets in [∆]1 is equal to the ℓ1 distance between two

4 We use [∆] to denote the set {0, 1, . . . , ∆ − 1}.



corresponding vectors in [∆]n. In the streaming model, we can reduce
EMD to problem of estimating the ℓ1-norm of a vector in the turnstile
model [1] (in which input tokens stand for update operations on the coor-
dinates of the vector), and by [6] this implies that EMD over [∆]1 allows
a (1±ε)-approximation streaming algorithm using O(ε−2 log(n∆)) space
(see Section 2 for more details). Note that this space complexity meets
the bound asked in [8]. As little progress has been made towards the
2-dimensional case during these years, a natural target is to find an “in-
termediate” space that “lies between” [∆]1 and [∆]2, on which the EMD
problem has space-efficient constant factor approximation algorithms.
In this paper we study the streaming complexity of Circular Earth Mover
Distance (CEMD) mentioned before. In the traditional algorithmic set-
ting, the complexity of this problem has already been well understood.
It is shown in [20, 3] that the problem can be solved in O(n log n) time
where n is the size of the point-sets, and can even be solved in O(n) time
if the points are sorted on the circle in advance. However, neither this
approach nor the ones in [20, 3] is space efficient; they all require Ω(n)
space when converted to a (one-pass) streaming algorithm.
Our Contributions. We present a (1±ε)-approximation one-pass stream-
ing algorithm for CEMD that uses Õ(ε−3 log(n∆)) space and succeeds
with probability 0.99, for every 0 < ε < 1. To our knowledge, this is
the first streaming algorithm for a natural and widely applicable EMD
model that matches the space bound asked in [8]. It is also not difficult
to see that the circle space, in some sense, lies between the 1-dimensional
and 2-dimensional spaces.
The central part of our results is a theorem establishing the quality of
matchings obtained from a random cut approach. Specifically, for ev-
ery 0 < ǫ < 1, by cutting the circle at a point chosen uniformly at
random, the matching induced by the obtained line segment is a (1+ ε)-
approximation with probability Ω(ε) (see Theorem 3). By repeating this
process O(ε−1) times independently and returning the minimum esti-
mate, we get a (1 + ε)-approximation with probability 0.99. This, com-
bined with the streaming algorithm for ℓ1-distance in the turnstile model
given by [6], yields a streaming algorithm for CEMD (Theorem 4).

2 Preliminaries

A metric space S is a pair (S, dS) where S is a set of elements (or points)
and dS : S × S → [0,∞) is a symmetric distance function defined on
pairs of points in S. Given a space S = (S, dS) and two finite, equal-
sized (multi-)sets A, B ⊆ S, the Earth Mover Distance (EMD) between
A and B (over S) is defined as:

EMDS(A, B) := min
φ:A→B

X

p∈A

dS(p, φ(p)),

where the minimum is taken over all bijections φ between A and B.
In the streaming version of the Earth Mover Distance problem, the input
stream consists of 2n tokens (C, p), where C ∈ {A, B} and p ∈ S . A token
(C, p) means p ∈ C. The goal is to compute the Earth Mover Distance



between A and B specified by the tokens. We assume that the 2n tokens
can come in an arbitrary order, which makes the problem harder and
makes our result stronger.

One-Dimensional EMD. Consider the 1-dimensional grid space [∆]1 =
([∆], d), where ∆ is a positive integer, and d(a, b) := |a − b| for all
a, b ∈ [∆]. Let A and B be two equal-sized subsets of [∆]. Suppose
A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}, where a1 ≤ a2 ≤ . . . ≤ an

and b1 ≤ b2 ≤ . . . ≤ bn. By [19] (or simple observations) we have

EMD[∆]1(A,B) =
n

X

i=1

|ai − bi|,

and this is achieved when ai is matched with bi for every 1 ≤ i ≤ n.
Such matching will be called the canonical matching between A and B.
Using the result of [6] for ℓ1-norm estimation, we obtain5:

Theorem 1 ([6]). For any 0 < ε, δ < 1, there is a one-pass streaming
algorithm that (1± ε)-approximates 1-dimensional EMD with probability
at least 1 − δ using O(ε−2 log(n∆) log(1/δ)) space.

