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Better Gap-Hamming Lower Bounds via Better Round Elimination

Joshua Brody∗ Amit Chakrabarti† Oded Regev‡ Thomas Vidick§ Ronald de Wolf¶

Abstract

Gap Hamming Distance is a well-studied problem in communication complexity, in which Alice
and Bob have to decide whether the Hamming distance between their respectiven-bit inputs is less than
n/2−√

n or greater thann/2+
√

n. We show that everyk-round bounded-error communication protocol
for this problem sends a message of at leastΩ(n/(k2 log k)) bits. This lower bound has an exponentially
better dependence on the number of rounds than the previous best bound, due to Brody and Chakrabarti.
Our communication lower bound implies strong space lower bounds on algorithms for a number of data
stream computations, such as approximating the number of distinct elements in a stream.

Subsequent to this result, the bound has been improved by some of us to the optimalΩ(n), indepen-
dent ofk, by using different techniques.

1 Introduction

1.1 The communication complexity of the Gap-Hamming problem

Communication complexity studies the communication requirements of distributed computing. In its sim-
plest and best-studied setting, two players, Alice and Bob,receive inputsx andy, respectively, and are
required to compute some functionf(x, y). Clearly, for most functionsf , the two players need to com-
municate to solve this problem. The basic question of communication complexity is theminimal amount
of communication needed. By abstracting away from the resources of local computation time and space,
communication complexity gives us a bare-bones but elegantmodel of distributed computing. It is useful
and interesting for its own sake, but also one of our main sources of lower bounds in many other models of
computation, such as data structures, circuit size and depth, Turing machines, VLSI, and algorithms for data
streams. The basic results are excellently covered in the book of Kushilevitz and Nisan [KN97], but many
more fundamental results have appeared since its publication in 1997.

One of the few basic problems whose randomized communication complexity is not yet well-understood,
is theGap Hamming Distance(GHD) problem, defined as follows.

∗Department of Computer Science, Dartmouth College, Hanover, NH 03755. Supported in part by NSF Grant CCF-0448277.
Part of this work was done while the author was visiting CWI and Tel Aviv University.

†Department of Computer Science, Dartmouth College, Hanover, NH 03755. Supported in part by NSF Grants CCF-0448277
and IIS-0916565 and a McLane Family Fellowship.

‡Blavatnik School of Computer Science, Tel Aviv University,Tel Aviv 69978, Israel. Supported by the Israel Science Founda-
tion, by the European Commission under the Integrated Project QAP funded by the IST directorate as Contract Number 015848,
by the Wolfson Family Charitable Trust, and by a European Research Council (ERC) Starting Grant.

§UC Berkeley, vidick@eecs.berkeley.edu. Supported by ARO Grant W911NF-09-1-0440 and NSF Grant CCF-0905626. Part
of this work was done while the author was visiting CWI and TelAviv University.

¶CWI Amsterdam, rdewolf@cwi.nl. Supported by a Vidi grant from the Netherlands Organization for Scientific Research
(NWO).

1

http://arxiv.org/abs/0912.5276v1


GHD: Alice receives inputx ∈ {0, 1}n and Bob receives inputy ∈ {0, 1}n, with the promise
that |∆(x, y) − n/2| ≥ √

n, where∆ denotes Hamming distance. Decide whether∆(x, y) <
n/2 or ∆(x, y) > n/2.

Mind the gap betweenn/2 −√
n andn/2 +

√
n, which is what makes this problem interesting and useful.

We will be concerned with the communication complexity of randomized protocols that solve GHD. A gap
size ofΘ(

√
n) is the natural choice – it is where aΘ(1) fraction of the inputs lie inside the promise area,

and as we’ll see below, it is precisely this choice of gap sizethat has strong implications for streaming
algorithms lower bounds. Moreover, understanding the complexity of the

√
n-gap version can be shown to

imply a complete understanding of the GHD problem for all gaps. The communication complexity of the
gapless version, where there is no promise on the inputs, caneasily be seen to be linear (for instance by
a reduction from disjointness). The gap makes the problem easier, and the question is how it affects the
communication complexity: does it remain linear?

Protocols for GHD and more general problems can be obtained by sampling. Suppose for instance that
either∆(x, y) ≤ (1/2− γ)n or ∆(x, y) ≥ (1/2 + γ)n. Choosing an indexi ∈ [n] at random, the predicate
[xi 6= yi] is a coin flip with heads probability≤ 1/2 − γ in the first case and≥ 1/2 + γ in the second. It
is known that flipping such a coinO(1/γ2) times suffices to distinguish these two cases with probability at
least2/3. If we use shared randomness to chooseO(1/γ2) indices, we obtain a one-round bounded-error
protocol with communicationO(1/γ2) bits. In particular, for GHD (whereγ = 1/

√
n), the communication

is O(n) bits, which is no better than the trivial upper bound ofn when Alice just sendsx to Bob.
What about lower bounds? Indyk and Woodruff [IW03] managed to prove a linear lower bound for the

case of one-round protocols for GHD, where there is only one message from Alice to Bob (see also [Woo04,
JKS08]). However, going beyond one-round bounds turned outto be quite a difficult problem. Recently,
Brody and Chakrabarti [BC09] obtained linear lower bounds for all constant-round protocols:

Theorem 1. [BC09] Everyk-round bounded-error protocol for GHD communicates at least
n

2O(k2)
bits.

