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Abstract. We study the space complexity of randomized streaming al-
gorithms that provide one-sided approximation guarantees; e.g., the al-
gorithm always returns an overestimate of the function being computed,
and with high probability, the estimate is not too far from the true an-
swer. We also study algorithms which always provide underestimates.

We also give lower bounds for several one-sided estimators that
match the deterministic space complexity, thus showing that to get a
space-efficient solution, two-sided approximations are sometimes neces-
sary. For some of these problems, including estimating the longest in-
creasing sequence in a stream, and estimating the Earth Mover Distance,
these are the first lower bounds for randomized algorithms of any kind.

We show that for several problems, including estimating the radius of
the Minimum Enclosing Ball (MEB), one-sided estimation is possible. We
provide a natural function for which the space for one-sided estimation is
asymptotically less than the space required for deterministic algorithms,
but more than what is required for general randomized algorithms.

What if an algorithm has a one-sided approximation from both sides?
In this case, we show the problem has what we call a Las Vegas stream-
ing algorithm. We show that even for two-pass algorithms, a quadratic
improvement in space is possible and give a natural problem, counting
non-isolated vertices in a graph, which achieves this separation.

1 Introduction

Computing on data streams is of growing interest in many areas of computer
science, such as databases, networks, and algorithm design. Here it is assumed
that the algorithm sees updates to elements of an underlying object one by one in
an arbitrary order, and needs to output certain statistics of the input. Therefore
it must maintain a short summary or sketch of what it has seen. We refer the
reader to the survey by Muthukrishnan [17] for a list of applications.
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In this paper, we consider the space complexity of streaming algorithms which
return estimates with one-sided approximation—either the streaming algorithm
always returns an overestimate, or it always returns an underestimate. As with
the case of standard randomized streaming algorithms, we want the algorithm
to return an accurate estimate with high probability. While one-sided approxi-
mation has been extensively studied in the property testing literature, it has not
been considered as an object of study for streaming algorithms.

Definition 1.1. An ε-overestimator for f is a randomized algorithm that, given
a stream σ returns f̂(σ) such that

– f̂(σ) ≥ f(σ).
– With probability at least 2/3, f̂(σ) ≤ f(σ)(1 + ε).

An ε-underestimator for f is a randomized algorithm that returns an underesti-
mate f̂(σ) such that with probability at least 2/3, we have f̂(σ) ≥ f(σ)(1− ε).

An important class of one-sided approximations are problems where the infor-
mation lost by using a small amount of space is one-sided. Perhaps the best
known example in this class is the Count-Min sketch [5], which is used to
maintain approximate frequency counts and can produce accurate estimations
of φ-quantiles or φ-heavy hitters. The Count-Min sketch essentially works by
maintaining a random hash table h of counters and updating the counter in
bucket h(i) each time item i is seen on the stream. The counter in bucket h(i)
then provides an overestimate of the true frequency of item i, since collisions
can only increase the count. By maintaining several hash tables h1, h2, . . . , ht

and returning the minimum hj(i) over all j, the Count-Min sketch gets an
overestimate of the frequency of item i that with high probability remains close
to the true frequency. Since its inception, the Count-Min sketch has also been
used as a subroutine in several other applications.

Surprisingly, the Count-Min sketch is also used to generate ε-
underestimators. In the k-median problem, the input is a set of points P on
a discrete grid [∆]d, and the goal is to output a set of k points Q that minimizes
C(Q,P ) :=

∑
p∈P minq∈Q ||p − q||. Such a set is called a k-median. Indyk [12]

uses a Count-Min sketch to underestimate C(P,Q).
We are interested in the space complexity of one-sided approximations and

how this space complexity relates to the complexity of randomized and deter-
ministic algorithms that give two-sided approximations. We also study what
happens when both underestimates and overestimates are possible. By properly
scaling the one-sided estimates, we can get an algorithm that provides a (1± ε)-
approximation with high probability, and knows when its estimate is a poor
approximation. We call such algorithms Las Vegas algorithms.

