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Abstract. We develop a new technique for proving lower bounds in
property testing, by showing a strong connection between testing and
communication complexity. We give a simple scheme for reducing com-
munication problems to testing problems, thus allowing us to use known
lower bounds in communication complexity to prove lower bounds in
testing. This scheme is general and implies a number of new testing
bounds, as well as simpler proofs of several known bounds.
For the problem of testing whether a boolean function is k-linear (a par-
ity function on k variables), we achieve a lower bound of Ω(k) queries,
even for adaptive algorithms with two-sided error, thus confirming a
conjecture of Goldreich (2010a). The same argument behind this lower
bound also implies a new proof of known lower bounds for testing re-
lated classes such as k-juntas. For some classes, such as the class of
monotone functions and the class of s-sparse GF(2) polynomials, we
significantly strengthen the best known bounds.
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1. Introduction

The field of property testing seeks to formalize the question: what
can we determine about a large object, with limited access to the
object itself? In general the large object may be anything—for
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instance a graph on n nodes, or a function on n variables. In a
typical property testing setup, a tester who has unbounded com-
putational power is given query access to the large object. The
tester’s goal is to accept the object if it has some property P , and
reject it if it is “far” from having property P .

In this paper we will primarily concern ourselves with the case
when the large object is a boolean function f on n bits. In this
case, the tester’s goal is to accept f with probability at least 2/3 if
f has property P , and reject with probability at least 2/3 if f must
be modified on an ε fraction of the 2n possible inputs in order to
have property P . The query complexity (i.e. the number of times
the testing algorithm must query f) should hopefully be a small
function of ε and n.

The notion of testing boolean functions in this framework goes
back to the seminal work of Rubinfeld & Sudan (1996) and has
several connections to complexity theory (in particular PCPs and
hardness of approximation), as well as computational learning the-
ory (Ron 2008). Over the last two decades, researchers have ex-
erted a considerable amount of effort to determine the query com-
plexity for testing properties of a function f , such as whether f
is a linear function (Blum et al. 1993), whether f is isomorphic
to a given function (Alon & Blais 2010; Blais & O’Donnell 2010;
Chakraborty et al. 2011b), whether f is a k-junta (Blais 2008,
2009; Fischer et al. 2004), a monotone function (Fischer et al. 2002;
Goldreich et al. 2000), a dictator (Parnas et al. 2002), a halfspace
(Matulef et al. 2009), an s-sparse polynomial, a size-s decision tree,
etc. (Diakonikolas et al. 2007). Starting with the ground-breaking
work of Goldreich et al. (1998), there has also been much effort
directed at determining the query complexity for testing proper-
ties of graphs and, more generally, of combinatorial objects. (See,
e.g., Goldreich 2010b; Ron 2009.)

Over the course of this effort, a variety of techniques have been
developed for designing property testing algorithms, thus proving
testing upper bounds. However, as is often the case in theoretical
computer science, lower bounds are harder to come by. Although
several lower bounds for specific problems are known, few general
techniques are known beyond the use of Yao’s minimax lemma.
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Communication complexity is an area which has collected many
effective techniques for proving lower bounds in other areas of com-
puter science. In a typical setup, two parties, Alice and Bob, each
have an input and they would like to decide something about their
joint input. Their computational power is unbounded, but they
would like to compute the answer with as little communication as
possible.

The communication complexity framework has been extensively
studied; in particular, several problems are known to require a large
amount of communication. These include set-disjointness, in-
dex, inner-product, and gap-hamming-distance. The hard-
ness of these and related problems has been used to obtain lower
bounds in many areas such as streaming algorithms, circuit com-
plexity, data structures, and proof complexity (Indyk & Woodruff
2003; Kushilevitz & Nisan 1997; Miltersen et al. 1995).

Property testing and communication complexity have striking
similarities. Both involve parties with unbounded computational
power (in one case, the tester, and in the other case, the commu-
nicating players), and both involve algorithms which are restricted
by the parties’ limited access to their input. Despite these similar-
ities, no previous connection between these fields has been made.

In this work we show that there is indeed a strong connection
between testing and communication complexity. More specifically,
we show how to reduce certain communication problems to prop-
erty testing problems. This reduction method represents a new
approach to proving testing lower bounds. This approach turns
out to be quite fruitful, both for proving new bounds and for giv-
ing simpler proofs of known bounds in property testing.

1.1. Our Results. A detailed description of our results follows
below.

Testing k-linear functions. The function f : {0, 1}n → {0, 1}
is linear, i.e. a parity function, when there exists a set S =
{i1, . . . , is} ⊆ [n] such that for every x ∈ {0, 1}n, f(x) = xi1⊕· · ·⊕
xis . When |S| = k, we say that f is a k-linear function. The prob-
lem of testing k-linear functions was first studied by Fischer et al.



4 Blais, Brody & Matulef

(2004). The best lower bound is due to Goldreich (2010a), who
showed that Ω(

√
k) queries are required to test k-linear functions.

He also showed that non-adaptive testers require Ω(k) queries to
test the same property, and conjectured that this stronger lower
bound holds for all testers (adaptive or not).1

We confirm Goldreich’s conjecture. Using the same construc-
tion, we also obtain lower bounds on the query complexity for
testing juntas,2 testing functions of low Fourier degree, and testing
sparse polynomials.

Theorem 1.1. Fix 1 < k < n − 1. At least Ω(min{k, n − k})
queries are required to test

(i) k-linear functions,

(ii) k-juntas,

(iii) functions of Fourier degree at most k, and

(iv) functions with k-sparse polynomial representation in GF(2).

Remark 1.2. In parallel work, Blais & Kane (2011) simultane-
ously obtained a different proof of Goldreich’s conjecture using
Fourier-analytic methods.

Theorem 1.1 has implications for the problem of isomorphism
testing, or testing whether an unknown function f is equivalent,
up to permutation of variables, to a fixed function g : {0, 1}n →
{0, 1}. Alon & Blais (2010) showed that for most functions g,
testing g-isomorphism non-adaptively requires Ω(n) queries. Sim-
ilarly, Chakraborty et al. (2011b) showed that for every k ≤ n,

1The conjecture and results of Goldreich (2010a) are stated in terms of
testing ≤k-linear functions (the class of functions that are parities on at most
k bits) but the proofs of Goldreich (2010a) give identical lower bounds for
testing k-linearity. Similarly, the technique in our lower bounds for testing
k-linearity gives identical bounds for testing ≤k-linearity.

2Informally, a function is a k-junta if it has at most k relevant variables. For
a complete definition of the properties stated in Theorem 1.1, see Section 3.
Similarly, the properties introduced in the rest of the introduction are defined
formally in the sections containing the proofs of the corresponding theorems.
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there exists a k-junta g such that testing g-isomorphism requires
Ω(k) queries. Both of these results are non-constructive, and they
raise the question of whether we can identify an explicit func-
tion for which the same lower bounds apply. Theorem 1.1 shows
that for every k ≤ n

2
, the lower bound applies to the function

g : x 7→ x1 ⊕ · · · ⊕ xk since testing isomorphism to this function is
equivalent to testing k-linearity.

Testing and OBDDs. Fix some finite sets X and Y . An ordered
binary decision diagram (OBDD) is a directed acyclic graph with
a single root and at most n + 1 levels of nodes. The sink nodes
in the last level are each associated with some element from Y .
All other levels are associated with an index from {1, . . . , n}. The
nodes in these levels have out-degree |X|, with one edge associated
with each element of X. For x = (x1, . . . , xn) ∈ Xn, define f(x) to
be the value of the sink node that we reach when we start at the
source, then at each level we follow the edge associated with xi,
where i is the index associated with the current level. The resulting
function f : Xn → Y is the function computed by the OBDD. The
width of an OBDD is the maximum number of nodes at any level.

Ron & Tsur (2009) first studied the problems of determining
the query complexity for testing whether a function is computable
by small-width OBDDs. Goldreich (2010a) continued this line of
research and also asked whether we can establish stronger lower
bounds for the query complexity of testing properties that include
a subset of the functions computable by small-width OBDDs. In
particular, he showed that there is a property consisting of func-
tions computable by width-2 OBDDs that requires Θ(n) queries to
test. Theorem 1.1 gives a different proof of the same result, since
n
2
-linear functions are computable by width-2 OBDDs.

Goldreich (2010a) conjectured in that an identical lower bound
also held for testing an explicit subclass of functions computable by
width-3 OBDDs and for testing functions computable by width-4
OBDDs. Recently, he observed (private communication) that the
method of the proof of Theorem 1.1 can also be used to prove these
conjectures:
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Theorem 1.3. Testing the class of linear functions from GF(3)n

to GF(3) that have only 0-1 coefficients requires Θ(n) queries.

Note that this class of functions can be trivially computed by
a width-3 OBDD by maintaining a partial sum of the inputs.

Theorem 1.4. Testing the class of functions that are computable
by width-4 OBDDs requires Θ(n) queries.

Remark 1.5. Theorem 1.4 was proved independently by Brody
et al. (2011).

Testing monotonicity. Fix R ⊆ R. The function f : {0, 1}n →
R is monotone if for any two inputs x, y ∈ {0, 1}n where x1 ≤
y1, . . . , xn ≤ yn, we have that f(x) ≤ f(y). The problem of test-
ing monotonicity was first studied by Goldreich et al. (2000), who
introduced a natural tester: sample random edges from the hyper-
cube and verify that the function is monotone on those edges. This
algorithm makes O(n log |R|) queries (Dodis et al. 1999). An im-
portant open problem in property testing is to determine whether
there exist more efficient monotonicity testers.

Despite much attention to monotonicity testing (Batu et al.
1999; Bhattacharyya et al. 2009; Briët et al. 2010; Dodis et al.
1999; Ergun et al. 2000; Fischer et al. 2002; Goldreich et al. 2000),
lower bounds for the query complexity of this problem have been
elusive. Previously, the best bound for non-adaptive testers, due
to Fischer et al. (2002), was only Ω(log n). This translates to a
Ω(log log n) lower bound for general (adaptive) testers.3 We pro-
vide a significant improvement to this lower bound for functions
with large ranges:

Theorem 1.6. Testing f : {0, 1}n → R for monotonicity requires
Ω(min{n, |R|2}) queries.

Notably, Theorem 1.6 gives the first progress on the natural-
monotonicity-tester problem mentioned above: it shows that for

3Stronger bounds have been established for testers with one-sided error.
See (Briët et al. 2010; Fischer et al. 2002) for details.
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√
n ≤ |R| ≤ poly(n), no monotonicity tester can improve on the

query complexity of the natural tester by more than a logarithmic
factor. We note, however, that this problem is still open in the
important special case when R = {0, 1}.

By a recent result of Seshadhri & Vondrák (2011), Theorem 1.6
also gives a new lower bound for the query complexity of testing
submodularity.