In fact their bound is significant as long as the number of rounds is k ≤ c0
√

log n, for a universal
constantc0. Regarding lower bounds that hold irrespective of the number of rounds, an easy reduction
gives anΩ(

√
n) lower bound (which is folklore): take an instance of the gapless version of the problem

on x, y ∈ {0, 1}
√

n and “repeat”x andy
√

n times each. This blows up the gap from 1 to
√

n, giving an
instance of GHD onn bits. Solving thisn-bit instance of GHD solves the

√
n-bit instance of the gapless

problem. Since we have a linear lower bound for the latter, weobtain a generalΩ(
√

n) bound for GHD.1

1.2 Our results

Our main result is an improvement of the bound of Brody and Chakrabarti, with an exponentially better
dependence on the number of rounds:

Theorem 2. Everyk-round bounded-error protocol for GHD sends a message of length Ω

(

n

k2 log k

)

.

1In fact the same proof lower-bounds thequantumcommunication complexity; a linear quantum lower bound forthe gapless
version follows easily from Razborov’s work [Raz02] and theobservation that∆(x, y) = |x|+ |y| − 2|x ∧ y|. However, as Brody
and Chakrabarti observed, in the quantum case this

√
n lower bound is essentially tight: there is a bounded-error quantum protocol

that communicatesO(
√

n log n) qubits. This also implies that lower bound techniques whichapply to quantum protocols, such as
discrepancy, factorization norms [LS07, LS08], and the pattern matrix method [She08], cannot prove better bounds for classical
protocols.
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In fact we get a bound for the more general problem of distinguishing distance∆(x, y) ≤ (1/2 − γ)n
from ∆(x, y) ≥ (1/2 + γ)n, as long asγ = Ω(1/

√
n): for this problem everyk-round protocol sends a

message ofΩ
(

1
k2 log k

1
γ2

)

bits.

Like the result of [BC09], our lower bound deteriorates withthe number of rounds. Also like their result,
our proof is based onround elimination, an important framework for proving communication lower bounds.
Our proof contains an important insight into this frameworkthat we now explain.

A communication problem usually involves a number of parameters, such as the input size, an error
bound, and in our case the gap size. The round elimination framework consists of showing that ak-round
protocol solving a communication problem for a classC of parameters can be turned into a(k − 1)-round
protocol for an easier classC′, provided the message communicated in the first round is short. This fact
is then applied repeatedly to obtain a0-round protocol (say), for some nontrivial class of instances. The
resulting contradiction can then be recast as a communication lower bound. Historically, the easier classC′

has containedsmaller input sizes2 than those inC.
In contrast to previous applications of round elimination,we manage toavoid shrinking the input length:

the simplification will instead come from a slight deterioration in the error parameter. Here is how this
works. If Alice’s first message is short, then there is a specific message and a large setA of inputs on which
Alice would have sent that message. Roughly speaking, we canuse the largeness ofA to show thatalmost
any input x̃ for Alice is close toA in Hamming distance. Therefore, Alice can “move”x̃ to its nearest
neighbor,x, in A: this make her first message redundant, as it is constant for all inputs x ∈ A. Sincex and
x̃ have small Hamming distance, it is likely that both pairs(x̃, y) and(x, y) are on the same side of the gap,
i.e. have the same GHD value. Hence the correctness of the newprotocol, which is one round shorter, is
only mildly affected by the move. Eliminating allk rounds in this manner, while carefully keeping track of
the accumulating errors, yields a lower bound ofΩ(n/(k4 log2 k)) on the maximum message length of any
k-round bounded-error protocol for GHD.

Notice that this lower bound is slightly weaker than the above-stated bound ofΩ(n/(k2 log k)). To
obtain the stronger bound, we leave the purely combinatorial setting and analyze a version of GHDon the
sphere:3 Alice’s input is a unit vectorx ∈ R

n and Bob’s input is a unit vectory ∈ R
n, with the promise

that eitherx · y ≥ 1/
√

n or x · y ≤ −1/
√

n (as we show below in Section 2, this version and the Boolean
one are essentially equivalent in terms of communication complexity). Alice’s input is now close to the
large, constant-message setA in Euclidean distance. The rest of the proof is as outlined above, but the final
bound is stronger than in the combinatorial proof for reasons that are discussed in Section 2.2. Although this
proof uses arguments from high-dimensional geometry, suchas measure concentration, it arguably remains
conceptually simpler than the one in [BC09].