Definition 1.2. A Las Vegas algorithm for f is a randomized streaming algo-
rithm that, given a stream σ either returns f̂(σ) such that |f̂(σ)− f(σ)| ≤ εf(σ)
or outputs fail. The algorithm fails with probability at most 1/3.
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Remark 1.1. Las Vegas algorithms can alternatively be thought of as multipass
algorithms that never fail; instead, they repeat until accepting an estimate. That
notion corresponds more with the concept of Las Vegas algorithms used in com-
munication complexity. Our definition has meaning even for one-pass algorithms.

1.1 Our Problems

We consider the space complexity of streaming algorithms under several models:
two-sided (1± ε)-approximations, ε-overestimates, ε-underestimates, Las Vegas
algorithms, and deterministic algorithms. Let S1±ε(f),Sε-under(f), and Sε-over(f)
denote the space complexity of two-sided estimators, ε-underestimators, and ε-
overestimators. SLV (f) and Sdet(f) denote the space complexity of Las Vegas
and deterministic algorithms that compute f exactly; Sε,LV (f) and Sε,det(f) are
the complexity of Las Vegas and deterministic algorithms that return (1 ± ε)-
approximations. The relationship between these measures is captured in the
following lemma, which we prove in Section 3.
Lemma 1.1. For any f , the space complexities are characterized (up to small
changes in ε) by the following:

S1±ε(f) ≤ min{Sε-under(f),Sε-over(f)}
≤ max{Sε-under(f),Sε-over(f)} = Θ(Sε,LV (f)) ≤ Sε,det(f) .

Our next collection of results provides strict separations for these inequalities.

Cascaded Norms. In Section 3, we consider the problem of estimating the cas-
caded norm `0(Q)(A) in a stream of updates to an n×n matrix A. Here, `0(Q)(A)
is the number of non-zero rows of A. We show that two-sided approximations
are possible in poly(log(n)/ε) space; an ε-overestimate is possible in Õ(n) space,
and Ω(n2) space is required for deterministic algorithms.

Theorem 1.1. For the problem of estimating `0(Q)(A) in the streaming model,
the following bounds hold: (i) S1±ε(`0(Q)) = Õ(1) , (ii) Sε-over(`0(Q)) = Θ̃(n) ,
and Sε,det(`0(Q)) = Ω(n2).3

This problem also corresponds to estimating the number of non-isolated vertices
in a graph[8] and can be useful for counting outliers in social networks.

Earth Mover Distance. In this problem, the elements on the stream define two
point sets A,B ⊆ [∆2], and the algorithm should estimate the cost of the best
matching between A and B. In Section 3, we show
Theorem 1.2. For all constant ε, Sε-under(EMD) = Sε-over(EMD) = Ω(∆2).
Moreover, these bounds hold even for underestimators that return a value that is
at least 1/c ·EMD or overestimators that return a value that is at most c ·EMD
with constant probability, for any constant c > 1.
This is the first lower bound for EMD for any class of randomized algorithms. A
result of Andoni et al. [1] gives a c-approximation in ∆O(1/c) space for any c > 1,
and so this separates the complexity of one-sided and two-sided estimations.
3 The Õ(·) notation hides terms polynomial in log n and ε.
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List Equality. To separate the deterministic and Las Vegas space complexi-
ties, we adapt a problem of Mehlhorn and Schmidt [15] to the streaming set-
ting. The problem is called List-Equality. The inputs are two lists of n-
bit numbers X, Y ∈ ({0, 1}n)n, and the goal is to compute ListEQ(X, Y ) :=
∨n

i=1EQ(Xi, Yi). Mehlhorn and Schmidt [15] introduced this problem and use it
to show a quadratic separation between the deterministic and Las Vegas ver-
sions of communication complexity. In the streaming version of this problem,
X, Y appear sequentially on a stream of n2 bits. We give a Õ(n) space Las
Vegas algorithm; an Ω(n2) bound follows from [15].