Corollary 1.7. Testing f : {0, 1}n → R for submodularity re-
quires Ω(n) queries.

Testing concise representations. Parnas, Ron & Samorodnit-
sky (2002) showed that testing whether a function can be repre-
sented by a monotone DNF with at most s terms can be done with
a number of queries that depends only on s. This result was gen-
eralized by Diakonikolas et al. (2007), who introduced the method
of testing by implicit learning and showed that this method can be
used to test whether a function can be represented by a DNF with
few terms, by a small decision tree, by a small branching program,
etc. Our technique gives lower bounds on the query complexity for
testing two of these properties.

Theorem 1.8. At least Ω(min{s, n − s}) queries are required to
test

(i) size-2s decision trees, and

(ii) size-s branching programs.

Testing juntas. The proof of Theorem 1.8 can also be extended
to answer a question of Fischer et al. (2004): they asked if the
query complexity of testing k-juntas can be reduced if the tester is
only required to reject functions that are far from (k+ t−2)-juntas
for some t > 0. We show that the answer to this question is “no”
for any t ≤ O(

√
k).

Theorem 1.9. Fix k ≤ n
2

and t > 0. Any algorithm that accepts
k-juntas and rejects functions 1

4
-far from (k + t − 2)-juntas with

high probability must make Ω
(

min{(k
t
)2, k}

)
queries.
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Remark 1.10. Subsequently, the result of Theorem 1.9 was es-
sentially strengthened by Ron & Tsur (2011), who showed that for
any constants ε and γ, a nearly linear lower bound of Ω(k/ log k)
queries holds even if we are only required to accept k-juntas and
reject functions that are ε-far from (1 + γ)k-juntas.

Testers with one-sided error. The technique we introduce for
proving new lower bounds can also be used to prove lower bounds
for testers with one-sided error (that is, testers which accept func-
tions with probability 1 if they have property P , and reject them
with probability at least 2/3 if they are far from having property
P). As a first application, we get a much stronger lower bound for
the query complexity of testing decision trees with one-sided error.

Theorem 1.11. At least Ω(s) queries are required to test size-s
decision trees with one-sided error.

We also obtain a lower bound on the query complexity of one-
sided testers for a subclass of halfspaces, the class of “signed” ma-
jority functions on k variables.

Theorem 1.12. Fix any constant γ ∈ (0, 1). For k ≤ γn, at least
Ω(k/ log k) queries are required to test signed k-majorities with
one-sided error.

1.2. Techniques. The main idea behind all of our lower bounds
is to show that the query complexity for testing a property P is
bounded below by the randomized communication complexity of
some well-studied communication game G. To do so, we introduce
a P-testing game. The definition of this game varies according to
the situation, but typically looks like this: Alice receives a boolean
function f , Bob receives a boolean function g, and they must test
whether the joint function h = f ⊕ g has the property P . We
can then relate the number of queries required to test whether h
has this property to the number of bits Alice and Bob need to
communicate. Finally, we show that the P-testing game requires
large communication by using it to solve G.
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This technique is best illustrated by example. In fact, we can
give a very simple sketch of the proof of Theorem 1.1 (i), by show-
ing how to reduce a version of the well-known set-disjointness
problem to testing k-linearity. Suppose Alice and Bob each have
sets of size k from a universe of size n. Suppose further that their
sets are guaranteed to either intersect in exactly one place, or not
at all, and they want to decide which is the case. We let k-disj de-
note this particular setting for set-disjointness. It is well-known
that the communication complexity of k-disj is Ω(k) (H̊astad &
Wigderson 2007; Kalyanasundaram & Schnitger 1992).

One way Alice and Bob can solve k-disj is by forming lin-
ear functions based on their two sets. For a set S ⊆ [n], define
ParityS to be the linear function on the bits indexed from S; i.e.,
ParityS(x) :=

⊕
i∈S xi. Given input sets A and B, Alice forms

the function f = ParityA and Bob forms the function g = ParityB.
The joint function h = f⊕g is 2k-linear if the sets do not intersect,
and (2k − 2)-linear if they do. Note that every 2k-linear function
is 1

2
-far from being (2k−2)-linear (see Proposition 3.4). Therefore,

they can determine if their sets intersect by emulating a testing al-
gorithm for (2k− 2)-linearity on h. The testing algorithm requires
oracle access to h, which neither Alice nor Bob have. However,
they do know f and g, so Alice and Bob can simulate oracle access
to h by exchanging f(x) and g(x), at a cost of two bits of com-
munication per query. The total number of bits communicated is
then twice the number of queries of the tester. Since we can lower
bound the number of bits communicated by Ω(k), this implies that
testing (2k − 2)-linearity also requires Ω(k) queries. By scaling k,
we achieve the first part of Theorem 1.1.

To summarize, our lower bound for testing k-linearity follows
from three inequalities. Letting Ck-linear

⊕ denote the communica-
tion game where Alice and Bob get f and g as input and wish
to determine if f ⊕ g is k-linear or far from k-linear, and using
Q(P) to denote the query complexity of testing for P and R(G)
to denote the randomized communication complexity of a commu-
nication game G, we achieve a lower bound on testing k-linearity
via the following chain of inequalities:

(1.13) 2Q(k-linear) ≥ R(Ck-linear
⊕ ) ≥ R(k-disj) = Ω(k) .
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All of the testing lower bounds in this paper follow the above struc-
ture. A crucial aspect of this proof technique is that emulating the
property testing algorithm must be done in a communication ef-
ficient manner. In the example above, the joint function h was
just the xor of Alice’s and Bob’s functions, so simulating each
query required only two bits of communication. For other lower
bounds, we require more complicated ways to build a joint func-
tions. However, as long as each h(x) can be simulated with low
communication, a similar lower bound will hold. We formalize this
statement in Lemma 2.4.

Note that in most situations, it is possible to use problems such
as k-disj whose communication complexity is well understood, and
therefore we get the equality in (1.13) essentially for free. The re-
duction in the first inequality is captured by Lemma 2.4, so for most
proofs, the bulk of the actual work is in proving a so-called “dis-
tance lemma”—that yes instances for the communication problem
map to instances where the combined function has property P , and
that no instances will map to functions that are far from having
P . In most cases, as in Proposition 3.4, these are simple to prove.

1.3. Organization. In Section 2, we introduce the communi-
cation complexity and property testing definitions, the Main Re-
duction Lemma (Lemma 2.4), and the communication complexity
lower bounds that we use in the later sections.

The proofs of Theorem 1.1–1.4, as well as the formal definitions
of the properties defined in those theorems, are presented in Sec-
tion 3. The lower bound in Theorem 1.6 for testing monotonicity
and the lower bound in Corollary 1.7 for testing submodularity are
presented in Section 4. We complete the proof of Theorem 1.8 re-
garding the query complexity for testing functions computable by
small decision trees or by small branching programs in Section 5.
In the same section, we also complete the proof of Theorem 1.9.
Finally, we present the lower bounds on the query complexity of
one-sided testers for decision trees (Theorem 1.11) and for unsigned
k-majority functions (Theorem 1.12) in Section 6.
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2. From Communication Complexity to
Property Testing

2.1. Property Testing Definitions. Recall that for a fixed
range R ⊆ R, a property of the functions {0, 1}n → R is a sub-
set of those functions. The distance between two functions f, g :
{0, 1}n → R is the fraction of inputs x ∈ {0, 1}n for which f(x) 6=
g(x). The distance between f and a property P is the minimum
distance between f and any function g in P . When the distance
from f to P is at least ε, we say that f is ε-far from P .

Definition 2.1 (Tester). An (ε, q)-tester for the property P of
functions {0, 1}n → R is a randomized algorithm that queries a
function f : {0, 1}n → R on at most q inputs from {0, 1}n and

(i) Accepts with probability at least 2
3

when f is in P ; and

(ii) Rejects with probability at least 2
3

when f is ε-far from P .

A tester is said to be non-adaptive if it selects its q queries
before observing the value of f on any of those queries; otherwise
it is adaptive. A tester that always accepts functions in P has one-
sided error ; a tester that accepts functions in P with probability
p for some 2

3
≤ p < 1 has two-sided error.

For any 0 < ε < 1, the query complexity of the property P at
distance ε, denoted Qε(P), is the minimum value of q for which
P has an (ε, q)-tester. Similarly, Q1

ε(P) and Qna
ε (P) denote the

minimum number of queries required to ε-test P with one-sided
error and non-adaptive testers, respectively. Throughout this work,
we will assume that ε is a small fixed constant—say, ε = 0.01
for concreteness—and for simplicity we state all query complexity
bounds only in terms of the other parameters and will omit ε from
the notation.

2.2. Communication Complexity Definitions. In this sub-
section, we review the basic communication complexity setup and
highlight some of the terms and concepts particularly relevant to
this article. For more details, we refer the interested reader to the
standard textbook by Kushilevitz & Nisan (1997).
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In a typical communication game, there are two parties—Alice,
who receives an input x, and Bob, who receives some input y. Al-
ice and Bob wish to jointly compute some function f(x, y) of their
inputs. Neither player sees all the information needed to compute
f , so they must communicate together to solve the problem. Com-
munication complexity is the study of how much communication
is necessary to compute f , for various functions f .

A protocol is a distributed algorithm that Alice and Bob use
to compute f(x, y); in particular, it specifies what messages Alice
and Bob send to each other. In a deterministic protocol, Alice’s
messages are a function only of her input x and the previous com-
munication in the protocol. Similarly, Bob’s messages are a func-
tion of y and the previous communication. The cost of a protocol
is the maximum (over all inputs) number of bits sent by Alice and
Bob. The deterministic communication complexity of f , denoted
D(f), is the minimum cost of a deterministic protocol computing
f .

In a randomized protocol, Alice and Bob have shared access
to a (public coin) random string r ∈ {0, 1}∗. We say that P is a
δ-error protocol for f if for any input pair x, y, P computes f(x, y)
with probability at least 1− δ, where the probability is taken over
the random string r. We use Rδ(f) to denote the minimum cost
of a δ-error protocol for f and define R(f) := R1/3(f). When
f is a binary function, we say that a protocol computes f with
one-sided error if there exists z ∈ {0, 1} such that P computes f
with certainty whenever f(x, y) 6= z, and with probability at least
1 − δ when f(x, y) = z. When considering randomized protocols
with one-sided error, it is important to note which “side” the error
guarantee is on. We use Rz

δ(f) to denote the minimum cost of
a randomized protocol for f that correctly computes f whenever
f(x, y) 6= z and computes f with probability at least 1−δ whenever
f(x, y) = z. We define Rz(f) := Rz

1/3(f).