Related work. The round elimination technique was formally identified andnamed in Miltersen et al. [MNSW98]
and dates back even further, at least to Ajtai’s lower bound for predecessor data structures [Ajt88]. For us,
the most relevant previous use of this technique is in the result by Brody and Chakrabarti [BC09], where a
weaker lower-bound is proved on GHD.

Their proof, as ours, identifies a large subsetA of inputs on which Alice sends the same message. The
“largeness” ofA is used to identify a suitable subset of(n/3) coordinates such that Alice can “lift” any

2In fact, the classesC andC′ are often designed in such a way that an instance inC is a “direct sum” of several independent
instances inC′

3The idea of going to the sphere was also used by Jayram et al. [JKS08] for a simplified one-round lower bound. As we will
see in Section 2, doing so is perhaps even more natural than working with the combinatorial version; in particular it is then easy to
make GHD into adimension-independentproblem.
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(n/3)-bit input x̃, defined on these coordinates, to somen-bit input x ∈ A. In the resulting protocol for
(n/3)-bit inputs, the first message is now constant, hence redundant, and can be eliminated.

The input size thus shrinks fromn to n/3 in one round elimination step. As a result of this constant-
factor shrinkage, the Brody-Chakrabarti final lower bound necessarily decays exponentially with the number
of rounds. Our proof crucially avoids this shrinkage of input size by instead considering thegeometryof the
setA, and exploiting the natural invariance of the GHD predicateto small perturbations of the inputs.

Remark. This round elimination result was obtained in July 2009. Soon after, in August 2009, the bound
was actually improved by some us of to the optimalΩ(n) independent of the number of rounds, see [CR09].
However, the techniques used are completely different, andas such we feel our result and its proof are of
independent interest.

1.3 Applications to streaming

The study of gapped versions of the Hamming distance problemby Indyk and Woodruff [IW03] was mo-
tivated by the streaming model of computation, in particular the problem of approximating the number of
distinct elements in a data stream. For many data stream problems, including the distinct elements problem,
the goal is to output a multiplicative approximation of somereal-valued quantity. Usually, bothrandom-
izationandapproximationare required. When both are allowed, there are often remarkably space-efficient
solutions.

As Indyk and Woodruff showed,communication lower boundsfor gapped versions of the Hamming
distance problem implyspace lower boundson algorithms that output the number of distinct elements in
a data stream up to a multiplicative approximation factor1 ± γ. The reduction from the gapped version
of Hamming distance works as follows. Alice converts hern-bit string x = x1x2 · · · xn into a stream of
tuplesσ = 〈(1, x1), (2, x2), . . . , (n, xn)〉. Bob convertsy into τ = 〈(1, y1), (2, y2), . . . , (n, yn)〉 in a similar
fashion. Using a streaming algorithm for the distinct elements problem, Alice processesσ and sends the
memory contents to Bob, who then processesτ starting from where Alice left off. In this way, they estimate
the number of distinct elements inσ ◦ τ . Note that each element inσ is unique, and that elements inτ are
distinct from elements inσ precisely whenxi 6= yi. Hence, an accurate approximation (γ = Ω(1/

√
n)

is required) for the number of distinct elements inσ ◦ τ gives an answer to GHD. This reduction can be
extended to multi-pass streaming algorithms in a natural way: when Bob is finished processingτ , he sends
the memory contents back to Alice, who begins processingσ a second time. Generalizing, it is easy to see
that ap-pass streaming algorithm gives a(2p − 1)-round communication protocol, where each message is
the memory contents of the streaming algorithm. Accordingly, a lower bound on the length of the largest
message of(2p − 1)-round protocols gives a space lower bound for thep-pass streaming algorithm.

Thus, the one-round linear lower bound by Indyk and Woodruff[IW03] yields the desiredΩ(1/γ2)
(one-pass) space lower bound for the streaming problem. Similarly, our new communication lower bounds
imply Ω(1/(γ2p2 log p)) space lower bounds forp-pass algorithms for the streaming problem. This bound
is Ω(1/γ2−o(1)) for all p = no(1) and improves on previous bounds for allp = o(n1/4/

√
log n).

Organization of the paper. We start with some preliminaries in Section 2, including a discussion of
the key measure concentration results that we will use, bothfor the sphere and for the Hamming cube, in
Section 2.2. In Section 3 we prove our main result, while in Section 4 we give the simple combinatorial
proof of the slightly weaker result mentioned above.
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2 Preliminaries

Notation. For x, y ∈ R
n, let d(x, y) := ‖x − y‖ be the Euclidean distance betweenx andy. Forz ∈ R,

definesgn(z) := 0 if z ≥ 0, andsgn(z) = 1 otherwise. For a setS ⊆ R
n, let d(x, S) be the infimum over

all y ∈ S of d(x, y). The unique rotationally-invariant probability distribution on then-dimensional sphere
S

n−1 is the Haar measure, which we denote byν. When we say that a vector is taken from the uniform
distribution over a measurable subset of the sphere, we willalways mean that it is distributed according to
the Haar measure, conditioned on being in that subset.

