
Conclusion

Measuring information-theoretic statistics of traffic has proved
useful in detecting network anomalies; however, the more com-
plex the statistic, the more memory is required. Recent ad-
vances in streaming algorithms enable us to estimate statis-
tics, giving us accurate approximations statistics while using
a reasonable amount of memory.

References

1. Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating Entropy over Data Streams.
ESA 2006.

2. Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algo-
rithm for computing the entropy of a stream. SODA 2007.

3. C. K. Chow and C. N. Liu. Approximating Discrete Probability Distributions with
Dependence Trees. Transactions on Information Theory 1968.

4. Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee, and Boris Skoric. Towards
an information-theoretic framework for analyzing intrusion detection systems. ES-
ORICS ’06.

5. Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using traf-
fic algorithms for estimating entropy of network traffic. SIGCOMM 2006.

6. Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. Data streaming
algorithms for estimating entropy of network traffic. SIGMETRICS 2006.

Chow-Liu Classifiers

Existing classifier implementations have been forced to make
the strongest possible independence assumptions between fea-
tures. If these assumptions are relaxed, the accuracy of the
classifier can be increased, at the expense of additional mem-
ory and computation power. A reasonable trade-off between
accuracy and computational complexity is to restrict the clas-
sifier to second-order dependencies, where each feature de-
pends on at most one other feature.

Chow-Liu trees [3] provide an efficient method of determin-
ing nearly optimal second-order dependencies by comparing
mutual information of feature pairs. We propose to build a
second-order classifier by dynamically building Chow-Liu trees
from estimated data.

– Use hash table to maintain frequency counts.
– Multiple hash tables reduce expected error.
– Random substreams enable better accuracy.

Postprocessing:
– Use estimates of frequency of each item to

calculate estimate of entropy.

Preprocessing:
– Generate several ran-

dom hash functions for
hash table.

– Generate hierarchy
of random substreams.

Online:

The Bhuvanagiri/Ganguly algorithm: paralleliz-
able, but no value counts precise.

The Lall et al. algorithm: updates depend on pre-
vious history, but some value counts precise.

many times aj appears after location j.

Postprocessing:
– Process above data to get estimate of entropy.

Reduce error by running several copies in paral-
lel.

Preprocessing:
– Select a sequence of

random locations in stream.

Online:
– Maintain counter for

each location j.
– Counter tracks how

Estimating Entropy and Mutual Information
Recent algorithms by Chakrabarti et al. [2], Lall et al. [6], and Bhuvanagiri and Ganguly [1] provide
efficient ways of estimating Shannon entropy H(A). Mutual information and conditional entropy
can be efficiently estimated with an additive error, using the formulae I(A; B) = H(A) + H(B) −
H(A, B) and H(B|A) = H(A, B)−H(A).

Joint Distributions and Mutual Information

Measuring joint distributions and the mutual information between field values allows us to monitor
trends in co-occurence of feature values. If I(A; B) is high, then A is a good predictor of B and vice
versa. Changes in the predictability of one variable given another indicate anomaly.

Calculating entropy requires memory proportional to the num-
ber of distinct values for the field. For streams with a large
number of values, this cost is prohibitive, so efficient algo-
rithms that accurately estimate entropy are required.

Viewing each header field as a
stream of discrete values, we
can measure the entropy of this
stream. This entropy serves as
a one-number summary of its
observed distribution. Monitor-
ing changes in entropy over time
might reveal traffic anomalies.

Motivation
Information-Theoretic Statistics applied to monitoring of
network traffic can be useful in detecting changes in its char-
acter.

• Frequencies of frames of given type/subtype

– ex: too many Deauth or Deassoc frames: classic DoS
flood.

– require constant memory.

•Distributions of header field values

– changes in entropy of a particular field value suggest
anomaly. [4,5]

– require memory linear in number of distinct values.

• Joint distributions of header field values

– track co-occurence of feature values. Changes in pre-
dictability of feature pairs indicate anomaly.

– require memory quadratic in number of distinct values.

Memory requirements become prohibitively expensive for so-
phisticated measurements. However, recent advances in stream-
ing estimation algorithms give hope that such computations
can be made practical.
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