A protocol is one-way if the communication consists of a sin-
gle message from Alice to Bob, who then outputs an answer. We
use R→δ (f) to denote the minimum communication cost of a ran-
domized, δ-error, one-way protocol for f . Finally, we use R→,zδ (f)
to denote the minimum communication cost of randomized one-
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way protocols for f with with one-sided error δ, and we define
R→,z(f) := R→,z1/3 (f).

2.3. The Main Reduction. Below we define a class of property
testing communication games and show how communication lower
bounds for these games yield query complexity lower bounds for
property testers. Our communication games are based on what we
call combining operators.

Definition 2.2 (Combining operator). A combining operator is
an operator ψ that takes as input two functions f, g : {0, 1}n → Z
and returns a function h : {0, 1}n → R.

We refer to the inputs f and g as the base functions of ψ. By con-
vention, we use h to refer to the output of ψ. Given a combining
operator ψ and a property P , we define CPψ to be the following
property testing communication game. Alice receives f . Bob re-
ceives a function g. They need to compute

CPψ (f, g) :=

{
1 if ψ(f, g) ∈ P
0 if ψ(f, g) is ε-far from P .

We prove all of our testing lower bounds by reducing from an
associated communication game CPψ . As mentioned in Section 1.2,
this reduction is simple—Alice and Bob solve CPψ by emulating a P-
testing algorithm on h := ψ(f, g). Note that neither Alice nor Bob
have enough information to evaluate a query h(x), because h de-
pends on both f and g. Instead, they must communicate to jointly
compute h(x). For this reduction to give a strong query complexity
lower bound for the property testing problem, it is essential that
the joint computation of h(x) occurs in a communication-efficient
manner.

The following definition gives a sufficient condition on combin-
ing operators that yield strong reductions to testing problems.

Definition 2.3 (Simple combining operator). A combining oper-
ator ψ is simple if for all f, g, and for all x, the query h(x) can be
computed given only x and the queries f(x) and g(x).
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For example, when the base functions are boolean, the combin-
ing operator defined by ψ(f, g) := f ⊕ g is clearly simple—each
h(x) = f(x)⊕ g(x) can trivially be computed from f(x) and g(x).
On the other hand, the combining operator ψ that returns the
function defined by h(x) :=

⊕
y∈T [f(y) · g(y)] is not simple when

T is a large set of strings (say a Hamming ball centered at x), since
computing h(x) requires knowledge of f(y) and g(y) for several y.

All of the property testing communication games we use in
this paper are based on simple combining operators and give us
a tight connection between property testing and communication
complexity via the following lemma.

Lemma 2.4 (Main Reduction Lemma). Fix Z to be a finite set.
For any simple combining operator ψ with base functions f, g :
{0, 1}n → Z and any property P , we have

(i) R(CPψ ) ≤ 2Q(P) · dlog |Z|e,

(ii) R0(CPψ ) ≤ 2Q1(P) · dlog |Z|e,

(iii) R→(CPψ ) ≤ Qna(P) · dlog |Z|e, and

(iv) R→,0(CPψ ) ≤ Qna,1(P) · dlog |Z|e.

Proof. We begin by proving (iii). Let A be a q-query non-
adaptive tester for P . We create a one-way protocol P for CPψ in the
following manner. Alice and Bob use public randomness to gener-
ate queries x(1), . . . , x(q). Then, Alice computes f(x(1)), . . . , f(x(q))
and sends them to Bob in a single (q · dlog |Z|e)-bit message.
For each i, Bob computes g(x(i)) and combines it with f(x(i))
to compute h(x(i)). Finally, Bob emulates A using the responses
h(x(1)), . . . , h(x(q)) and outputs 1 if and only if A accepts h.

If A has two-sided error, then by the correctness of A, P
computes CPψ with probability at least 2/3. Hence, R→(CPψ ) ≤
q · dlog |Z|e. In particular, if A is an optimal non-adaptive tester
with two-sided error, then q = Qna(P), and part (iii) of the lemma
is proved.

If A has one-sided error, then whenever h ∈ P , the protocol
P correctly outputs 1, and when h is ε-far from P , the proto-
col correctly outputs 0 with probability at least 2/3. Therefore,
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R→,0(CPψ ) ≤ q · dlog |Z|e. In particular, when A is an optimal non-
adaptive tester with one-sided error, R→,0(CPψ ) ≤ Q1(P) · dlog |Z|e.

Now, suppose A is a q-query adaptive tester for P . Again, Alice
and Bob use public randomness to generate queries x(1), . . . , x(q).
However, since A is adaptive, the distribution of the ith query x(i)

depends on h(x(j)) for all j < i. Instead of generating all queries in
advance, Alice and Bob generate queries one at a time. Each time a
query x(i) is generated, Alice and Bob exchange f(x(i)) and g(x(i)).
Since ψ is a simple combining operator, this is enough information
for Alice and Bob to individually compute h(x(i)), which in turn
gives them enough information to generate the next query with the
appropriate distribution. When h(x(1)), . . . , h(x(q)) have all been
computed, Bob outputs 1 if and only if A accepts h. This protocol
costs 2q · dlog |Z|e bits of communication, and if A is an optimal
adaptive tester, then R(CPψ ) ≤ 2Q(P) · dlog |Z|e. Similarly, if A
is an optimal adaptive tester with one-sided error, then R0(CPψ ) ≤
2Q1(P) · dlog |Z|e. �

2.4. Communication Complexity Problems. We achieve all
of our testing lower bounds via Lemma 2.4. To prove lower bounds
for CPψ , we reduce from one of several standard communication
complexity problems. However, we often require special flavors of
these problems—either we need protocols with one-sided error, or
we require the input to be restricted in some balanced way. We
describe the variants that we will need for our reductions in this
section.

Let n ∈ N, t := t(n), and x, y ∈ {0, 1}n. We use ◦ to denote
string concatenation and 0k (1k) to denote the string of k consec-
utive zeros (ones). Let x ⊕ y denote the bitwise exclusive-or of
x and y. We use 1 − x to denote the bitwise complement of x.
The Hamming weight of a string x, denoted |x|, is the number of i
such that xi = 1. The Hamming distance between strings x and y,
denoted ∆(x, y), is the number of coordinates i such that xi 6= yi.
Note that ∆(x, y) = |x⊕ y|.

We are interested in the following functions:
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Set-Disjointness. Alice and Bob are given n-bit strings x and
y respectively and wish to compute

disjn(x, y) :=
n∨
i=1

xi ∧ yi .

Equivalently, Alice and Bob’s inputs can be viewed as sets A,B ⊆
[n]. In this case, disj(A,B) = 1 if and only if their sets intersect.

When n is clear from context, we drop the subscript. A cele-
brated result of Kalyanasundaram & Schnitger (1992), later simpli-
fied by Razborov (1990) and Bar-Yossef et al. (2002), showed that
R(disjn) = Ω(n), even under the promise that A and B intersect
in at most one element.

Theorem 2.5 (Kalyanasundaram & Schnitger 1992).

R(disjn) = Ω(n).

We use a balanced version of disjointness called k-bal-disj. In
this version, Alice receives a set A ⊆ [n] of size |A| = bk/2c + 1,
Bob receives a set B ⊆ [n] of size dk/2e+ 1, and there is a promise
that |A ∩B| ≤ 1.

Lemma 2.6. For all 0 ≤ k ≤ n − 2, we have R(k-bal-disj) =
Ω (min{k, n− k}).

Proof. If n−k = O(1), there is nothing to prove. Otherwise, let
m := min{bk/2c+ 1, n− k− 2}. We reduce from disjm. Partition
the elements of [n] \ [m] into sets I := {m+ 1, . . . ,m+ 1 + bk/2c}
and J := {m + 2 + bk/2c, . . . , n}. Note that |I| = bk/2c + 1.
Furthermore, we have |J | ≥ dk/2e+ 1, since

|J | = n− (m+ 2 + bk/2c) + 1

= n− 1−m− bk/2c
= n− 1−m+ dk/2e − k
= dk/2e+ 1 + n− 2−m− k
≥ dk/2e+ 1 ,
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where the penultimate equality holds because k = bk/2c + dk/2e,
and the inequality comes from the fact that m ≤ n− k − 2.

Let A′ and B′ be the sets received by Alice and Bob respectively
as inputs to disjm. Alice pads her input with elements from I until
she gets a set of size bk/2c+ 1. Bob similarly pads his input with
elements from J . Let a := bk/2c+1−|A′| and b := dk/2e+1−|B′|.
Specifically, Alice sets A = A′ ∪ {m + 1, . . . ,m + a} and Bob sets
B = B′ ∪ {n, n− 1, . . . , n− b+ 1}.

Note that |A| = bk/2c + 1, |B| = dk/2e + 1, and A ∩ B =
A′∩B′. Therefore, a solution to k-bal-disj(A,B) gives a solution
to disjm(A′, B′), hence

R(k-bal-disj) ≥ R(disjm) = Ω(m) = Ω(min{k, n− k}) . �

Gap-Equality. Alice and Bob are given n-bit strings x and y
respectively and wish to compute

geqn,t(x, y) :=


1 if x = y ,

0 if ∆(x, y) = t ,

∗ otherwise.

We drop the subscripts when n is clear from context and t = n/8.
When geq(x, y) = ∗, we allow the protocol to output 0 or 1. We
are interested in Rz(geq); recall that Rz(geq) is the minimum
communication cost of a protocol for geq that only makes mis-
takes when geq(x, y) = z. The standard public-coin equality
protocol gives R0(geq) = O(1). For protocols that only err when
geq(x, y) = 1, the complexity is drastically different.

Buhrman et al. (1998) proved an Ω(n) lower bound on the de-
terministic communication complexity of geqn,n/2; their result ex-
tends to other gap sizes and to randomized protocols with one-sided
error.

Lemma 2.7 (Buhrman et al. 1998). For all even t = Θ(n), we
have R1(geqn,t) = Ω(n).4

4Curiously, the parity of t turns out to be necessary. Since ∆(x, y) =
|x|+ |y| − 2|x∧ y|, Alice and Bob can deterministically distinguish x = y from
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Gap-Hamming-Distance. Alice and Bob are given n-bit strings
x and y respectively and wish to compute

ghdn,t(x, y) :=


1 if ∆(x, y) ≥ n/2 + t ,

0 if ∆(x, y) ≤ n/2− t ,
∗ otherwise.

As in the definition of set-disjointness, it will occasionally be
useful to view inputs to ghd as sets A,B ⊆ [n] and to express
ghd in terms of the size of the symmetric difference |A∆B| rather
than Hamming distance ∆(x, y). The standard gap size for ghd is
t =
√
n. In this case, we drop the subscripts and use just ghd. A

tight lower bound of R(ghd) = Ω(n) is known, due to Chakrabarti
& Regev (2011).

Theorem 2.8 (Chakrabarti & Regev 2011). R(ghd) = Ω(n).