Define the max-cost of a communication protocol to be the length of the longestsinglemessage sent
during an execution of the protocol, for a worst-case input.We useRk

ε(f) to denote the minimal max-cost
amongst all two-party,k-round, public-coin protocols that computef with error probability at mostε on
every input (here a “round” is one message). See [KN97] for precise definitions.

2.1 Problem definition

We will prove our lower bounds for the problemGHDd,γ , whered is an integer andγ > 0. In this problem
Alice receives ad-dimensional unit vectorx, and Bob receives ad-dimensional unit vectory, with the
promise that|x · y| ≥ γ. Alice and Bob should outputsgn(x · y).

We show thatGHDn,1/
√

n has essentially the same randomized communication complexity as the prob-
lem GHD that we defined in the introduction. Generalizing that definition, for anyg > 0 define the problem
GHDn,g, in which the input is formed of twon-bit stringsx andy, with the promise that|∆(x, y)−n/2| ≥ g,
where∆ is the Hamming distance. Alice and Bob should output0 if ∆(x, y) < n/2 and1 otherwise.

The following proposition shows that for any
√

n ≤ g ≤ n, the problems GHDn,g andGHDd,γ are es-
sentially equivalent from the point of view of randomized communication complexity (with shared random-
ness) as long asd ≥ n andγ = Θ(g/n). This proposition also shows that the randomized communication
complexity ofGHDd,γ is independent of the dimensiond of the input, as long as it is large enough with
respect to the gapγ.

Proposition 3. For everyε > 0, there is a constantC0 = C0(ε) such that for every integersk, d ≥ 0 and√
n ≤ g ≤ n, we have

Rk
2ε(GHDd,C0g/n) ≤ Rk

ε (GHDn,g) ≤ Rk
ε(GHDn,2g/n).

Proof. We begin with the right inequality. The idea is that a GHDn,g protocol can be obtained by applying
a givenGHD protocol to a suitably transformed input. Letx, y ∈ {0, 1}n be two inputs to GHDn,g.
Define x̃ = ((−1)xi/

√
n)i=1,...,n and ỹ = ((−1)yi/

√
n)i=1,...,n. Thenx̃, ỹ ∈ S

n−1. Moreover,x̃ · ỹ =
1 − 2∆(x, y)/n. Therefore, if∆(x, y) ≥ n/2 + g then x̃ · ỹ ≤ −2g/n, and if ∆(x, y) ≤ n/2 − g then
x̃ · ỹ ≥ 2g/n. This provesRk

ε (GHDn,g) ≤ Rk
ε(GHDn,2g/n).

For the left inequality, letx andy be two unit vectors (in any dimension) such that|x · y| ≥ γ, where
γ = C0g/n. Note that sinceg ≥ √

n, we haven = Ω(γ−2). Using shared randomness, Alice and Bob pick
a sequence of vectorsw1, . . . , wn, each independently and uniformly drawn from the unit sphere. Define
two n-bit stringsx̃ = (sgn(x · wi))i=1,...,n andỹ = (sgn(y · wi))i=1,...,n. Let α = cos−1(x · y) be the angle
betweenx andy. Then a simple argument (used, e.g., by Goemans and Williamson [GW95]) shows that the
probability that a random unit vectorw is such thatsgn(x ·w) 6= sgn(y ·w) is exactlyα/π. This means that
for eachi, the bitsx̃i andỹi differ with probability 1

π cos−1(x ·y), independently of the other bits ofx̃ andỹ.

The first few terms in the Taylor series expansion ofcos−1 arecos−1(z) = π
2 − z − z3

6 + O(z5). Hence,
for eachi, Prwi

(x̃i 6= ỹi) = 1/2 − Θ(x · y), and these events are independent for differenti. ChoosingC0
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sufficiently large, with probability at least1− ε, the Hamming distance betweenx̃ andỹ is at mostn/2− g
if x · y ≥ γ, and it is at leastn/2 + g if x · y ≤ −γ.

2.2 Concentration of measure

It is well known that the Haar measureν on a high-dimensional sphere is tightly concentrated around the
equator — aroundanyequator, which makes it a fairly counterintuitive phenomenon. The original phrasing
of this phenomenon, usually attributed to P. Lévy [Lév51], goes by showing that among all subsets of the
sphere, the one with the smallest “boundary” is the spherical cap Sx

γ = {y ∈ S
n−1 : x · y ≥ γ}. The

following standard volume estimate will prove useful (see,e.g., [Bal97], Lemma 2.2).

Fact 4. Letx ∈ S
n−1 andγ > 0. Thenν(Sx

γ ) ≤ e−γ2n/2.

Given a measurable setA, define itst-boundaryAt := {x ∈ S
n−1 : d(x,A) ≤ t}, for anyt > 0. At the

core of our results will be the standard fact that, for any not-too-small setA, the setAt contains almost all
the sphere, even for moderately small values oft.