Theorem 1.3. For the List-Equality problem in the streaming model, we
have SLV (ListEQ) = Õ(n), while Sdet(ListEQ) = Ω(n2).

In addition to the space complexity separations, in Section 4 we give new one-
sided estimators for two problems motivated by machine learning: the Minimum
Enclosing Ball and Classification problems. These problems were studied in the
streaming setting by Clarkson et al. [4] who gave efficient two-sided estimates
for both problems. We extend their work to give one-sided estimates.

In Section 5, we give lower bounds for one-sided estimates for a large range of
problems, including estimating the length of the longest increasing subsequence
(LIS), the `p-norms and `p-heavy hitters, and the empirical entropy of a stream.

We also discuss open questions in Section 5.

2 Preliminaries

For many of the problems we consider, the stream is a sequence of m tokens
(i1, v1), . . . , (im, vm) ∈ [n]×{−M, . . . , M} interpreted as updates to a frequency
vector z ∈ Nn, where a token (i, v) causes zi ← zi + v. In these problems we
implicitly associate the frequency vector z with the corresponding stream σ. In
an insertion-only stream, vi is always positive. In the strict turnstile model, the
current value of zi is always positive, though some of the vi may be negative.
The general turnstile model allows arbitrary zi.

Given z ∈ Rm, the `p-norm of z is defined as ||z||p := (
∑m

i=1 |zi|p)
1/p. The

pth frequency moment is Fp(z) := ||z||pp =
∑m

i=1 |zi|p. We use δ(x, y) to denote
the Hamming distance between strings x and y, that is, the number of positions
that differ in x and y.

In rest of this section, we briefly describe the basic terminology and notation
we need for communication complexity, as well as the problems we use to prove
our streaming lower bounds. For a more complete treatment, we refer the reader
to the standard text by Kushilevitz and Nisan [14].

Given a boolean function f : X ×Y → {0, 1}, let Rε(f) denote the minimum
communication cost of a public-coin randomized protocol P such that on all
inputs, P (x, y) = f(x, y) with probability at least 1 − ε. We are particularly
interested in the communication complexity of protocols with one-sided error.
For b ∈ {0, 1}, let Rb

ε(f) be the cost of the best randomized protocol P for f such
that (i) when f(x, y) 6= b, P correctly computes f(x, y), and (ii) when f(x, y) = b,
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P computes f(x, y) with probability ≥ 1 − ε. We usually take ε := 1/3; in this
case, we drop the subscript.

Next we describe two problems we use extensively to show our bounds. In the
Equality problem, Alice and Bob receive n-bit strings x, y and wish to compute
EQ(x, y) = 1 iff x = y. The standard EQ test gives R0

ε(EQ) = O(log(1/ε)); in
contrast, we have R1(EQ) = Ω(n). In essence, protocols which must be correct
when x 6= y are as hard as the deterministic case. When making reductions in
this case, we’ll often describe the problem as NEQ to emphasize that the protocol
must be correct on x 6= y instances.

Our second problem is the promise problem Gap-EQn,t. Here, Alice and
Bob receive n-bit strings under the promise that either x = y or δ(x, y) = t and
output 1 iff x = y. Using a combinatorial result of Frankl and Rödl [9], Buhrman
et al. [3] proved that R1(Gap-EQn,t) = Ω(n) for all t = Θ(n) and used it to
get seperations between classical and quantum communication complexity. We
supress the subscripts when n is clear from context and t = n/2.

3 Space Complexity Separations

In this section, we develop separations between the space complexities for dif-
ferent classes of streaming algorithms.

Lemma 3.1 (Restatement of Lemma 1.1). For any f , the space complexi-
ties are characterized (up to small changes in ε) by the following inequality

S1±ε(f) ≤ min{Sε-under(f),Sε-over(f)}
≤ max{Sε-under(f),Sε-over(f)} = Θ(Sε,LV (f)) ≤ Sε,det(f) .