For larger gap sizes, a padding argument5 implicit in Brody et al.
(2010), together with the aforementioned Ω(n) bound for ghd,
shows that R(ghdn,t) = Ω((n/t)2) for all t = Ω(

√
n).

When we require one-sided error, the situation changes.

Lemma 2.9. For all z ∈ {0, 1} and all constant 0 < δ < 1/2,
Rz(ghdn,δn) = Ω(n).

Proof. First, we prove a lower bound for R0(ghdn,δn). Let d be
the least integer greater than or equal to δn, and let m := n/2 +d.
We reduce from geqm,2d. Specifically, let P be a protocol for
ghdn,δn that only makes errors when ghdn,δn(x, y) = 0. We use
it to construct a protocol Q for geqm,2d that makes mistakes

∆(x, y) being odd with a single bit of communication—Alice sends Bob the
parity of |x|, and Bob computes the parity of |x| + |y|. This does not affect
our property testing lower bounds.

5This padding argument reduces ghdn,
√
n to ghdn,t for any

√
n < t ≤

O(n). Choose n̂ such that n = (n̂/t(n̂))2, and letm := n̂/n. Then, given inputs
x, y ∈ {0, 1}n, Alice and Bob can compute ghdn,

√
n by repeating each string

m times. The resulting strings x̂ and ŷ have length n̂, and ghdn̂,t(n̂)(x̂, ŷ) =
ghdn,

√
n(x, y), hence a protocol for the former can be used to solve the latter.

It follows that R(ghdn̂,t(n̂)) ≥ R(ghdn,
√
n) = Ω(n) = Ω((n̂/t(n̂))2).
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only when x = y. Given inputs x, y ∈ {0, 1}m, Alice constructs
x̂ := x ◦ 0n−m, and Bob builds ŷ := y ◦ 1n−m. Then, they run
protocol P and output Q(x, y) := 1− P (x̂, ŷ). Note that if x = y,
then ∆(x̂, ŷ) = n/2− d ≤ n/2− δn, hence ghd(x̂, ŷ) = 0. Simi-
larly, when ∆(x, y) = 2d, we have ∆(x̂, ŷ) = n/2 + d ≥ n/2 + δn,
and ghd(x̂, ŷ) = 1. In either case, the new protocol correctly out-
puts geqm,2d(x, y) whenever P correctly computes ghdn,δn(x̂, ŷ).
Since P only makes mistakes when ghdn,δn(x̂, ŷ) = 0, it follows
that Q only makes mistakes when geqm,2d(x, y) = 1. Therefore,
R0(ghdn,δn) ≥ R1(geqm,2d) = Ω(m) = Ω(n).

Next, we prove a lower bound for R1(ghdn,δn). Observe that
ghdn,δn(x, y) = 1−ghdn,δn(x, 1−y). Therefore, Alice and Bob can
build a protocol for ghdn,δn which errs only when ghdn,δn(x, y) = 0
from one which errs only when ghdn,δn(x, y) = 1 by comput-
ing ghdn,δn(x, 1 − y) and inverting the output. It follows that
R1(ghdn,δn) ≥ R0(ghdn,δn) = Ω(n).

In this way, we get a lower bound for Rz(ghdn,δn) by embedding
an instance of geq into either side of the ghd problem. �

We also consider an extended version of ghd. In eghdn,k,t,
Alice and Bob’s inputs x, y are n-bit strings, with the promise that
|x| = |y| = k, and they wish to distinguish ∆(x, y) ≥ k + t from
∆(x, y) ≤ k − t.

Lemma 2.10. For all k, t ≤ n/2, we have

R(eghdn,k,t) = Ω(min{(k/t)2, k}) .

In particular, we show that ghdn,t remains hard even under the
promise that |x| = |y| = n/2.

Proof. First, we prove the lemma for the case k = n/2 by
reduction from ghdn/2,t/2. Let P be a protocol for eghdn,n/2,t.
Given inputs x̂, ŷ ∈ {0, 1}n/2 to ghdn/2,t/2, Alice and Bob create
n-bit strings x, y by mapping each bit 0→ 01 and each bit 1→ 10.6

Then, they run protocol P on input (x, y) and output the result.

6Formally, Alice creates an n-bit string x by setting x2i−1 := x̂i and x2i :=
1− x̂i for all 1 ≤ i ≤ n/2. Similarly, Bob defines y by setting y2i−1 := ŷi and
y2i := 1− ŷi.
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Note that |x| = |y| = n/2. Furthermore, ∆(x, y) = 2∆(x̂, ŷ).
Therefore, if ∆(x̂, ŷ) ≥ n/4+ t/2 then ∆(x, y) ≥ n/2+ t, and simi-
larly if ∆(x̂, ŷ) ≤ n/4−t/2 then ∆(x, y) ≤ n/2−t. It follows that a
correct answer for eghdn.n/2,t gives a correct answer to ghdn/2,t/2,
hence

R(eghdn,n/2,t) ≥ R(ghdn/2,t/2)

= Ω
(
min

{
(n/t)2, n

})
= Ω

(
min

{
(k/t)2, k

})
.

Proving the general case follows from a simple padding argument.
Specifically, we reduce eghd2k,k,t to eghdn,k,t. Given 2k-bit strings
x̂ and ŷ, Alice and Bob construct n-bit strings x and y by setting
x := x̂ ◦ 0n−2k and y := ŷ ◦ 0n−2k. It is easy to see that |x| =
|y| = k and that ∆(x, y) = ∆(x̂, ŷ). Therefore, an answer to
eghdn,k,t(x, y) gives an answer to eghd2k,k,t(x̂, ŷ), hence

R(eghdn,k,t) ≥ R(eghd2k,k,t) = Ω
(
min{(k/t)2, k}

)
. �

3. Testing k-Linearity and Related Properties

In this section we prove Theorem 1.1. Recall that a k-linear func-
tion is a function of the form f(x) =

∑
i∈S xi (mod 2) for some set

S ⊆ [n] of size |S| = k. We use k-linear to denote the property
that a function is k-linear. The definitions of the other properties
in the statement of Theorem 1.1 are as follows:

Definition 3.1 (Junta). The function f : {0, 1}n → {0, 1} is a
k-junta if there is a set J ⊆ [n] of size |J | ≤ k such that for every
x, y ∈ {0, 1}n that satisfy xi = yi for each i ∈ J , we have f(x) =
f(y). We use k-junta to denote the property that a function is a
k-junta.

Definition 3.2 (Low Fourier degree). For convenience when dis-
cussing Fourier degree we will represent boolean functions using
range {−1, 1} instead of {0, 1}. It is well known that every boolean
function f : {0, 1}n → {−1, 1} has a unique representation of
the form f(x) =

∑
S⊆[n] f̂(S)χS(x), where χS = (−1)

∑
i∈S xi and
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f̂(S) ∈ R. The terms f̂(S) are the Fourier coefficients of f , and
the Fourier degree of f is the maximum value of k ≥ 0 such that
f̂(S) 6= 0 for some set S of size |S| = k.7 We use degree-k to
denote the property that the Fourier degree of a function is at most
k.

Definition 3.3 (Sparse polynomials). Every boolean function f :
{0, 1}n → {0, 1} also has a unique representation as a polynomial
over GF(2). We say that f is a k-sparse polynomial if its represen-
tation over GF(2) has at most k terms. Let k-sparse denote the
property that a function has a k-sparse GF(2) representation.

The following facts about k-linear functions will be used in the
proof of Theorem 1.1:

Proposition 3.4. Fix n > 2 and 1 ≤ k ≤ n− 2. If f : {0, 1}n →
{0, 1} is (k + 2)-linear, then f is

(i) 1
2
-far from k-linear functions,

(ii) 1
2
-far from k-juntas,

(iii) 1
2
-far from functions of Fourier degree at most k, and

(iv) 1
20

-far from k-sparse polynomials.

Proof. We first prove part (iii). Parts (i) and (ii) will follow
immediately from part (iii) and the observation that k-juntas and
k-linear functions have Fourier degree at most k.

Let f be a (k+ 2)-linear function over the variables of some set
T ⊆ [n] of size |T | = k + 2, and let g be any function of Fourier
degree at most k. For convenience, we will represent f and g as
functions from {0, 1}n to {−1, 1}. Since f is a linear function over
the variables in T , we know that f̂(T ) = 1, and f̂(S) = 0 for all
S 6= T . Moreover, since g has Fourier degree k and |T | > k, we
know by definition that ĝ(T ) = 0. Thus by Parseval’s theorem

E
x
[f(x)g(x)] =

∑
S⊆[n]

f̂(S)ĝ(S) = 0 ,

7For more details on the Fourier representation of boolean functions see,
e.g., O’Donnell 2008; de Wolf 2008.



22 Blais, Brody & Matulef

which implies Prx[f(x) 6= g(x)] = 1/2.
Finally, part (iv) is a special case of a more general theorem of

Diakonikolas et al. (2007, Thm. 36). For convenience, we provide
a self-contained proof as Lemma A.1 in Appendix A. �

Theorem 1.1 (Restated). Fix 1 < k < n − 1. Then, at least
Ω(min{k, n−k}) queries are required to test (i) k-linear functions,
(ii) k-juntas, (iii) functions of Fourier degree at most k, and (iv)
functions with k-sparse polynomial representation in GF(2).

Proof. We prove the lower bound for k-linear functions by re-
ducing from the k-bal-disj problem. Recall that Ck-linear

⊕ is the
communication game where the inputs are the functions f, g :
{0, 1}n → {0, 1} and the players must test whether the function
h = f ⊕ g is k-linear. Lemma 2.4 and 2.6 imply that

2Q(k-linear) ≥ R(Ck-linear
⊕ )

and

R(k-bal-disj) = Ω(min{k, n− k}) .

To complete the proof, we show that R(Ck-linear
⊕ ) ≥ R(k-bal-disj)

with a reduction from k-bal-disj to Ck-linear
⊕ .