Fact 5 (Concentration of measure on the sphere). For any measurableA ⊆ S
n−1 and anyt > 0,

Pr(x ∈ A) Pr(x /∈ At) ≤ 4 e−t2n/4, (1)

where the probabilities are taken according to the Haar measure on the sphere.

Proof. The usual measure concentration inequality for the sphere (Theorem 14.1.1 in [Mat02]) says that for
any setB ⊆ S

n−1 of measure at least1/2 and anyt′ > 0,

Pr(x /∈ Bt′) ≤ 2 e−(t′)2n/2.

This suffices to prove the fact ifPr(x ∈ A) ≥ 1/2. Assume for the rest of the proof thatPr(x ∈ A) < 1/2.
Let t0 be such thatAt0 has measure1/2; such at0 exists by continuity. Applying measure concentration to
B = At0 gives

Pr(x /∈ At′+t0) ≤ 2 e−(t′)2n/2, (2)

for all t′ > 0, while applying it toB = At0 yields

Pr(x ∈ At0−t′′) ≤ Pr(x 6∈ Bt′′) ≤ 2 e−(t′′)2n/2 (3)

for all t′′ ≤ t0, sinceAt0−t′′ is included in the complement of(At0)t′′ . Takingt′′ = t0 gives usPr(x ∈ A) ≤
2 e−t2

0
n/2. If t ≤ t0 then this suffices to prove the inequality. Otherwise, sett′ := t − t0 in (2) andt′′ := t0

in (3) and multiply the two inequalities to obtain the required bound, by using thatt20 + (t − t0)
2 ≥ t2/2

(which holds since2t20 + t2/2 − 2t t0 = (
√

2t0 − t/
√

2)2 ≥ 0).

Why the sphere? In Section 4 we give a proof of a slightly weaker lower bound than the one in our
main result by using measure concentration facts on the Hamming cube only. We present those useful facts
now, together with a brief discussion of the differences, interms of concentration of measure phenomenon,
between the Haar measure on the sphere and the uniform distribution over the hypercube. These differences
point to the reasons why the proof of Section 4 gives an inferior bound.

Similarly to our definition of a spherical cap, we can define a “Hamming cap”T x
c on the Hamming cube

asT x
c = {y ∈ {0, 1}n : ∆(x, y) ≤ n/2− c

√
n}. The analogue of Fact 4 is then given by the usual Chernoff

bound:

6



Fact 6. For all c > 0, we have2−n|T x
c | ≤ e−2c2 .

A result similar to Lévy’s, attributed to Harper [Har66], states that among all subsets (of the sphere) of
a given size, the cap is the one with the smallest boundary. Following a similar proof as for Fact 5, one can
get the following statement for the Hamming cube (see e.g. Corollary 4.4 in [Bar05]):

Fact 7 (Concentration of measure on the Hamming cube). Let A ⊆ {0, 1}n be any set, and defineAc =
{x ∈ {0, 1}n : ∃y ∈ A, ∆(x, y) ≤ c

√
n}. Then

Pr(x ∈ A) Pr(x /∈ Ac) ≤ e−c2, (4)

where the probabilities are taken according to the uniform distribution on the Hamming cube.

To compare these two statements, embed the Hamming cube in the sphere by mappingx ∈ {0, 1}n to the
vectorvx = 1√

n
((−1)xi)i∈[n]. Two strings of Hamming distancec

√
n are mapped to vectors with Euclidean

distance
√

2c/n1/4, so that inequality (4) is much weaker than inequality (1). In particular we see that, while
on the sphere most points are at distance roughly1/

√
n from any set of measure half, if we are restricted

to the Hamming cube then very few points are at a corresponding Hamming distance of1 from, say, the
set of all strings with fewer thann/2 1s, which has measure roughly1/2 in the cube. This difference is
crucial: it indicates that then-dimensional cube is too rough an approximation of then-dimensional sphere
for our purposes, perhaps explaining why our combinatorialbound in Section 4 yields a somewhat weaker
dependence on the number of rounds.

3 Main result

Our main result is the following.

Theorem 8. Let 0 ≤ ε ≤ 1/50. There exist constantsC, C ′ depending only onε such that the following
holds for anyγ > 0 and any integersn ≥ ε2/(4γ2) andk ≤ C ′/(γ ln(1/γ)): if P is a randomizedε-error
k-round communication protocol forGHDn,γ then some message has length at leastC

k2 lnk
· 1

γ2 bits.

Using Proposition 3 we get a lower bound for the Hamming cube version GHD= GHDn,
√

n:

Corollary 9. Anyε-error k-round randomized protocol for GHD communicatesΩ(n/(k2 ln k)) bits.

This follows from Theorem 8 whenk = o(
√

n/ log n). If k is larger, then the bound stated in the
Corollary is in fact weaker than the generalΩ(

√
n) lower bound which we sketched in the introduction.