Proof. The inequalities are trivial inclusions. To prove the equality, fix an ε-
underestimatorAU and an ε-overestimatorAO, and create a Las Vegas algorithm
in the following way: Run AU and AO in parallel, scale the underestimator by
(1 + ε) and the overestimator by (1 − ε), and fail if the scaled underestimate
remains less than the scaled overestimate. If the algorithm accepts, return the
geometric mean of the estimates. This algorithm accepts with high probability,
since it accepts whenever both estimators return good ranges. Furthermore, it’s
easy to show that when it accepts, the algorithm returns a (1±ε)-approximation.

We provide strict separations for each of the inequalities in Lemma 3.1. Our
first separation result is for the problem of estimating Cascaded Norms.

Many streaming papers have focused on single-attribute aggregation, such as
norm estimation. Most applications however deal with multi-dimensional data
where the real insights are obtained by slicing the data several times and applying
several aggregations in a cascaded fashion. A cascaded aggregate P ◦ Q of a
matrix is defined by evaluating aggregate Q repeatedly over each row of the
matrix, and then evaluating aggregate P over results obtained from each row.
A well-studied aggregate is the so-called cascaded norm problem on numerical
data, for which we first compute the Q norm of each row, then the P norm of the
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vector of values obtained, for arbitrary norms P and Q. These were introduced
by Cormode and Muthukrishnan [6], and studied in several followup works [16,
2, 13, 1], with particular attention to the case when P = `p and Q = `q. In the
streaming model, the underlying matrix is initialized to 0, and receives multiple
updates in the form of increments and decrements to its entries in an arbitrary
order.

One special case of this problem is `0(Q), which corresponds to the number
of non-zero rows in an n× d matrix A. This problem was studied in [13], where
the authors obtained a poly(log(nd)/ε) space randomized algorithm for (1± ε)-
approximation. This measure is important since it corresponds to estimating
the number of non-isolated vertices in a graph. This follows by taking d = n
and viewing the matrix A as the adjacency matrix of a graph. Its complement,
n − `0(Q), is the number of isolated vertices and may be useful for counting
outliers in social networks. This was studied in a sampling (a special case of
streaming) context in, e.g., [8].

The following theorem characterizes the space complexity of the different
estimators for `0(Q).

Theorem 3.1 (Restatement of Theorem 1.1). The problem of estimating
the cascaded norm `0(Q) in the general turnstile model has the following space
complexities:

1. There exists a (1± ε)-approximation that uses O(poly(log(nd)/ε)) space.
2. There is an ε-underestimator for `0(Q) that uses O(n poly(log(nd)/ε)) space.
3. Any ε-underestimator for `0(Q) requires Ω(n) space.
4. Any ε-overestimator for `0(Q) requires Ω(nd) space.
5. Any deterministic approximation for `0(Q) requires Ω(nd) space.

Proof. The upper bound for (1 ± ε)-approximation comes from Jayram and
Woodruff [13]. To get an upper bound for ε-underestimators, let u be the maxi-
mal possible element in the matrix. We assume that u is polynomially related to
n, d and the length of the stream. Next, choose a prime q = Θ(und), and let V
be the q × d Vandermonde matrix, where the ith row Vi = (1, i, i2, . . . , id−1) ∈
GF (q)d. It’s well known that any d rows of V are linearly independent. It follows
that for any nonzero Ai, at most d− 1 rows v of V have 〈Ai, v〉 = 0(mod q).

We estimate `0(Q)(A) by picking a random row of V , computing the in-
ner product 〈Ai, v〉 in GF (q) for each row i of A, and returning the number
of rows that give 〈Ai, v〉 = 0. It’s easy to see that each inner product can be
maintained in O(log(u)) space. Furthermore, we always underestimate the num-
ber of nonzero rows, and for a random v, 〈Ai, v〉 = 0 with probability at most
O(q/d) = O(1/n). By the union bound, our choice of v identifies all nonzero
rows with probability 9/10. Therefore, we always underestimate the number of
rows with nonzero entries, and with high probabilty we compute `0(Q)(A) ex-
actly. The space required is O(log(nd)) to store a pointer to v, and n log u to
maintain 〈Ai, v〉 for each row i.