Circular EMD. Let ∆ be a positive integer. For any integer a, define
(a)∆ := a mod ∆. Let C := ([∆], d∆) where d∆ is defined as:

For all p1, p2 ∈ [∆], d[∆](p1, p2) := min{(p1 − p2)∆, (p2 − p1)∆}.

We can imagine that the ∆ points in [∆] are drawn clockwisely on a
circle of circumference ∆, in the order 0, 1, 2, . . . , ∆ − 1, such that every
two adjacent points have distance 1 on the circle. Then d∆(p1, p2) is just
the length of the shortest arc connecting p1 and p2 on the circle. (See
Figure 1 for an example with ∆ = 8.) Hereinafter we will always use this
circle realization of the space C .

0

1

2

3

4

5

6

7
a1

a2

b2

b1

Fig. 1: An example of ∆ = 8

Let A = {a1, a2, . . . , an} ⊆ [∆] and B = {b1, b2, . . . , bn} ⊆ [∆] be
two subsets of [∆] of size n (which can be multisets). The points in

5 When points from A∪B appear on the stream in arbitrary (instead of sorted) order,
there is a subtle issue in mapping the EMD input to an appropriate input for the ℓ1-
norm estimator. The solution is easy and appears to be folklore; we leave a complete
discussion to the full version of the paper.



A and B are also called A-points and B-points, respectively. Let OPT
denote the Earth Mover Distance between A and B over C , i.e., OPT :=
EMDC (A, B). Throughout this paper, an instance of the circular EMD
problem consists of the space C (specified entirely by ∆) and the two
sets A, B. The goal is to compute OPT . (See Figure 1 for an example
where n = 2, A = {1, 3} and B = {5, 4}, in which case OPT = 5.)
We need some more notations. For the simplicity of expressions and
without loss of generality, we assume that A ∪ B is not a multiset, i.e.,
A and B are simple sets and A ∩ B = ∅. This assumption can be made
without loss of generality; we explain in the full version of this paper
how to easily obtain the same results for the general case.
Cutting Points. For any point p ∈ [∆], let Cp denote the space ([∆], dp),
where dp is defined as follows:

dp(p1, p2) =



(p2 − p1)∆ if p, p1, p2 appear clockwisely;
(p1 − p2)∆ otherwise.

2 3 4 5 6 7 0 1

a1a2 b2 b1

Fig. 2: An example of C2

Notice that Cp also has an intuitive realization as follows: We cut the
circle C at the point p, and then “straighten” it to obtain a line segment,
ensuring that p is the leftmost point. Then for p1, p2 ∈ [∆], dp(p1, p2) is
exactly the (normal) distance between p1 and p2 on this line segment.
(See Figure 2 for C2 where the original space C is specified by Figure 1.)
Hereafter we shall identify Cp with the corresponding line segment. In
this sense, p is also called the cutting point of Cp. Clearly Cp is isomorphic
to [∆]1. To ease notation, we write EMD(Cp) := EMDCp(A, B), the
EMD between A and B over Cp. Crucial to our results is the following
theorem in [14] (whose full proof can be found in [15]):

Theorem 2 (Equation (2.4) in [14]). OPT = minp∈A∪B{EMD(Cp)}.

Note that Theorem 2 holds for the case where A ∪ B can be a multiset.
Using cutting points allows us to leverage known space-efficient approxi-
mations for EMD[∆]1(A, B) (Theorem 1), as shown in the next section.

3 A Streaming Algorithm for Circular EMD

In this section, we develop an efficient streaming algorithm for CEMD
that maintains a (1 ± ε)-approximation with high probability. As men-
tioned in the introduction, we do this by randomly selecting a set of cut
points, and estimating the Earth Mover Distance on the each resulting
line segment using known approximation algorithms.



Indeed, an intuitive explanation is the following: viewing the optimal
matching between A and B as a series of directed edges from a ∈ A to
φ(a) ∈ B, it is easy to see that if no arc is cut when we cut the circle at p,
then EMD(Cp) = OPT . The proof of Theorem 2 in [14] shows that it is
always possible to find p ∈ A∪B whose best matching has no arc across
p; thus, computing EMD(Cp) for each p suffices to compute OPT .
Unfortunately, we do not have enough space to even approximate EMD
for all n points in A ∪ B. Instead we take a few random cut points.
Our key technical contribution is a result showing that the EMD of
a random cut Cp gives (1 + ε)-approximation to CEMD(A, B) with
nontrivial probability. This result is captured in the following theorem,
whose technical proof we defer until Section 4.