3.1 Proof outline

We now turn to the proof of Theorem 8. Letε, γ andn be as in the statement of the theorem. Since lowering
n only makes theGHDn,γ problem easier, for the rest of this section we assume thatn := ε2/(4γ2) is fixed,
and for simplicity of notation we writeGHDγ for GHDn,γ .
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Measurability. Before proceeding with the proof, we first need to handle a small technicality arising from
the continuous nature of the input space: namely, that the distributional protocol might make decisions
based on subsets of the input space that are not measurable. To make sure that this does not happen, set
δ = γ/4 and consider players Alice and Bob who first round their inputs to the closest vector in a fixedδ-
net, and then proceed with anε-error protocol forGHDγ/2. Since the rounding changesx ·y by at mostγ/2,
provided Alice and Bob are given valid inputs toGHDγ they will succeed with probability1−ε. Hence any
randomizedε-error protocol forGHDγ/2 can be transformed into a randomizedε-error protocol forGHDγ

with the same communication, but which initially rounds itsinputs to a discrete set. We prove a lower bound
on the latter type of protocol. This will ensure that all setsencountered in the proof are measurable.

Distributional complexity. By Yao’s principle it suffices to lower-bound thedistributional complexity,
i.e., to analyzedeterministicprotocols that are correct with probability1 − ε under some input distribution.
As our input distribution forGHDγ we take the distribution that is uniform over the inputs satisfying the
promise|x · y| ≥ γ.

Given our choice ofn, Claim 11 below guarantees that theν × ν-measure of non-promise inputs is at
mostε. Hence it will suffice to lower-bound the distributional complexity of protocols making error at most
2 ε under the distributionν × ν. We define anε-protocol to be a deterministic communication protocol for
GHDn,γ whose error under the distributionν×ν is at mostε, where we say that the protocol makes an error
if P (x, y) 6= sgn(x, y).

We prove a lower bound on the maximum length of a message sent by anyε-protocol, via round elimi-
nation. The main reduction step is given by the following technical lemma:

Lemma 10 (Round Elimination on the sphere). Let 0 ≤ ε ≤ 1/25, γ > 0, n = ε2/(4γ2), and 1 ≤
κ ≤ k. Assume there is aκ-round ε-protocol P such that the first message has length bounded asc1 ≤
C1

n
k2 ln k

−7 ln(2k) whereC1 is a universal constant. Then there is a(κ−1)-roundε′-protocolQ (obtained
by eliminating the first message ofP ), where

ε′ ≤
(

1 +
1

k

)

ε +
1

16k
.

Before proving this lemma in Section 3.2, we show how it implies Theorem 8.

Proof of Theorem 8.We will show that in anyk-round(2 ε)-protocol, there is a message sent of length at
leastC1n/(k2 ln k) − 7 ln(2k). The discussion in the “Distributional complexity” paragraph above shows
this suffices to prove the theorem, by settingC = C1ε

2/8, and choosingC ′ small enough so that the bound
onk in the statement of the theorem implies that7 ln(2k) < C1n/(2k2 ln k).

Let P be ak-round (2 ε)-protocol, and assume for contradiction that each round of communication
uses at mostC1n/(k2 ln k) − 7 ln(2k) bits. The recurrenceεκ = (1 + 1/k)εκ−1 + 1/(16k), ε0 = 2 ε,
is easily solved toεκ = (1 + 1/k)κ(2 ε + 1/16) − 1/16, so that applying Lemma 10k times leads to a
0-roundprotocol forGHDγ that errs with probability at mostε′ ≤ e (2 ε + 1/16) − 1/16 ≤ 1/4 over the
input distributionν × ν. We have reached a contradiction: such a protocol needs communication and hence
cannot be 0-round. HenceP must send a message of length at leastC1n/(k2 ln k)−7 ln(2k), which is what
needed to be shown.

3.2 The main reduction step

Proof of Lemma 10.Let P (x, y) denote the output of the protocol on inputx, y. Definex ∈ S
n−1 to

be δ-good if Prν×ν(P (x, y) errs|x) ≤ δε. By Markov’s inequality, at least a(1 − 1/δ)-fraction of x
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(distributed according toν) are good. For a given messagem, let Am be the set of all goodx on which
Alice sendsm as her first message. The setsAm, over all messagesm ∈ {0, 1}c1 , form a partition of
the set of goodx. Definem1 := argmaxmν(Am) and letA := Am1

. Settingδ = 1 + 1/k, we have
ν(A) ≥

(

1 − 1
δ

)

2−c1 ≥ e−c1−ln(k+1).
We now define protocolQ. Alice receives an input̃x, Bob receives̃y, both distributed according toν.

Alice computes the pointx ∈ A that is closest tõx, and Bob setsy := ỹ. They run protocolP (x, y) without
Alice sending the first message, so Bob starts and proceeds asif he received the fixed messagem1 from
Alice.