Let A,B ⊆ [n] be the two sets of size |A| = bk
2
c + 1 and

|B| = dk
2
e+1 received by Alice and by Bob, respectively, as the in-

put to an instance of k-bal-disj. Alice and Bob can construct the
functions ParityA,ParityB : {0, 1}n → {0, 1}. When |A ∩ B| = 1,
the symmetric difference of the two sets has size |A4B| = |A| +
|B|−2|A∩B| = k, and the function ParityA⊕ParityB = ParityA4B
is k-linear. Conversely, when A and B are disjoint, the function
ParityA ⊕ ParityB is a (k+2)-parity function and, by Proposi-
tion 3.4, it is 1

2
-far from k-linear functions. So Alice and Bob can

solve their instance of k-bal-disj with a communication protocol
for Ck-linear

⊕ . This implies that R(Ck-linear
⊕ ) ≥ R(k-bal-disj), as

we wanted to show.
The same reduction from k-bal-disj yields lower bounds for

testing the other properties. Let Ck-junta
⊕ denote the communica-

tion game where Alice and Bob receive boolean functions f and g
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as inputs and must decide if h = f ⊕ g is a k-junta. Similarly, de-
fine Cdegree-k

⊕ and Ck-sparse
⊕ to be the corresponding communication

games where Alice and Bob must decide if h has Fourier degree at
most k or can be represented by a k-sparse GF(2) polynomial. In
the k-bal-disj reduction above, Alice and Bob create a joint func-
tion ParityA4B that is (k + 2)-linear if A and B are disjoint, and
k-linear if A and B intersect. By Proposition 3.4, (k + 2)-linear
functions are 1

2
-far from k-juntas, 1

2
-far from functions with Fourier

degree at most k, and 1
20

-far from k-sparse polynomials. Recalling
that a k-linear function is a k-junta, has Fourier degree at most k,
and can be represented by a k-sparse GF(2) polynomial, it follows
that

R(k-bal-disj) ≤ min{R(Ck-junta
⊕ ), R(Cdegree-k

⊕ ), R(Ck-sparse
⊕ )}.

Together with Lemma 2.4 and 2.6, we have

2Q(k-junta) ≥ R(Ck-junta
⊕ ) = Ω(min{k, n− k}) ,

2Q(degree-k) ≥ R(Cdegree-k
⊕ ) = Ω(min{k, n− k}) , and

2Q(k-sparse) ≥ R(Ck-sparse
⊕ ) = Ω(min{k, n− k}) . �

Testing linear functions with 0-1 coefficients. With Oded
Goldreich’s kind permission, we present his proof of Theorem 1.3.

Theorem 1.3 (Restated). Testing the class of linear functions
from GF(3)n to GF(3) that have only 0-1 coefficients requires Θ(n)
queries.

Proof. The upper bound in the theorem follows from the query
complexity of learning subclasses of linear functions over GF(3)n.
See Goldreich (2010a) for the details.

For the lower bound, we establish a reduction from the set-
disjointness problem. Let C

{0,1}-Lin
+ be the communication game

where Alice and Bob receive the functions f, g : GF(3)n → GF(3),
respectively, and must determine if the function h = f + g (where
the sum is taken pointwise over GF(3)) is linear and has only {0, 1}-
coefficients. By Lemma 2.4 and Theorem 2.5,

4Q({0,1}-Lin) ≥ R(C
{0,1}-Lin
+ ) and R(disj) = Ω(n) .
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To complete the proof, it suffices to show that R(C
{0,1}-Lin
+ ) ≥

R(disj). We do so with a reduction from set-disjointness to
the {0,1}-Lin testing communication game.

Let a, b ∈ {0, 1}n be the strings received by Alice and Bob as
input to the set-disjointness problem. Alice and Bob build the
functions f, g : GF(3)n → GF(3) defined by f(x) =

∑n
i=1 aixi and

g(x) =
∑n

i=1 bixi, respectively. The combined function h = f+g is
defined by h(x) =

∑n
i=1(ai + bi)xi. This function is clearly linear.

When a and b are disjoint, then every coefficient ai + bi of h takes
value 0 or 1. Conversely, when a and b are not disjoint, there is
an index i for which ai + bi = 2. Then for any linear function
` with {0, 1}-valued coefficients, the function h − ` is a non-zero
linear function. The Schwartz-Zippel Lemma states that every
non-zero linear function over GF(3)n takes the value 0 on at most
1
3

of the inputs from GF(3)n. Thus, h is 2
3
-far from all the linear

functions with only {0, 1}-valued coefficients. Therefore, Alice and

Bob can run a protocol for C
{0,1}-Lin
+ to solve their instance of set-

disjointness and R(C
{0,1}-Lin
+ ) ≥ R(disj). �

Testing computability by width-4 OBDDs. Again with the
kind permission of Oded Goldreich, we present his proof of Theo-
rem 1.4. We again remark that this result was obtained indepen-
dently by Brody et al. (2011), who gave a similar proof.

The hard instances we use in this proof are those introduced
by Goldreich (2010a). Let n̂ := bn−1

4
c. We develop base functions

from the following primitive functions. Consider the following four-
bit functions φ0, φ1, φ2, φ3 : {0, 1}4 → {0, 1}:

φ0(x1, x2, x3, x4) := 0 ,

φ1(x1, x2, x3, x4) := x1x3 ,

φ2(x1, x2, x3, x4) := x2x4 ,

φ3(x1, x2, x3, x4) := x1x3 ⊕ x2x4 .

Given z = (z1, . . . , zn̂) ∈ {0, 1, 2, 3}n̂, define the function hz :
{0, 1}n → {0, 1} by setting

hz(x1, . . . , xn) := x1 ⊕
n̂∑
j=1

φzj(x4j−2, x4j−1, x4j, x4j+1) .
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Lemma 3.5 (Goldreich 2010a, Thm. 4.2). Fix z ∈ {0, 1, 2, 3}n̂. If
every coordinate j ∈ [n̂] of z satisfies zj ∈ {0, 1, 2} then hz can be
computed by a width-4 OBDD. Otherwise, if there exists j ∈ [n̂]
such that zj = 3 then hz is 1

16
-far from all functions computable

by width-4 OBDDs.

Goldreich (2010a) uses Lemma 3.5 to show that testing com-
putability by width-4 OBDDs requires Ω(

√
n) queries. We combine

this construction with our technique and get an Ω(n) lower bound.

Theorem 1.4 (Restated). Testing the class of functions that are
computable by width-4 OBDDs requires Θ(n) queries.

Proof. We reduce from disjn̂. Given sets A,B ⊆ [n̂], Alice and
Bob first build strings a, b ∈ {0, 1, 2, 3}n̂ by setting

aj :=

{
1 if j ∈ A
0 otherwise

and bj :=

{
2 if j ∈ B
0 otherwise

Alice and Bob then define functions f := ha and g := hb. We define
the combining operator ψ(f, g) to return the function hz, where
zj := aj + bj. By our choice of base functions, for every x ∈ {0, 1}n
we have hz(x) = ha(x) ⊕ hb(x) ⊕ x1, so ψ is a simple combining
operator. Also, our definitions of a, b, and z imply that zj = 3
iff j ∈ A ∩ B. By Lemma 3.5, this means that hz is computable
by a width-4 OBDD when A and B is disjoint and hz is 1

16
-far

from all functions computable by width-4 OBDDs when A and B
intersect. Thus, R(C4-OBDD

ψ ) ≥ R(disjn̂). This inequality, together
with Lemma 2.4, Theorem 2.5, and the fact that n̂ = Θ(n), yields

2Q(4-OBDD) ≥ R(C4-OBDD
ψ ) ≥ R(disjn̂) = Ω(n) . �

4. Testing Monotonicity and Submodularity

Fix R ⊆ R. Recall that the function f : {0, 1}n → R is monotone if
for any two inputs x, y ∈ {0, 1}n that satisfy x1 ≤ y1, . . . , xn ≤ yn,
we have f(x) ≤ f(y). In this section, we prove the following lower
bound on the query complexity for testing monotonicity.
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Theorem Theorem 1.6 (Restated). Testing f : {0, 1}n → R for
monotonicity requires Ω(min{n, |R|2}) queries.

Proof. We first consider the case where R = R. We prove the
lower bound for testing monotonicity in this case with a reduction
from set-disjointness. Let ψ be the combining operator that,
given two functions f, g : {0, 1}n → {−1, 1}, returns the function
h : {0, 1}n → Z defined by h(x) := 2 |x| + f(x) + g(x). Define
Cmono
ψ be the communication game where Alice and Bob are given

two functions f, g : {0, 1}n → {−1, 1} and they must test whether
h is monotone. By Lemma 2.4 and Theorem 2.5,

2Q(mono) ≥ R(Cmono
ψ ) and R(disj) = Ω(n) .

We complete the proof by showing that R(Cmono
ψ ) ≥ R(disj).

Let A,B ⊆ [n] be the subsets received by Alice and Bob as
the input to an instance of the set-disjointness problem. Alice
and Bob build functions χA, χB : {0, 1}n → {−1, 1}, respectively,
by setting χA(x) = (−1)

∑
i∈A xi and χB(x) = (−1)

∑
i∈B xi . Let

h := ψ(χA, χB). Note that h(x) = 2 |x|+ χA(x) + χB(x). We claim
that (a) when A and B are disjoint, h is monotone, and (b) when
A and B are not disjoint, h is 1

8
-far from monotone. If this claim is

true, then we have completed our lower bound since it implies that
Alice and Bob can run a protocol for Cmono

ψ to solve their instance
of set-disjointness and, therefore, R(Cmono

ψ ) ≥ R(disj).
We now prove Claim (a). Fix i ∈ [n]. For x ∈ {0, 1}n, let

x0, x1 ∈ {0, 1}n be the vectors obtained by fixing the ith coordinate
of x to 0 and to 1, respectively. Note that for any set S ⊆ [n],
χS(x1) = −χS(x0) if i ∈ S, and χS(x1) = χS(x0) otherwise. So
when i /∈ A and i /∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| = 2 > 0 ,

when i ∈ A and i /∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χA(x0) ≥ 0 ,

and when i /∈ A and i ∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χB(x0) ≥ 0 .



Property Testing Lower Bounds 27

Those three inequalities imply that when i 6∈ A∩B, the function h
is monotone on each edge (x0, x1) in the ith direction. As a result,
when A and B are disjoint the function h is monotone.

Let us now prove Claim (b). Let A ∩B 6= ∅. When i ∈ A ∩B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χA(x0)− 2χB(x0).

This implies that for each x that satisfy χA(x0) = χB(x0) = 1,
it holds that h(x1) < h(x0). Partition {0, 1}n into 2n−1 pairs
that form the endpoints to all the edges in the ith direction. We
claim that at least 1

4
of these pairs satisfy the condition χA(x0) =

χB(x0) = 1. To see this, note that when A = {i}, then χA(x0) =
1 with certainty. On the other hand, if j ∈ A for some j 6=
i, then take any x0, and let x̂0 be x0 with the jth bit flipped.
Then, χA(x0) = −χA(x̂0). It follows that χA(x0) = 1 with prob-
ability exactly 1

2
. A similar argument holds independently for

χB(x0). Therefore, at least 1
4

of these pairs will satisfy the con-
dition χA(x0) = χB(x0) = 1, and for each of these pairs, either
h(x0) or h(x1) must be modified to make h monotone. Therefore,
when A and B intersect, we need to modify at least 2n/8 entries,
just to correct the violated edges in the ith direction. It follows
that h is at least 1

8
-far from monotone.