Theorem 3. Choose a cutting point p ∈ [∆] uniformly at random. Then,
for every ε such that 0 < ε < 1/6, Pr[EMD(Cp) ≤ (1 + 10ε)OPT ] ≥ ε.

Theorem 4. For any 0 < ε, δ < 1, there is a one-pass streaming algo-
rithm for (1±ε)-approximating CEMD that uses O(ε−3 log2(1/(εδ)) log(n∆))
space and succeeds with probability at least 1 − δ.

Proof. Fix 0 < ε, δ < 1. Our algorithm first chooses k := ⌈100ε−1 ln(2/δ)⌉
points from [∆] with repetition, say p1, p2, . . . , pk, and stores them in
memory. This initial step takes O(k log ∆) space. Then we apply the al-
gorithm in Theorem 1, using parameters ε′ = ε/3 and δ′ = δ/2k, to
estimate EMD(Cpi

) for all 1 ≤ i ≤ k in parallel. The space used during
this process is at most k times that of approximating 1-dimensional EMD
using Theorem 1. Let the k estimated distances be E1, . . . , Ek. We take
the minimum of them as our estimation of OPT . For each 1 ≤ i ≤ k, we
know that EMD(Cpi

) ≥ OPT always holds, and, by Theorem 3,

Pr[EMD(Cpi
) ≤ (1 + ε/3)OPT ] ≥ ε/30. (1)

From Theorem 1 and our choice of ε′ and δ′, we have

Pr[(1 − ε/3)EMD(Cpi
) ≤ Ei ≤ (1 + ε/3)EMD(Cpi

)] ≥ 1 − δ/2k. (2)

Therefore, for each 1 ≤ i ≤ k,

Pr[Ei < (1 − ε/3)OPT ] ≤ Pr[Ei < (1 − ε/3)EMD(Cpi
)] ≤ δ/2k.

This holds for any 1 ≤ i ≤ k, so by the union bound, we have

Pr[min{Ei | 1 ≤ i ≤ k} < (1 − ε/3)OPT ] ≤ k · δ/2k = δ/2. (3)

From (1) and (2), the fact that (1 + ε/3)2 < 1 + ε for all 0 < ε < 1, and
another union bound, we have

ε/60 ≤ ε/30−δ/2k ≤ Pr[Ei ≤ (1+ε/3)2OPT ] ≤ Pr[Ei ≤ (1+ε)OPT ] .

It follows that

Pr[min{Ei | 1 ≤ i ≤ k} > (1 + ε)OPT ] ≤ (1 − ε/60)k ≤ δ/2. (4)

By (3) and (4) we obtain

Pr[(1 − ε/3)OPT ≤ min{Ei | 1 ≤ i ≤ k} ≤ (1 + ε)OPT ] ≥ 1 − δ.

The total used space is at most

O(k log ∆)+k·O((ε′)−2 log(1/δ′) log(n∆)) = O(ε−3 log2(1/(εδ)) log(n∆)).



4 (1 + ε)-approximation of OPT

In this section we prove our main lemma stating that a simple solution
can (1 + ε)-approximate OPT with probability Ω(ε). A key component
of our analysis breaks the circle into a series of intervals and analyzes
how much a matching moves points from A to B across each interval.
Before getting to the proof, some definitions are required.

Intervals. Let p1, p2 ∈ [∆]. The interval [p1, p2] is the set of points
obtained by starting at p1 and travelling in a clockwise fashion until
reaching p2. A left-open interval (p1, p2] is defined similarly, except p1 is
not included. We define the length of an interval to be its size and write
len(I) := |I |. Unless otherwise specified (e.g., “an interval [a, b]”), we
assume an interval I to be a left-open. For any interval I = (p1, p2], let
l(I) := p1 and r(I) := p2 denote the left endpoint and right endpoint of
I , respectively.

Definition 1. An interval I is simple if

– l(I) ∈ A ∪ B;

– I ∩ (A ∪ B) = {r(I)}.

Thus, the endpoints of a simple interval are both points in A ∪ B, and
there are no other A- or B-points lying inside the interval. Let I denote
the set of all simple intervals. Since |A∪B| = 2n, it is clear that |I| = 2n.
For example, in Figure 1, we have I = {(a1, a2], (a2, b2], (b2, b1], (b1, a1]}.
Note that I partitions [∆].