To prove the lemma, it suffices to bound the error probabilityε′ of Q with input x̃, ỹ distributed according

to ν × ν. Defined1 = 2

√

c1+6 ln(2k)+2
n . We consider the following bad events:

• BAD1 : d(x̃, A) > d1

• BAD2 : P (x, y) 6= sgn(x · y)

• BAD3 : d(x̃, A) ≤ d1 but sgn(x · y) 6= sgn(x̃ · ỹ).

If none of those events occurs, then protocolP outputs the correct answer. We bound each of them sepa-
rately, and will conclude by upper boundingε′ with a union bound.

The first bad event can be easily bounded using the measure concentration inequality from Fact 5. Since
x̃ is uniformly distributed inSn−1 andPr(A) ≥ e−c1−ln(k+1), we get

Pr(BAD1) ≤ 4 e−d2

1
n/4+c1+ln(k+1) ≤ 4 e−5 ln(2k)−2 ≤ 1

32k
.

The second bad event has probability bounded by(1+1/k) ε by the goodness ofx. Now consider event
BAD3. Without loss of generality, we may assume thatx̃ · ỹ = x̃ · y > 0 but x · y < 0 (the other case is
treated symmetrically). In order to bound BAD3, we will use the two following claims. The first shows that
the probability that̃x · y is close to0 for a random̃x andy is small. The second uses measure concentration
to show that, if̃x · y is not too close to0, then moving̃x to the nearbyx is unlikely to change the sign of the
inner product.

Claim 11. Letx, y be distributed according toν. For any realα ≥ 0,

Pr(0 ≤ x · y ≤ α) ≤ α
√

n

Proof. Lettingωn be the volume of then-dimensional Euclidean unit ball, we can write (see e.g., [BGK+98],
Lemma 5.1)

Pr(0 ≤ x · y ≤ α) =
(n − 1)ωn−1

n ωn

∫ α

0
(1 − t2)

n−3

2 dt

≤ α
√

n

where we usedωn−1

ωn
<

√

n+1
2π <

√
n.

Claim 12. Letx, x̃ be two fixed unit vectors at distance‖x − x̃‖ = d ∈ [0, d1], and0 < α ≤ 1/(4
√

n). Let
y be taken according toν. Then

Pr(x̃ · y ≥ α ∧ x · y < 0) ≤ e−α2n/(8d2

1
).
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Proof. Note thatx · x̃ = 1 − ‖x − x̃‖2/2 = 1 − d2/2. Since the statement of the lemma is rotationally-
invariant, we may assume without loss of generality that

x̃ = (1, 0, 0 . . . , 0),

x = (1 − d2/2,−
√

d2 − d4/4, 0, . . . , 0),

y = (y1, y2, y3, . . . , yn).

Therefore,y1 ≥ α whenx̃ · y ≥ α. Note that

x · y = x1y1 + x2y2 ≥ (1 − d2/2)α −
√

d2 − d4/4 y2.

Hence the event̃x · y ≥ α ∧ x · y < 0 implies

y2 >
(1 − d2/2)α
√

d2 − d4/4

≥ α

2d

where we used the fact thatd ≤ d1 ≤ 1, given our assumption onc1. By Fact 4, the probability that, wheny
is sampled fromν, y2 is larger thanα/(2d) is at moste−α2n/(8d2). Hence the probability that both̃x · y ≥ α
andx · y < 0 happen is at most as much.

Settingα = 1/(128k
√

n), by Claim 11 we find that the probability that0 ≤ x̃ · y ≤ α is at most

1/(128k). Furthermore, the probability thatx̃ · y ≥ α andx · y < 0 is at mostexp
(

− n
219k2(c1+6 ln(2k)+2)

)

by Claim 12. This bound is less than1/(128k) given our assumption onc1, providedC1 is a small enough
constant. Putting both bounds together, we see that

Pr(x̃ · y ≥ 0 ∧ x · y < 0) < 1/(64k).

The event that̃x · y < 0 but x · y ≥ 0 is bounded by1/(64k) in a similar manner. Hence,Pr(BAD3) <
1/(32k). Taking the union bound over all three bad events concludes the proof of the lemma.

4 A simple combinatorial proof

In this section we present a combinatorial proof of the following:

Theorem 13. Let 0 ≤ ε ≤ 1/50. There exists a constantC ′′ depending onε only, such that the following
holds for anyg ≤ C ′′√n andk ≤ n1/4/(1024 log n): if P is a randomizedε-error k-round communication
protocol forGHDn,g then some message has length at least n

(512k)4 log2 k
bits.

Even though this is a weaker result than Theorem 8, its proof is simpler and is based on concentration of
measure in the Hamming cube rather than on the sphere (we refer to Section 2.2 for a high-level comparison
of the two proofs). Interestingly, the dependence on the number of rounds that we obtain is quadratically
worse than that of the proof using concentration on the sphere. We do not know if this can be improved
using the same technique.