Suppose now that |R| ≥ 12
√
n + 5. Without loss of generality

assume R ⊇ {n− 6
√
n− 2, . . . , n+ 6

√
n+ 2}.8 As before, we do

a reduction from set-disjointness. Alice and Bob receive sets
A,B ⊆ [n], respectively, and build the functions χA, χB : {0, 1}n →
{−1, 1}. The modification to the construction is in the definition
of the combining operator. We now define ψ(χA, χB) to return the

8This essentially boils down to a renaming of R. Formally, we prove a lower
bound for testing f̂ : {0, 1}n → R̂ for an arbitrary R̂ with |R̂| ≥ 12

√
n+ 5 by

reducing from the problem of testing f : {0, 1}n → R. Let φ : R → R̂ be the
bijection that maps the ith least element of R to the ith least element of R̂,
and define f̂(x) := φ(f(x)). f̂ is monotone if f is monotone, and f̂ is ε-far

from monotone if f is ε-far from monotone. Thus, testing f̂ for monotonicity
has the same query complexity as testing f for monotonicity.
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function h′ defined by

h′(x) :=


h(x) if n

2
− 3
√
n ≤ |x| ≤ n

2
+ 3
√
n ,

n− 6
√
n− 2 if |x| < n

2
− 3
√
n ,

n+ 6
√
n+ 2 if |x| > n

2
+ 3
√
n .

Note that when n
2
−3
√
n ≤ |x| ≤ n

2
+ 3
√
n, we have n−6

√
n−2 ≤

h(x) ≤ n + 6
√
n + 2. The definition of h′ takes strings with low

Hamming weight and “rounds h(x) up” to n − 6
√
n − 2. In the

same way, it takes strings of high Hamming weight and “rounds
h(x) down” to n + 6

√
n + 2. We claim that this preserves mono-

tonicity when h is monotone, while ensuring that when h is far
from monotone, our new function h′ remains reasonably far from
monotone.

Claim 4.1. If A and B are disjoint, then h′ is monotone. If A and
B intersect, then h′ is 1

16
-far from monotone.

Proof. Suppose that A ∩ B = ∅. We proceed in a manner
similar to the general case. Fix any i ∈ [n], and for x ∈ {0, 1}n, let
x0 and x1 be the vectors obtained by setting the ith bit to 0 and 1
respectively. If A and B are disjoint, then h is monotone. When
|x0| and |x1| both lie in the range {n

2
− 3
√
n, . . . , n

2
+ 3
√
n}, then

h′(x1) = h(x1) ≥ h(x0) = h′(x0), so monotonicity is preserved. If
|x0| and |x1| are either both less than n

2
−3
√
n or both greater than

n
2

+3
√
n, then monotonicity is trivially preserved, as h′ is constant

on each of these ranges. It remains to show that monotonicity is
preserved when |x0| and |x1| lie in different ranges. But h′(x) =
h(x) ∈ {n − 6

√
n − 2, . . . , n + 6

√
n + 2} for all x in this middle

range. Therefore, h′(x) ≤ h′(y) ≤ h′(z) for all x, y, z such that
|x| < n

2
− 3
√
n,
∣∣|y| − n

2

∣∣ ≤ 3
√
n, and |z| > n

2
+ 3
√
n.

If A ∩ B 6= ∅ then h is 1/8-far from monotone. We claim that
h′ is at most 1/16-far from h. To see this, let x ∈ {0, 1}n be a
uniform random string. By the Chernoff Bound,

Pr
[∣∣|x| − n

2

∣∣ > 3
√
n
]
< 0.03 < 1/16 .

Furthermore, h′(x) = h(x) whenever n
2
− 3
√
n ≤ |x| ≤ n

2
+ 3
√
n,

hence Pr[h′(x) 6= h(x)] ≤ 1/16.
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Suppose for the sake of contradiction that h′ is not 1
16

-far from

monotone, and let h̃ denote the monotone function closest to h′.
By the triangle inequality and the fact that h′ is at most 1/16-far
from h, we have

Pr[h(x) 6= h̃(x)] ≤ Pr[h(x) 6= h′(x)] + Pr[h′(x) 6= h̃(x)] < 1/8 .

This violates the fact that h is 1/8-far from monotone. �

It is possible to make the above argument much tighter, and
get the corresponding linear query complexity lower bound for a
smaller range of |R|, although |R| remains Ω(

√
n). We chose the

above range size to maximize clarity.

Finally, suppose that |R| = o(
√
n). We prove the lower bound

for testing monotonicity in this case via a reduction from the
|R| ≥ 12

√
n + 5 case. Let A be an optimal monotonicity testing

algorithm for functions f : {0, 1}n → R, and let m be the greatest
integer such that |R| ≥ 12

√
m + 5. We will use A to construct a

monotonicity testing algorithm A′ for functions g : {0, 1}m → R.
The construction of A′ depends on the following claim.

Claim 4.2. Given a function g : {0, 1}m → R, there exists a
function h : {0, 1}n → R with the following properties:

(i) If g is monotone, then h is monotone.

(ii) If g is ε-far from monotone, then h is ε-far from
monotone.

(iii) For all x ∈ {0, 1}n, the value of h(x) can be deter-
mined with one query to g.

Proof. We construct h : {0, 1}n → R from g by padding.
Specifically, define h(x, y) := g(x) for strings x ∈ {0, 1}m and
y ∈ {0, 1}n−m. This construction clearly satisfies the first and
third conditions of the claim. For the second condition, we prove
the contrapositive. Suppose that h is not ε-far from monotone.
Let h̃ be the monotone function closest to h; thus, Prx,y[h̃(x, y) 6=
h(x, y)] < ε. By an averaging argument, there exists ỹ ∈ {0, 1}n−m
such that Prx[h̃(x, ỹ) 6= h(x, ỹ)] < ε. Define g̃ : {0, 1}m → R
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as g̃(x) := h̃(x, ỹ). Then g̃ is monotone and Prx[g̃(x) 6= g(x)] =
Prx[h̃(x, ỹ) 6= h(x, ỹ)] < ε, so g is not ε-far from monotone. �

The construction of A′ is simple. Given input g : {0, 1}m → R,
let h be the function guaranteed by Claim 4.2. A′ runs A on
h and accepts if and only if A accepts h. By Claim 4.2, if g is
monotone, then h is monotone, and if g is ε-far from monotone,
then h is ε-far from monotone. The correctness of A′ then follows
from the correctness of A. Furthermore, by Claim 4.2, A′ uses
one query per query of A. However, testing g : {0, 1}m → R
for monotonicity requires Ω(m) queries, because g has range size
|R| ≥ 12

√
m + 5. Since A is an optimal monotonicity tester and

uses the same number of queries as A′, it follows that testing f :
{0, 1}n → R for monotonicity requires Ω(m) = Ω(|R|2) queries
when |R| = o(

√
n). �

Testing submodularity. The function f : {0, 1}n → R is sub-
modular if for every x, y ∈ {0, 1}n, f(x∨y)+f(x∧y) ≥ f(x)+f(y),
where (x ∨ y)i = max{xi, yi} and (x ∧ y)i = min{xi, yi}. Testing
submodularity was first studied by Parnas, Ron & Rubinfeld (2003)
for functions over rectangles. Seshadhri & Vondrák (2011) initiated
the study of submodularity testing for functions over the boolean
hypercube and, in particular, showed that testing submodularity
is at least as difficult as testing monotonicity. Specifically, they
established the following result.

Lemma 4.3 (Seshadhri & Vondrák 2011). Given the function f :
{0, 1}n → R, there exists a function g : {0, 1}n+1 → R with the
following properties:

(i) If f is monotone, then g is submodular.

(ii) If f is ε-far from monotone, then g is ε
2
-far from submodular.

(iii) For each x ∈ {0, 1}n+1, the value of g(x) can be determined
with 2 queries to f .

Combining the lemma with the lower bound of Fischer et al.
(2002) on testing monotonicity yields a lower bound of Ω(log n)
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queries for testing submodularity non-adaptively. This implies a
weak lower bound of Ω(log log n) queries for general (i.e., adaptive)
submodularity testers. Combining Lemma 4.3 with Theorem 1.6
instead, we get a stronger lower bound.

Corollary 1.7 (Restated). Testing f : {0, 1}n → R for submod-
ularity requires Ω(n) queries.

Proof. Consider the task of testing whether f : {0, 1}n−1 → R
is monotone. Let g : {0, 1}n → R be the corresponding function
whose existence is guaranteed by Lemma 4.3. We can test whether
f is monotone by simulating a submodularity tester T on g. If T
makes q queries, the resulting monotonicity tester makes a total of
2q queries. By Theorem 1.6, all monotonicity testers must make
at least Ω(n) queries, so our submodularity tester must also make
q = Ω(n) queries. �

5. Testing Concise Representations

We begin with formal definitions for decision trees and branching
programs.

Definition 5.1 (Decision tree). A decision tree is a directed bi-
nary tree in which each internal node is labelled with some element
from [n], the two edges going out of an internal node are labelled
with 0 and 1, and each leaf node has a label from {0, 1}. The deci-
sion tree D computes the function f : {0, 1}n → {0, 1} if for every
x ∈ {0, 1}n, the path defined in D by querying the value of xi at
each internal node labelled with i and following the corresponding
edge leads to a leaf node with value f(x). The size of a decision
tree is the total number of leaves it contains.

Definition 5.2 (Branching program). A branching program is a
directed acyclic graph with two sink nodes labelled with 0 and
1, respectively, and where all other nodes have out-degree 2. Each
non-sink node has a label from [n] and the two edges leaving a node
are labelled with 0 and 1, respectively. The branching program P
computes the function f : {0, 1}n → {0, 1} if each x ∈ {0, 1}n
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defines a path in the branching program that leads to the sink
labelled with f(x). The size of a branching program is the total
number of nodes it contains.

The proof of Theorem 1.8 relies on the following two simple
lemmas.

Lemma 5.3. Fix s ≥ 1 and 0 < α < 1. Let f : {0, 1}n → {0, 1} be
an s-linear function. Then f can be computed by a decision tree
of size 2s and is 1−α

2
-far from all functions that are computable by

decision trees of size at most α 2s.

Proof. To construct a decision tree of size 2s that computes the
function f : x 7→ xi1 ⊕ · · · ⊕ xis , create a complete tree of depth
s where each node at level j of the tree queries xij . This tree
has 2s leaves and, by setting the value of each leaf appropriately,
computes the function f exactly.

Consider now a decision tree T of size at most α 2s, and let
g : {0, 1}n → {0, 1} be the function computed by this tree. We
want to show that Pr[f(x) 6= g(x)] ≥ 1−α

2
when the probability is

over the uniform distribution of x ∈ {0, 1}n. For each leaf ` of T ,
let depth(`) denote the number of unique variables queried by the
nodes in the path from the root of T to ` and let R` ⊆ {0, 1}n
represent the set of inputs x ∈ {0, 1}n that define a path in T
that reaches `. (Note that the sets R` form a partition of {0, 1}n.)
Define B :=

⋃
` : depth(`)<sR` to be the union of the sets R` for all

the leaves in T of depth strictly less than s. Then

Pr[f(x) 6= g(x)] ≥ Pr[f(x) 6= g(x) ∩ x ∈ B]

= Pr[x ∈ B] · Pr[f(x) 6= g(x) | x ∈ B].