Matchings and Coefficients. Let p ∈ [∆]. The canonical matching be-
tween A and B over Cp, which is (one of) the matching(s) having cost
EMD(Cp), naturally induces n intervals whose endpoints are pairs of
matched A- and B-points. Let Mp denote the set of these n intervals
associated with Cp. By definition we have EMD(Cp) =

P

I∈Mp
len(I).

For any simple interval I ∈ I, the coefficient of I in EMD(Cp), denoted
by cp(I), is defined to be the number of intervals in Mp that contain I ,
i.e., cp(I) := |{J | I ⊆ J ∈ Mp}|. It is clear that

EMD(Cp) =
X

I∈I

cp(I) · len(I). (5)

We start with the following lemma that relates the coefficient of a simple
interval with the numbers of A- and B-points in a corresponding set.

Lemma 1. For every p ∈ [∆] and every simple interval I ∈ I,

cp(I) = ||[p, l(I)] ∩ A| − |[p, l(I)] ∩ B|| .

That is, the coefficient of I in EMD(Cp) equals the (absolute) difference
between the number of A-points and that of B-points in [p, l(I)].



Proof. Fix p ∈ [∆] and I ∈ I. Assume without loss of generality that in
the canonical matching between A and B over Cp, aj is matched with
bj and the corresponding interval is [aj , bj ], for every 1 ≤ j ≤ n. (If, for
some 1 ≤ j ≤ n, the interval is [bj , aj ] instead of [aj , bj ], we can simply
switch the roles of aj and bj in the following argument when dealing with
this j.) Since I is a simple interval, it holds that for every 1 ≤ j ≤ n,

I ⊆ [aj , bj ] if and only if aj ∈ [p, l(I)] and bj 6∈ [p, l(I)]. (6)

We consider two cases. First suppose cp(I) = 0, i.e., no interval [aj , bj ]
contains I . According to (6), for each 1 ≤ j ≤ n, either aj and bj

are both in [p, l(I)], or they are both in [∆] \ [p, l(I)]. Therefore the
numbers of A-points and B-points in [p, l(I)] are equal, implying that
cp(I) = 0 = ||[p, l(I)] ∩ A| − |[p, l(I)] ∩ B|| , which proves the first case.
Next suppose that cp(I) ≥ 1. Let S = {j | I ⊆ [aj , bj ]}. Then by defini-
tion we have cp(I) = |S|. Let j1 be the smallest index in S. Due to (6) we
have aj1 ∈ [p, l(I)] and bj1 6∈ [p, l(I)]. By the definition of the canonical
matching, we have bj 6∈ [p, l(I)] for all j ∈ S, and hence aj ∈ [p, l(I)]
for all j ∈ S. From (6) we know that for all j 6∈ S, aj and bj are either
both in [p, l(I)] or both in [∆] \ [p, l(I)]. Thus, the difference between
the numbers of A-points and B-points in [p, l(I)] is exactly |S|, which is
equal to cp(I). This finishes the proof of Lemma 1.

Based on Lemma 1, we further give some definitions and prove some
useful lemmas. Let p∗ ∈ A ∪ B be such that OPT = EMD(Cp∗). (The
existence of p∗ is ensured by Theorem 2). For any integer i ∈ Z, define

Ti := {I ∈ I | |[p∗, l(I)] ∩ A| − |[p∗, l(I)] ∩ B| = i}
By Lemma 1 we have that for any interval I ∈ I, cp∗ (I) = i if and only
if I ∈ Ti ∪ T−i. Let t = max{| i | | Ti 6= ∅}. Clearly 1 ≤ t ≤ n; it is also
easy to see that {Ti} partition I. The next lemma is less obvious.

Lemma 2. If Ti = ∅ for some i ≥ 0, then Tj = ∅ for all j ≥ i. If Ti = ∅
for some i ≤ 0, then Tj = ∅ for all j ≤ i.