We proceed as in Section 3.1, observing that it suffices to lower-bound the distributional complexity of
GHDn,g under a distribution uniform over the inputs satisfying thepromise|∆(x, y) − n/2| ≥ g. In fact,
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as we did before, by takingC ′′ small enough we can guarantee that the number of non-promiseinputs is at
mostε 2n. Hence it will suffice to lower-bound the distributional complexity of protocols making error at
most2 ε under the uniform input distribution. We define anε-protocol to be a deterministic communication
protocol for GHD whose distributional error under the uniform distribution is at mostε. The following is
the analogue of Lemma 10, from which the proof of Theorem 13 follows as in Section 3.1.

Lemma 14 (Round Elimination on the Hamming cube). Let 0 < ε ≤ 1/25 andκ, k be two integers such
that k ≥ 128 and 1 ≤ κ ≤ k ≤ n1/4/(1024 log n). Assume that there is aκ-round ε-protocol P such
that the first message has length bounded byc1 ≤ n/((512k)4 log2 k). Then there exists a(κ − 1)-round
ε′-protocolQ (obtained by eliminating the first message ofP ) where

ε′ ≤
(

1 +
1

k

)

ε +
1

16k
.

Proof. Define x ∈ {0, 1}n to be good if Pr(P (x, y) errs|x) ≤ (1 + 1/k)ε. By Markov’s inequality,
at least a1/(k + 1)-fraction of x ∈ {0, 1}n are good. For a given messagem, let Am := {goodx :
Alice sendsm givenx}. The setsAm, over all messagesm ∈ {0, 1}c1 , together form a partition of the
set of goodx. Definem1 := argmaxm|Am|, and letA := Am1

. By the pigeonhole principle, we have
|A| ≥ 1

k+12n−c1.
We now define protocolQ. Alice receives an input̃x, Bob receives̃y, uniformly distributed. Alice

computes the stringx ∈ A that is closest tõx in Hamming distance, and Bob setsy := ỹ. They run
protocolP (x, y) without Alice sending the first message, so Bob starts and proceeds as if he received the
fixed messagem1 from Alice.

To prove the lemma, it suffices to bound the error probabilityε′ of Q under the uniform distribution.
Defined1 = 9

√
n/((1024k)2 log k). As in the proof of Lemma 10, we consider the following bad events:

• BAD1 : ∆(x, x̃) > d1
√

n

• BAD2 : P (x, y) 6= GHD(x, y)

• BAD3 : ∆(x, x̃) ≤ d1
√

n but GHD(x̃, y) 6= GHD(x, y)

If none of those events occurs, then protocolP outputs the correct answer. We bound each of them sepa-
rately, and will conclude by a union bound.

The first bad event is easily bounded using Fact 7, which implies that

Pr(x̃ /∈ Ad1
) ≤ e−81n/((1024k)4 log2 k)2c1+log(k+1) ≤ 2

k2
≤ 1

32k

given our assumptions onc1 andk. The second bad event is bounded by(1 + 1/k) ε, by definition of the
setA.

We now turn to BAD3. The event that GHD(x̃, y) 6= GHD(x, y) only depends on the relative distances
betweenx, x̃, andy, so we may apply a shift to assume thatx = (0, . . . , 0). Without loss of generality, we
assume that∆(x̃, y) > n/2 and|y| < n/2 (the error bound when∆(x̃, y) < n/2 and|y| > n/2 is proved
in a symmetric manner). Note that, sincey is uniformly random (subject to|y| < n/2), with probability
at least1 − 1/(128k), we have|y| ≤ n/2 − √

n/(128k). Hence we may assume that this holds with an
additive loss of at most1/(128k) in the error. Now

∆(x̃, y) > n/2 ⇐⇒ |x̃| + |y| − 2|x̃ ∩ y| > n/2

⇐⇒ |x̃ ∩ y| <
|x̃| + |y| − n/2

2
.
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It is clear that the worst case in this statement is for|y| = n/2 − √
n/(128k) and|x̃| = ∆(x, x̃) = d1

√
n.

By symmetry, the probability that this event happens is the same as if we fix anyy of the correct weight,
and x̃ is a random string of weightd1

√
n. Since the expected intersection size is|x̃|/2 − d1/(128k), by

Hoeffding’s inequality (see e.g. the bound on the tail of thehypergeometric distribution given in [Chv79]),
for a =

√
n/(256k) − d1/(128k)

Pr

(

|x̃ ∩ y| ≤ |x̃| + |y| − n/2

2

)

= Pr (|x̃ ∩ y| ≤ E[|x̃ ∩ y|] − a)

≤ e−2a2/(d1

√
n).

Given our choice ofd1 we havea ≥ 3
√

n/(4·256k), and hence the upper bound is at most1/k2 ≤ 1/(128k),
given our assumption onk. Applying the union bound over all bad events then yields thelemma.
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