For any leaf ` of T , the probability that an input x chosen uniformly
at random from {0, 1}n reaches ` is 2−depth(`). By the union bound,
the probability that x reaches a leaf of depth at least s in T is at
most α 2s · 2−s = α, so Pr[x ∈ B] ≥ 1− α.

Let ` be a leaf in T of depth at most s − 1. Then there is
some index i ∈ {i1, . . . , is} that is not queried in the path from
the root of T to `. We can partition R` into pairs (x, x(i)) where
each pair is identical in all but the i-th coordinate. For each such
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pair, f(x) 6= f(x(i)) so no matter what label is attached to the leaf
`, we have Pr[f(x) 6= g(x) | x ∈ R`] = 1

2
. This also implies that

Pr[f(x) 6= g(x) | x ∈ B] = 1
2

and, therefore, Pr[f(x) 6= g(x)] ≥
(1− α) · 1

2
= 1−α

2
, as we wanted to show. �

Lemma 5.4. Let P be the class of all boolean functions com-
putable by branching programs of size 2s. Then every s-linear
function is in P while every (s+ 2)-linear function is 1

6
-far from P .

Proof. Again, the first assertion is almost immediate: consider
a branching program of width 2 that queries xi1 at the start node
and queries xij on both nodes at level 1 < j ≤ s. We can arrange
the edges of this branching program so that the left (resp., right)
node at level j is reached when xi1 ⊕ · · · ⊕ xij−1

equals 0 (resp.,
equals 1). This branching program has size 2s − 1 and computes
the s-linear function.

For the second assertion, let P be a branching program of size
2s, and suppose it is close to some (s+ 2)-linear function h. Note
that if one of the s + 2 variables in h does not appear in P , then
h and P are 1

2
-far, since for every input there is a variable whose

value we can flip to change the value of h without changing the
output of P .

Thus, we assume that every variable in h appears in P . More-
over, since P has only 2s nodes, there must be at least two variables
in h that are queried only once in P . Let x1 and x2 denote two
such variables, and let u1 and u2 denote the corresponding nodes
in P . The graph of P is directed and acyclic, so we can assume
without loss of generality that no path reaches the node u1 after
reaching u2.

Consider the paths in P generated by strings x, x(1) ∈ {0, 1}n,
where x is generated uniformly at random and x(1) is generated
from x by flipping x1. Note that x(1) is also uniform. If the random
path generated by x reaches u2 with probability less than 2

3
, then

with probability at least 1
3
, flipping the value of x2 changes the

value of h without changing the output of P ; hence, P is 1
6
-far

from h. On the other hand, if this random path reaches u2 with
probability at least 2

3
, then the path generated by x(1) also reaches
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u2 with probability 2
3
. By the union bound, the probability that

both x and x(1) describe paths in P reaching u2 is at least 1
3
. But

since u1 cannot be reached after u2, this means that both x and
x(1) describe paths to the same terminal in P even though they
have different values in h. Therefore, P is 1

6
-far from h in this case

too. �

We are now ready to complete the proof of Theorem 1.8.

Theorem 1.8 (Restated). At least Ω(min{s, n − s}) queries are
required to test (i) size-2s decision trees and (ii) size-s branching
programs.

Proof. The proof is nearly identical to that of Theorem 1.1. We
prove the lower bound with a reduction from the balanced version
of the set-disjointness problem. Let C2s-DT

⊕ and Cs-BP
⊕ be the

communication games where Alice and Bob receive the functions
f, g : {0, 1}n → {0, 1} and must test whether the function h =
f ⊕ g is computable by size-2s decision trees or by size-s branching
programs, respectively. By Lemma 2.4 and 2.6,

2Q(size-2s D.T.’s) ≥ R(C2s-DT
⊕ ),

2Q(size-s B.P.’s) ≥ R(Cs-BP
⊕ ), and

R(s-bal-disj) = Ω(min{s, n− s}).

To complete the proof, it suffices to show that R(s-bal-disj) is a
lower bound for R(C2s-DT

⊕ ) and R(Cs-BP
⊕ ).

Let A,B ⊆ [n] be the two sets of size |A| = b s
2
c+ 1 and |B| =

d s
2
e+1 received by Alice and by Bob, respectively, as the input to an

instance of s-bal-disj. Alice and Bob can construct the functions
ParityA,ParityB : {0, 1}n → {0, 1}. When |A∩B| = 1, the function
h = ParityA ⊕ ParityB = ParityA4B is s-linear. Such a function
can be computed by size-2s decision trees and by size-s branching
programs. When A and B are disjoint, the function h is (s+2)-
linear. By Lemma 5.3 and 5.4, when h is (s+2)-linear, it is 3

8
-far

from all functions computable by decision trees of size 2s (= 1
4
2s+2)

and it is 1
6
-far from all functions computable by branching programs

of size s. So Alice and Bob can solve their instance of s-bal-disj
with a communication protocol for C2s-DT

⊕ or for Cs-BP
⊕ . �
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Testing juntas. Fischer et al. (2004) asked if it is easier to test
k-juntas if we are only required to reject functions that are far
from (k + t)-juntas for some t > 0. The lower bound of Chockler
& Gutfreund (2004) gives a lower bound of Ω(k/t) queries for this
task. (See also (Diakonikolas et al. 2007, App. E).) This bound is
not sufficiently strong to answer Fischer et al.’s question for any
t = ω(1).

The following result shows that for any t ≤ O(
√
k), the task

of distinguishing k-juntas from functions that are far from (k + t)-
juntas requires (asymptotically) as many queries as the standard
k-junta testing problem.

Theorem 1.9 (Restated). Fix k ≤ n
2

and t > 0. Any algorithm
that accepts k-juntas and rejects functions far from (k + t − 2)-
juntas with high probability must make Ω

(
min{(k

t
)2, k}

)
queries.

Proof. We prove the theorem with a reduction from the ex-
tended Gap Hamming Distance problem. If t = Ω(k), there is

nothing to prove. Otherwise, suppose t = o(k), and let C
(k,t)-junta
⊕

be the communication game where Alice and Bob receive the func-
tions f, g : {0, 1}n → {0, 1} and must distinguish between the
case where h = f ⊕ g is a k-junta from the case where h is far
from (k + t− 2)-juntas. By Lemma 2.4 and 2.10 and the fact that
k + t/2 = Θ(k), we have

2Q
(
(k, t)-junta

)
≥ R(C

(k,t)-junta
⊕ )

and

R(eghdn,k+ t
2
, t
2
) = Ω

(
min{(k

t
)2, k}

)
.

To complete the proof, we want to show that R(C
(k,t)-junta
⊕ ) ≥

R(eghdn,2k+t, t
2
).

Let x and y be the strings received by Alice and Bob, respec-
tively, as input to an instance of the eghdn,k+ t

2
, t
2

problem. Alice

and Bob then construct the functions ParityA,ParityB : {0, 1}n →
{0, 1}, where A := {i : xi = 1} and B := {i : yi = 1}. The func-
tion h = ParityA ⊕ ParityB = ParityA4B is |A4B|-linear. When
∆(x, y) = |A4B| ≤ k+ t/2− t/2 = k, the function h is a k-parity
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function. Conversely, when ∆(x, y) ≥ k + t/2 + t/2 = k + t, by
Proposition 3.4(ii), the function h is 1

2
-far from all (k + t − 2)-

juntas. Therefore, Alice and Bob can run a protocol for the game
C

(k,t)-junta
⊕ to solve their instance of the Extended Gap Hamming

Distance problem and, as we wanted to show, R(C
(k,t)-junta
⊕ ) ≥

R(eghdn,k+ t
2
, t
2
). �

Remark 5.5. The conference version of this paper (Blais et al.
2011) used a different argument to prove Theorem 1.8 and 1.9.
During the review process, a flaw was found in that argument. For
a retraction of the earlier version of Theorem 1.8 and a discussion
of the error, see (Blais et al. 2012).

6. Testers with One-Sided Error

Testing decision trees. We saw in the last section that Ω(log s)
queries are required to test whether a function can be represented
as a boolean decision tree with at most s nodes. For testers with
one-sided error, we get an exponentially larger bound.

Theorem 1.11 (Restated). At least Ω(s) queries are required to
test size-s decision trees with one-sided error.

Proof. We first consider the case where s = 2n−1 for some n ≥
5. We prove this case with a reduction from the gap-equality
problem on s-bit strings. Let Cs-DT

⊕ be the communication game
where Alice and Bob receive the functions f, g : {0, 1}n → {0, 1}
and they must test whether the function h = f ⊕ g is computable
by a decision tree of size s. By Lemma 2.4 and 2.7,

2Q1
(
s-DT

)
≥ R1(Cs-DT

⊕ ) and R1(geqs, s
8
) = Ω

(
s
)
.

We complete the proof by showing that R1(Cs-DT
⊕ ) ≥ R1(geqs, s

8
).

Let a, b ∈ {0, 1}s be received by Alice and Bob as input to
an instance of the gap-equality problem. They must determine
if a = b or whether ∆(a, b) = s

8
. Alice and Bob can solve their

instance of the geq problem with the following protocol. Let the
set of vectors x ∈ {0, 1}n with even parity Parity(x) = x1 ⊕ · · · ⊕
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xn = 0 define an indexing of the bits of a. (I.e., fix a bijection
between those strings and [s].) Alice and Bob build the functions
f, g : {0, 1}n → {0, 1} by setting

f(x) =

{
ax when Parity(x) = 0,

0 when Parity(x) = 1,

and

g(x) =

{
bx when Parity(x) = 0,

1 when Parity(x) = 1.

Alice and Bob then test whether f ⊕ g can be represented with
a decision tree of size at most 15

16
2n; when it can, they answer

∆(a, b) = s
8
.

Let us verify the correctness of this protocol. For any x ∈
{0, 1}n where Parity(x) = 0, we have that (f ⊕ g)(x) = ax ⊕ bx.
Furthermore, for each x where Parity(x) = 1, we get (f⊕g)(x) = 1.
So when a = b, then f ⊕ g is the Parity function. By Lemma 5.3,
this function is 1

32
-far from every decision tree of size at most 15

16
2n.