Proof. Assume that i ≥ 0 (the case where i ≤ 0 is handled in the same
manner), and assume for some j ≥ i holds that Ti = ∅ and Tj 6= ∅. Let
I∗ be the simple interval containing p∗, i.e., p∗ ∈ (l(I∗), r(I∗)]. Then
cp∗(I∗) = 0. By Lemma 1, for every two adjacent simple interval I1, I2,
|cr(I1)− cr(I2)| ≤ 1 (since [p∗, l(I1)] and [p∗, l(I2)] differ by at most one
element from A∪B). Now choose an arbitrary I ∈ Tj . Starting from I , we
visit clockwisely every simple interval until we reach I∗. Since cp∗(I) = j
and cp∗(I∗) = 0, there exists a simple interval I ′ for which cp∗(I ′) = i.
Hence Ti 6= ∅ which contradicts with our assumption. ⊓⊔
Let P :=

St

i=1 Ti, N :=
St

i=1 T−i, and Z := T0. In this way, P ,N , and Z
represent the sets of simple intervals having positive, negative, and zero
coefficient values respectively. In a similar way, we define Z :=

S

I∈Z
I ,

and for each 1 ≤ i ≤ t, we define Pi :=
S

I∈Ti
I , and Ni :=

S

I∈T−i
I .

Note that these are sets of points while sets like P and N defined before
are collection of simple intervals. Finally, let P :=

St

i=1 Pi and N :=
St

i=1 Ni. Clearly, [∆] = P ∪N ∪Z. Noting that Pi = ∅ (resp., Ni = ∅) if
and only if Ti = ∅ (resp., T−i = ∅), and applying Lemma 2, we obtain:



Lemma 3. If Pi = ∅ for some i ≥ 0, then Pj = ∅ for all j ≥ i. Similar
result holds also for Ni.

The following lemma entirely determines the coefficient of any simple
interval in any cut. The proof is not difficult, but requires a lot of case
analysis. For lack of space, we defer it until the full version of the paper.

Lemma 4. Fix 0 ≤ i ≤ t. For any I ∈ I, we have:

cp(I) =

8

>

>

>

<

>

>

>

:

cp∗(I) + i if p ∈ Pi and I ∈ N ∪ Z,

|cp∗ (I) − i| if p ∈ Pi and I ∈ P ,

cp∗(I) + i if p ∈ Ni and I ∈ P ∪ Z,

|cp∗ (I) − i| if p ∈ Ni and I ∈ N .

The following corollary is immediate from Lemma 4.

Corollary 1. EMD(Cp) = EMD(Cp∗) = OPT for every p ∈ Z.

We are now ready to prove our main theorem.
Theorem 3 (Restated). Choose a cutting point p ∈ [∆] uniformly at
random. Then, for every ε such that 0 < ε < 1/6,

Pr[EMD(Cp) ≤ (1 + 10ε)OPT ] ≥ ε.

Proof. Choose p ∈ [∆] uniformly at random. Then Pr[p ∈ S] = |S|/∆
for any subset S ⊆ Z. Thus for every interval I ,

Pr[p ∈ (l(I), r(I)]] = (r(I) − l(I))/∆ = len(I)/∆.

If |Z| ≥ ε∆, then from Corollary 1 we obtain

Pr[EMD(Cp) = OPT ] ≥ Pr[p ∈ Z] = |Z|/∆ ≥ ε,

and thus the theorem holds. In the remaining of the proof we assume that
|Z| = |P0 ∪ N0| < ε∆, which implies that |St

i=1(Pi ∪ Ni))| = |P ∪ N | >
(1 − ε)∆ > ε∆. Let k be the smallest nonnegative integer for which
˛

˛

˛

Sk

i=0(Pi ∪ Ni)
˛

˛

˛ ≥ ε∆. Then we have 1 ≤ k ≤ t and

˛

˛

˛

˛

˛

k−1
[

i=0

(Pi ∪ Ni)

˛

˛

˛

˛

˛

< ε∆. (7)

We know that Pr[p ∈ Sk

i=0(Pi ∪Ni)] ≥ ε. Thus, the following claim will
conclude the proof of Theorem 3.

Claim. For every p ∈ Sk

i=0(Pi ∪ Ni), EMD(Cp) ≤ (1 + 10ε)OPT .

Proof. Let i be any integer such that 0 ≤ i ≤ k. Pick an arbitrary
cutting point p ∈ Pi ∪ Ni. (This can be done since if Pi ∪ Ni = ∅,
then by Lemma 3, Pi′ ∪ Ni′ = ∅ for all i′ ≥ i, and thus by (7) we have
|P∪N | = |Si−1

j=0(Pi∪Ni)| < ε∆. This gives ∆ = |P∪N |+|Z| < 2ε∆ < ∆,
which is a contradiction.)