On the other hand, a reduction from Gap-EQ gives an Ω(n) lower bound
for ε-underestimators. Specifically, fix d := 1, and given n-bit strings x, y, Alice
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converts each bit xi of her input into a token (i, 1, 1 − xi). Bob converts each
bit of yi of his input into a token (i, 1,−yi). They then simulate the algorithm
for underestimating `0(Q) on the resulting matrix A and output no when the
estimate is at most n/2. Note that `0(Q)(A) = n when x = y and `0(Q)(A) = n/2
when δ(x, y) = n/2, hence an ε-underestimator for `0(Q) always produces a
correct answer for δ(x, y) = n/2, and with high probability produces a correct
answer for the x = y case.

For ε-overestimators, a stronger lower bound is possible, via reduction from
NEQ on strings of length nd. Each coordinate in the string maps to an en-
try in the matrix. Alice maps each xi,j → (i, j, xi,j), and Bob maps each yi,j →
(i, j,−yi,j). Thus, `0(Q)(A) > 0 iff x 6= y. Alice and Bob then compute NEQ(x, y)
by simulating an ε-overestimator for `0(Q)(A) and outputting x 6= y whenever
it returns a positive value. This also implies the Ω(nd) deterministic bound.

Next, we prove lower bounds for estimating Earth Mover Distance. The Earth
Mover Distance between multisets A,B ⊆ [∆]2 is the cost of the best matching
between A and B. Formally, we define

EMD(A,B) = min
π:A→B

∑
a∈A

||a− π(a)|| .

Andoni et al. [1] gave a 1-pass, ∆O(1/c)-space algorithm that returns ÊMD

such that EMD(A,B)/c ≤ ÊMD(A,B) ≤ cEMD(A,B) . In general, this ap-
proximation factor c can be much greater than 1; for this reason, we refer to
results in this section as c-approximations instead of ε-approximations.

Proof (of Theorem 1.2). Partition [∆]2 into n := ∆2/2 pairs of adjacent points
{(pi,0, pi,1) : 1 ≤ i ≤ n}. The nature of this construction is immaterial; we only
require that the pairs of points are adjacent.

To get the lower bound for c-overestimators, we reduce from NEQ. Given
x, y ∈ {0, 1}n, Alice creates a set of points A := {a1, . . . , an} by mapping each
coordinate xi → pi,xi =: ai. Bob similarly creates B := {b1, . . . , bn} by mapping
yi → pi,yi =: bi. Then, Alice and Bob simulate a c-overstimating algorithm for
EMD and output x 6= y if ÊMD(A,B) > 0.

Note that if x 6= y then clearly EMD(A,B) > 0, and since the streaming
algorithm returns an overestimate, Alice and Bob will always correctly com-
pute x 6= y. Furthermore, when x = y, then EMD(A,B) = 0; hence, the
overestimator will output ÊMD(A,B) ≤ cEMD(A,B) = 0 with high proba-
bility. In this way, a c-overestimator for EMD gives a protocol for NEQ. Since
R1(NEQ) = Ω(n) = Ω(∆2), the lower bound for c-overstimators follows.

To get a lower bound for c-underestimators, set γ := 1 − 1/2c, and reduce
from Gap-EQn,γn. As in the lower bound for overestimators, Alice and Bob
map their inputs x, y to pointsets A,B. This time, Alice again sets ai := pi,xi ,
but Bob creates bi := pi,1−yi Then they simulate a c-underestimator for EMD
and output δ(x, y) = γn if ÊMD(A,B) ≤ n(1− γ).
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Essentially, Alice and Bob solve Gap-EQ by using the EMD algorithm to
estimate δ(x,−y). Note that

EMD(A,B) =

{
n if x = y ,

n(1− γ) if δ(x, y) = γn .

Since EMD(A,B) = n(1 − γ) when δ(x, y) = γn, a c-underestimator always
returns a correct value for δ(x, y) = γn. When x = y, the c-understimator
returns ÊMD(A,B) ≥ n/c > n(1− γ) with high probability. Hence, the Ω(∆2)
lower bound follows from the Ω(n) lower bound on Gap-EQn,γn.