When ∆(a, b) = s
8
, consider the (complete) tree that computes f⊕g

by querying xi in every node at level i. This tree has 2n leaves, but
for every input x where ax 6= bx, we have that the corresponding
leaf has the same value as its sibling. So for each such input, we
can eliminate one leaf. Therefore, we can compute f ⊕ g with a
decision tree of size at most 2n − 2n−1/8 < 15

16
2n. �

Testing signed k-majorities. Our next bound is for testing
whether a function f : {−1, 1}n → {−1, 1} is a signed k-majority
(for convenience, in this section we will switch notation and rep-
resent boolean values with ±1 notation). A signed majority is a
majority function with some variables negated, i.e. it is a half-
space of the form f(x) = sgn(w · x), where w ∈ {−1, 1}n. If
w ∈ {−1, 0, 1}n and exactly k of the wi’s are non-zero, we say it
is a signed k-majority. (A signed majority function is thus also a
signed n-majority function.)

Signed majorities were studied by Matulef et al. (2009), who
referred to them as {−1, 1}-weight halfspaces . In that work, they
showed a non-adaptive lower bound of Ω(log n) queries to test
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whether a function is a signed majority on all n variables. Blais &
O’Donnell (2010) studied the related problem of testing whether a
function is a (non-signed) majority on exactly k out of n variables.
When k ≤ 3

4
n, they showed a lower bound of Ω(k1/12) queries for

non-adaptive algorithms with two-sided error.
We show that Ω(k/ log k) queries are required to test whether f

is a signed k-majority with one-sided error. The argument of Blais
& O’Donnell (2010) can be adapted to show a non-adaptive, two-
sided lower bound of Ω(k1/12) queries for this problem as well. Our
bound is incomparable; it is asymptotically stronger and applies
to adaptive algorithms, but only ones with one-sided error. The
proof of our result relies on the following lemma.

Lemma 6.1. For every α > 0, there exist k0 ∈ N and ε > 0 such
that for every k ≥ k0 and k′ ≥ (1 + α)k, all signed k′-majorities
are ε-far from signed k-majorities.

We defer the proof of Lemma 6.1 to Appendix B. We are now
ready to complete the proof of Theorem 1.12.

Theorem 1.12 (Restated). Fix any constant γ ∈ (0, 1). For any
k ≤ γn, testing signed k-majorities with one-sided error requires
at least Ω(k/ log k) queries.

Proof. We again use a reduction from the gap-equality prob-
lem. Let k′ = k

1−γ . Let ψ be a combining operator that takes

functions f, g : {−1, 1}n → {−k′,−k′ + 1, . . . , k′} and returns the

function h defined by h(x) := sgn
(
f(x)+g(x)

2

)
. Define Ck-maj

ψ to be
the communication game where Alice and Bob receive functions
f, g and must test if h = ψ(f, g) is a signed k-majority function.
By Lemma 2.4 and 2.7,

log(2k′ + 1) ·Q1
(
k-maj

)
≥ R1(Ck-maj

ψ )

and
R1(geqk′,γk′) = Ω

(
k′
)
.

We complete the proof by showing thatR1(Ck-maj
ψ ) ≥ R1(geqk′,γk′).

The theorem then follows by noting that Ω( k′

log k′
) = Ω( k

log k
).
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Let a, b ∈ {0, 1}k′ be received by Alice and Bob, respectively, as
the input to an instance of the geqk′,γk′ problem. Alice and Bob
generate the functions f, g : {−1, 1}n → {−k,−k + 1, . . . , k} by

setting f(x) :=
∑k′

i=1(−1)aixi and g(x) :=
∑k′

i=1(−1)bixi, respec-

tively. Note that f(x)+g(x) =
∑k′

i=1

(
(−1)ai + (−1)bi

)
xi, so h can

now be written as h(x) = sgn(w · x), where

wi =


1 if ai = bi = 0 ,

0 if ai 6= bi ,

−1 if ai = bi = 1 .

When a = b, h is a signed k′-majority function. Lemma 6.1, shows
that signed k′-majority functions are a constant distance from all
signed k-majority functions. When ∆(a, b) = γk′, then ai = bi for
exactly k indices i ∈ [k′] and h is a signed k-majority function.
So Alice and Bob can solve their instance of the gap-equality
problem with a protocol for the Ck-maj

ψ game and, as we wanted to

show, R1(Ck-maj
ψ ) ≥ R1(geqk′,γk′). �
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A. Distance from sparse polynomials

In this section we provide a self-contained proof that (k+ 2)-linear
functions are far from k-sparse polynomials. This lemma is a spe-
cial case of Diakonikolas et al. (2007, Theorem 36). By considering
only a special case of the theorem of Diakonikolas et al. (2007), we
obtain a slightly stronger bound on the distance of (k + 2)-linear
functions to k-sparse polynomials but the proof itself is essentially
identical. We include the proof here primarily for completeness.

Lemma A.1 (Diakonikolas et al. 2007). Every (k+2)-linear func-
tion is 1

20
-far from a k-sparse polynomial over GF(2).

Proof. Let f be a (k + 2)-linear function, and without loss of
generality assume f is a linear function on the first k+ 2 variables,
i.e. f(x) = x1 ⊕ · · · ⊕ xk+2. Let g be a k-sparse polynomial, i.e.
g = T1 ⊕ · · · ⊕ Tk where each Ti is a monomial. We want to show
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that f and g are far. We can assume without loss of generality that
g does not contain any length-1 terms, since if it did we could just
subtract those terms off of both f and g to create f ′ and g′, which
have the same distance from each other. We could then prove the
theorem for f ′, g′, and a smaller value of k.

Define the influence of a variable xi in f , denoted Infi(f), in
the standard way- i.e. Infi(f) = Prx[f(x) 6= f(x⊕i)] where x⊕i

denotes x with the ith bit flipped. Define the total influence of f
to be

∑
i Infi(f).

For any f and g, it is straightforward to show that if for some
i the difference |Infi(f) − Infi(g)| is at least δ, then f and g must
have distance at least δ/2. When f is the (k + 2)-linear function
defined above, each variable x1 through xk+2 has influence 1. Thus,
to complete the proof, we will show that in g one of these variables
must have influence at most 0.9.

If the total influence of x1 through xk+2 in g is less than 0.9(k+
2), then we are done, since the pigeonhole principle implies the
existence of a variable xi with influence at most 0.9. Thus, in what
follows, we assume

k+2∑
i

Infi(g) ≥ 0.9(k + 2) .(A.2)

We can bound the total influence of x1 through xk+2 in g as follows.
First, we write g = g2 ⊕ g3 where g2 is the collection of terms in g
that have length 2, and g3 is the collection of terms in g that have
length at least 3. Now note:

◦ Each variable xi that appears in g2 has Infi(g2) = 1/2. The
reason is because since every term of g2 has length 2, xi is
influential exactly when the other variables it appears with
have parity 1, which happens exactly half the time.

◦ For each term in g3, the total contribution of that term to
the influences of all the variables is at most 3/4. To see why,
suppose the term has length m, then on a random assignment
the probability that a variable is relevant to that term is 1

2m−1 ,
so the total effect the term can have on all the influences is
at most m · 1

2m−1 . If m ≥ 3, this is at most 3/4.



46 Blais, Brody & Matulef

Let R2 be the number of terms of g2, and R3 be the number of
terms in g3. By hypothesis, R2 + R3 ≤ k. Since each term of g2
contributes at most 1 to the total influence of g, and each term of
g3 contributes at most 3/4 to the total influence of g, we have that

k+2∑
i

Infi(g) ≤ R2 + (3/4)R3 .(A.3)

Combining equations (A.2) and (A.3) we get that R2 + (3/4)R3 ≥
(9/10)k. Using the fact that R2 + R3 ≤ k, this implies that R3 ≤
(4/10)k, in other words there cannot be too many terms of length
3 or more in g. Now we can bound the influence of variables x1
through xk+2 in g.

k+2∑
i

Infi(g) ≤
k+2∑
i

[Infi(g2) + Infi(g3)]

≤
k+2∑
i

Infi(g2) +
n∑
i

Infi(g3)

≤ 1

2
(k + 2) +

3

4
·R3

≤ 1

2
(k + 2) +

3

4
· 4

10
· k

< 0.9(k + 2) .

By the pigeonhole principle, there must exist a variable xi with
influence at most 0.9 in g. �

B. Distance between majority functions

We complete the proof of Lemma 6.1 in this section. A key ingre-
dient in this proof is the Berry-Esseen theorem, a version of the
Central Limit Theorem with error bounds (see e.g. Feller 1968):

Theorem B.1 (Berry-Esseen). Let `(x) = c1x1 + · · · + cnxn be
a linear form over the random ±1 bits xi. Assume |ci| ≤ τ for
all i and write σ =

√∑
c2i . Write F for the c.d.f. of `(x)/σ; i.e.,
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F (t) = Pr[`(x)/σ ≤ t]. Then for all t ∈ R,

|F (t)− Φ(t)| ≤ O(τ/σ) · 1

1 + |t|3
,

where Φ denotes the c.d.f. of X, a standard Gaussian random vari-
able. In particular, if A ⊆ R is any interval then |Pr[`(x)/σ ∈
A]− Pr[X ∈ A]| ≤ C1(τ/σ), where C1 is an absolute constant.

Lemma 6.1 (Restated). For every α > 0, there exist k0 ∈ N and
ε > 0 such that for every k ≥ k0 and k′ ≥ (1 + α)k, all signed
k′-majorities are ε-far from signed k-majorities.

Proof. Let f be a signed k-majority, and g be a signed k′-
majority. It is easy to see that f and g have minimum distance
when they have the same sign pattern on their common variables.
So without loss of generality, assume f(x) = sgn(x1 + · · ·+xk) and
g(x) = sgn(x1 + · · ·+xk′) (in other words, f is a majority function
on the first k variables, and g is a majority function on the first k′

variables). To simplify, we will write S(x) =
∑k

i=1 xi and T (x) =∑k′

i=k+1 xi. Thus, f(x) = sgn(S(x)) and g(x) = sgn(S(x) + T (x)).
For any positive real number t, we have

Pr
x

[f(x) 6= g(x)] ≥ Pr
x

[S(x) ∈ [0, t) and T (x) < −t]

= Pr
x

[S(x) ∈ [0, t)] · Pr
x

[T (x) < −t] ,

where the equality follows from the fact that S and T are functions
on disjoint sets of variables.

Note that S is a linear form on k variables, so we can use the
Berry-Esseen theorem on S with σ =

√
k to get

Pr
x

[S(x) ∈ [0, t)] ≥ (Φ(t/
√
k)− Φ(0))− C1/

√
k

≥ (Φ(t/
√
k)− 1/2)− C1/

√
k ,(B.2)

where C1 is the constant from the Berry-Esseen theorem.
Similarly, T is a linear form on αk variables, so we can use the

Berry-Esseen theorem on T with σ =
√
αk to get

Pr
x

[T (x) < −t] ≥ Φ(−t/
√
αk)− C1/

√
αk .(B.3)
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Setting t to be, say,
√
k, and then choosing k large enough insures

that the quantities in both ((B.2)) and ((B.3)) are positive, and
bigger than a constant which only depends on α. �
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