We only prove the claim for the case p ∈ Pi, since another case p ∈ Ni is
similar. When i = 0, the claim follows directly from Corollary 1, so we
assume that i ≥ 1. Due to Lemma 4, we have:

EMD(Cp) =
X

I∈P∪N∪Z

cp(I) · len(I)

=
X

I∈N∪Z

(cp∗(I) + i)len(I) +
X

I∈P

|cp∗ (I) − i| · len(I)

=
X

I∈N∪Z

(cp∗(I) + i)len(I) +

t
X

j=i

X

I∈Pj

(j − i)len(I) +

i−1
X

j=1

X

I∈Pj

(i − j)len(I).

For similar reasons, we know that

OPT = EMD(Cp∗) =
X

I∈I

cp∗(I)·len(I) =
X

I∈N∪Z

cp∗ (I)·len(I)+
t

X

j=1

X

I∈Pj

j·len(I).

Therefore,

0 ≤ EMD(Cp) − OPT

=
X

I∈N∪Z

i · len(I) −
t

X

j=i

X

I∈Pj

i · len(I) +

i−1
X

j=1

X

I∈Pj

(i − 2j)len(I)

≤ i
X

I∈N∪Z

len(I) − i
t

X

j=i

X

I∈Pj

len(I) + i
i−1
X

j=1

X

I∈Pj

len(I).

By definition we have
P

I∈N
len(I) = |N |, P

I∈Z
len(I) = |Z| < ε∆,

and
P

I∈Pj
len(I) = |Pj |. Thus,

0 ≤ EMD(Cp) − OPT ≤ i(|N | + ε∆ −
t

X

j=i

|Pj | +
i−1
X

j=1

|Pj |). (8)

This indicates that

|N | ≥
t

X

j=i

|Pj |−
i−1
X

j=1

|Pj |−ε∆ =

t
X

j=1

|Pj |−2

i−1
X

j=1

|Pj |−ε∆ = |P |−2|
i−1
[

j=1

Pj |−ε∆.

Using (7) and the fact that i ≤ k, we have |Si−1
j=1 Pj | ≤ ε∆, and hence

|N | ≥ |P | − 3ε∆. (9)

We show that Ni 6= ∅. Assume to the contrary that Ni = ∅, then by
Lemma 3 we have Ni′ = ∅ for all i′ ≥ i. Thus by (7) it holds that
|N | = |Si−1

j=0 Ni| ≤ |Sk−1
j=0 (Pi ∪ Ni)| < ε∆. Then from (9) we get |P | ≤

|N |+3ε∆ < 4ε∆, and thus ∆ = |P |+|N |+|Z| < 4ε∆+ε∆+ε∆ = 6ε∆ <
∆, which is a contradiction. Hence our assumption is false, which proves
that Ni 6= ∅. So there exists at least one point p′ ∈ Ni. By symmetry, if
we use p′ ∈ Ni instead of p and repeat the above steps, we can obtain a
counterpart of (9) as follows:

|P | ≥ |N | − 3ε∆. (10)



Using (10) in (8) yields that

EMD(Cp) − OPT ≤ i(|N | + ε∆ −
t

X

j=i

|Pj | +
i−1
X

j=1

|Pj |)

= i(|N | − |P | + 2|
i−1
[

j=1

Pj | + ε∆)

≤ 6iε∆.

Notice that

OPT ≥
t

X

j=i

X

I∈Pj∪Nj

cp∗(I) · len(I) =
t

X

j=i

X

I∈Pj∪Nj

j · len(I)

≥ i
X

I∈
S

t
j=i

(Pj∪Nj)

len(I) = i · |
t

[

j=i

(Pj ∪ Nj)|

= i · (∆ − |
i−1
[

j=0

(Pj ∪ Nj)|)

≥ i · (∆ − ε∆) (using (7) and that i ≤ k)

= i(1 − ε)∆.

Therefore, as ε < 1/6,

EMD(Cp) ≤ OPT + 6iε∆ ≤ OPT +
6ε

1 − ε
OPT ≤ (1 + 10ε)OPT.

⊓⊔
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