We end this section with a two-pass Las Vegas algorithm for List-Equality.

Proof (of Theorem 1.3). We convert the two player communication protocol of
Mehlhorn and Schmidt [15] to work in a Las Vegas environment. In the first pass,
the algorithm uses an r-bit Equality test to compare Xi and Yi for each i. Let
I be the set of indices i that pass this test. If I is empty, then the algorithm
outputs ListEQ(X, Y ) = 0. Otherwise, if |I| > m, let I ′ be a random m-subset
of I. In the second pass, the algorithm saves Xi for each i ∈ I ′ and compares
Xi, Yi directly. If it finds any i such that Xi = Yi, then the algorithm outputs
ListEQ(X, Y ) = 1. Otherwise, the algorithm outputs fail.

This algorithm uses nr space to maintain the n equality tests, nm space
to store Xi for up to m indices i ∈ I ′, and O(n) other space for bookkeeping.
Therefore, it uses O(n(r+m)) bits total. As for correctness, the algorithm never
outputs incorrectly, since the Equality test is one-sided in the first pass, and
the test in the second pass has zero error. By a union bound, the chance that
the algorithm does not terminate after the first pass when ListEQ(X, Y ) = 0 is
at most n2−r. When ListEQ(X, Y ) = 1, the algorithm fails to terminate only
when Xi 6= Yi for all i ∈ I ′. This only happens when at least m Equality
tests fail in the first pass, which happens with probability (much less than)
nm2−rm = 2m log n−rm. Taking m = r = 2 log n gives a two-pass, O(n log n)
space Las Vegas algorithm for ListEQ.

4 Upper Bounds

In this section, we present new one-sided estimators for two problems motivated
by machine learning from the recent work of Clarkson et al. [4]

Minimum Enclosing Ball. In the Minimum Enclosing Ball (MEB) problem, the
input is a matrix A ∈ {−M,−M + 1, . . . ,M}nd, for some M = poly(nd),
whose rows are treated as points in d-dimensional space. The goal is to esti-
mate the radius of the minimum enclosing ball of these points; i.e., to estimate
miny∈Rd max1≤i≤n ||Ai − y|| .

In the streaming version of this problem, we assume that we see the rows
of A one at a time (and exactly once), but in an arbitrary order. An algorithm
from [4] runs in Õ(1/ε2) space and uses Õ(1/ε) passes and returns 1/ε indices



Streaming Algorithms with One-Sided Estimation 9

i1, . . . , ii/ε such that with probability at least 1/2, the ball centered around
these indices that encloses all points has radius close to the smallest possible.
In other words, the point y :=

∑1/ε
j=1 εAij is the center of a ball whose radius

r := max1≤i≤n ||Ai−y|| is an ε-overestimate of the radius of the MEB. It is easy
to see that y can be computed with one more pass and O(d log M) more bits of
space. Given y, the radius of the ball centered at y can be computed in an extra
pass using O(log M) additional space by maintaining the maximum distance of
a point from y. This radius is thus an ε-overesetimator for MEB. One can reduce
the failure probability from 1/2 by repeating this process independently and in
parallel several times and taking the minimum radius found.

Theorem 4.1. There is an ε-overestimator for Minimum Enclosing Ball that
uses O(d log(nd) + polylog(nd/ε)/ε2) space and O(polylog(nd/ε)/ε) passes.

Classification. As with the previous problem, the input is a set of n points
A1, . . . , An ∈ {−M,−M+1, . . . ,M}d (Points Ai are assumed to have ||Ai|| ≤ 1.)
Given x ∈ Rd, define σx := mini〈Ai, x〉. In the classification problem, the goal
is to output the margin σ := minx:||x||≤1 σx. Another algorithm from [4] runs
in Õ(1/ε2) space and Õ(1/ε2) passes and returns a set of t = O(1/ε2) indices
i1, . . . , it such that with constant probability, a certain linear combination y of
{Aij}tj=1 gives an additive ε-approximation to the margin. As in the case of
MEB, y can be computed in O(d log M) additional bits of space, from which σy

can be computed exactly, which is an ε-underestimator for the margin.

Theorem 4.2. There is an O(d log(nd) + polylog(nd/ε)/ε2) space,
O(polylog(nd/ε)/ε2)-pass algorithm that computes y such that σ ≥ σy ≥ σ − ε.

5 Lower Bounds

In the Longest-Increasing-Subsequence problem, the input is a stream of n
tokens σ ∈ [m]n, and the goal is to estimate the length of the longest increasing
sequence of σ, which we denote lis(σ). Gopalan et al. [11] gave an O(

√
n/ε)

deterministic algorithm for estimating lis(σ); this space complexity was later
proven tight by Gál and Gopalan [10] and Ergun and Jowhari [7].

The proof of Gál and Gopalan uses a reduction from the Hidden-Increasing-
Subsequence (HIS`,t,k) problem. HIS`,t,k is a t-player communication problem
where plri is given the ith row of a matrix M ∈ [m]t`, with the promise that
either (i) all columns are decreasing, or (ii) there exists a column with an in-
creasing subsequence of length k. The players wish to distinguish these cases.

Gál and Gopalan proved a lower bound on the maximum communication
complexity of deterministic, one-way protocols for HIS`,t,k. We need similar
lower bounds for randomized protocols that make no mistakes when there exists
a hidden increasing sequence. Let Rmax,0(HIS`,t,k) denote the maximum commu-
nication complexity (i.e., the size of the largest message) of the best randomized,
one-way protocol for HIS`,t,k that errs only when all columns of M are decreasing.
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We observe that the deterministic lower bound technique of Gál and Gopalan
generalizes to Rmax,0(HIS`,t,k).

Theorem 5.1. Rmax,0(HIS`,t,k) ≥ `((1− k/t) log(m/(k − 1))−H(k/t))− log t.
In particular, taking n := t`, k := t/2 + 1, and ε := (k − 1)/`, we have

Rmax,0(HIS`,t,k) = Ω(
√

n/ε log(m/εn)) = Ω̃(
√

n/ε) .

Using the reduction from Gopalan et al [11], we get the following corollary.

Corollary 5.1. An ε-overestimator for Longest-Increasing-Subsequence
requires Ω(

√
n/ε) space.

In the rest of this section, we provide a suite of lower bounds for streaming
statistics. Unless otherwise specified, the underlying vector z ∈ [m]n is initialized
to zero, and tokens (i, v) represent updates z ← zi + v. Our lower bounds cover
the following problems.

– `p-norm: estimate ||z||p := (
∑n

i=1 |zi|p)
1/p.

– `p heavy hitters: For “heavy hitter thresholds” φ̂ < φ, return all i such
that |zi|p ≥ φFp(z) and no i such that |zi|p ≤ φ̂Fp(z).

– empirical entropy: estimate H(z) =
∑

i(|zi|/F1(z)) log(F1(z)/|zi|). (Re-
call that F1(z) :=

∑
i |zi| is the `1-norm of the stream.)

All of these lower bounds come from reductions from NEQ or Gap-EQ. Alice
and Bob convert strings x, y into streams σA, σB . The communication protocol
works by simulating a streaming algorithm on σ := σA ◦ σB and estimating the
resulting statistic. Because these lower bounds are similar and space is limited,
we include only a few proofs and defer others to the full version of the paper.

Theorem 5.2. For all p, Sε-over(`p-norm) = Ω(n) in the general turnstile model.

Proof. This is a simple reduction from NEQ. We omit the details.

Theorem 5.3. For all p 6= 1, there exists ε > 0 such that Sε-under(`p-norm) =
Sε-over(`p-norm) = Ω(n) in the insertion-only model.

Proof. We require different reductions for ε-overestimators and ε-underestimators
and for when p < 1 and p > 1; however, in all cases, we reduce from Gap-EQ
by embedding either (x, y) or (x,−y) into the streaming problem. In all cases,
choosing ε appropriately ensures that the relevant one-sided estimator gives a
protocol for Gap-EQ with one-sided error. All four reductions are similar; we
include a proof for the case where p < 1 and we want a lower bound for ε-
overestimators and defer the other proofs to the full version.

Suppose that p < 1, and let AO be an ε-overestimator for the `p-norm,
where ε := min{1/3, (1 − 2p−1)/(2p+1p). Given x, Alice creates a stream σA =
(a1, . . . , an), where ai := (2i − xi, 1). Bob converts y into a stream σB :=
(b1, . . . , bn), where bi := (2i− yi, 1). Note that

||z||p =

{
2n1/p if x = y ,

2n1/p
(

1
2 + 2−p

)1/p if δ(x, y) = n/2 .
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When p < 1, the `p-norm given by the x = y case is less than the δ(x, y) =
n/2 case. Therefore, Alice and Bob can solve Gap-EQ by simulating AO and
returning “δ(x, y) = n/2” if AO returns an estimate at least 2n1/p(1/2+2−p)1/p.
Since AO always provides an overestimate, the protocol always computes the
δ(x, y) = n/2 cases. Further, note that

(1 + ε)p < (1 + 2εp) ≤ 1 + 2p
(
(1− 2p−1)/p2p+1

)
≤ (1/2 + 2−p) ,

where the first inequality uses (1 + x)r < 1 + 2xr, which holds for r > 0 and
0 ≤ x ≤ 1/2. Therefore, when x = y, AO (with high probability) returns an
estimate at most 2n1/p(1+ε) < 2n1/p(1/2+2−p)1/p, hence the protocol computes
“x = y” correctly with high probability.

Note that this reduction fails for the case p = 1 because the gap in `p-norm
in the yes and no instances disappears. The `p-norm in this case corresponds
to counting the net number of items in the stream. This can easily be exactly
computed in O(log n) space.

Finally, we consider one-sided estimates for `p-heavy hitters. The notion of one-
sidedness is slightly different here, since the algorithm is to output a set of items
instead of an estimation. Here, we define the over- and under-estimation to refer
to the set of items that are reported.
Definition 5.1. A two-sided estimator for the (φ̂, φ, `p) heavy hitters problem
is a randomized algorithm that with probability 2/3
1. returns all i such that |zi|p ≥ φFp(z).
2. returns no i such that |zi|p ≤ φ̂Fp(z).

An overestimator is an algorithm that achieves condition (1) with probability 1.
An underestimator fufills condition (2) with probability 1.

Theorem 5.4. The following bounds hold for (φ̂, φ, `p)-heavy hitters:

– For all 0 < φ < 1, φ̂ = φ/2, and p ≥ 0, Ω(n)-space is required in the general
turnstile model for both over- and underestimators.

– For all 0 < φ < 1 and p 6= 1, there exists φ̂ such that Ω(n) space is required
in the insertion-only model for both over- and underestimators.

– Θ(log n/φ) space is required in the insertion-only model for all (φ/2, φ, 1)
heavy-hitters.

Theorem 5.5. For ε = O(1/ log n), Ω(n) space is necessary to ε-overestimate
or ε-underestimate the empirical entropy H(z) in the insertion-only model.

Open Questions: Our work leaves open several natural questions.
1. Can one characterize the functions f for which Sε-under(f) = S1±ε(f) or

Sε-over(f) = S1±ε(f)? A complete characterization may be hard, as it could
be used to obtain bounds on S1±ε(Longest-Increasing-Subsequence)
and S1±ε(EMD), two challenging questions in the data stream literature.
Even a partial characterization would be interesting.

2. What results hold for estimators f̂(σ) for which f̂(σ) ≥ f(σ) always, and
with probability at least 2/3, f̂(σ) ≤ f(σ)(1 + ε) + β?

Acknowledgements: We thank Kevin Matulef for several helpful discussions.
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