
The Coin Problem, and Pseudorandomness for Branching Programs

Joshua Brody
Computer Science Department

Swarthmore College
Swarthmore, PA, USA

joshua.e.brody@gmail.com

Elad Verbin
ITCS

Tsinghua University
Beijing, China

elad.verbin@gmail.com

Abstract

The Coin Problem is the following problem: a coin is given, which lands on head with probability
1/2 + β or 1/2 − β. We are given the outcome of n independent tosses of this coin, and the goal
is to guess which way the coin is biased, and to answer correctly with probability ≥ 2/3. When our
computational model is unrestricted, the majority function is optimal, and succeeds when β ≥ c/

√
n for

a large enough constant c. The coin problem is open and interesting in models that cannot compute the
majority function.

In this paper we study the coin problem in the model of read-once width-w branching programs.
We prove that in order to succeed in this model, β must be at least 1/(log n)Θ(w). For constant w, this
is tight by considering the recurfsive tribes function, and for other values of w, this is nearly tight by
considering other read-once AND-OR trees.

We generalize this to a Dice Problem, where instead of independent tosses of a coin we are given
independent tosses of one of two m-sided dice. We prove that if the distributions are too close and the
mass of each side of the dice is not too small, then the dice cannot be distinguished by small-width
read-once branching programs.

We suggest one application for this kind of theorems: we prove that Nisan’s Generator fools width-w
read-once regular branching programs, using seed length O(w4 log n log log n + log n log(1/ε)). For
w = ε = Θ(1), this seedlength is O(log n log log n). The coin theorem and its relatives might have
other connections to PRGs. This application is related to the independent, but chronologically-earlier,
work of Braverman, Rao, Raz and Yehudayoff.

In December 2017, Avishay Tal brought to our attention a bug in the proof of our width-
elimination lemma (Lemma 11 in the conference version, Lemma 10 in the full version). As a
result, we retract our claim on this lemma, as well as the overall Coin Problem lower bound for
ROBPs (Theorem 5 in both versions). Note: this lower bound still holds; we retract only the proof.
In fact, this result has already been reproved and strenghthened by Steinberger (CCC 2013), who
replaces our random restriction with a novel ”interwoven hybrid” argument. In his proof, Stein-
berger uses our Collision Lemma, which we do not retract. We encourage the interested reader
to consult the Steinberger paper for a proof of the Coin Problem lower bound for constant-width
ROBPs.

1

The Coin Problem, and Pseudorandomness for Branching Programs

Joshua Brody
Department of Computer Science

Dartmouth College
jbrody@cs.dartmouth.edu

Elad Verbin
ITCS

Tsinghua University, China
elad.verbin@gmail.com

Abstract

TheCoin Problemis the following problem: a coin is given, which lands on headwith probability
either1/2 + β or 1/2 − β. We are given the outcome ofn independent tosses of this coin, and the
goal is to guess which way the coin is biased, and to be correctwith probability≥ 2/3. When our
computational model is unrestricted, the majority function is optimal, and succeeds whenβ ≥ c/

√
n for

a large enough constantc. The coin problem is open and interesting in models that cannot compute the
majority function.

In this paper we study the coin problem in the model ofread-once width-w branching programs. We
prove that in order to succeed in this model,β must be at least1/(logn)Θ(w). For constantw this is tight
by considering the recursive tribes function.

We generalize this to aDice Problem, where instead of independent tosses of a coin we are given
independent tosses of one of twom-sided dice. We prove that if the distributions are too close, then the
dice cannot be distinguished by a small-width read-once branching program.

We suggest one application for this kind of theorems: we prove that Nisan’s Generator fools width-w
read-oncepermutationbranching programs, using seed lengthO(w4 log n log log n + log n log(1/ε)).
Forw = ε = Θ(1), this seedlength isO(log n log log n). The coin theorem and its relatives might have
other connections to PRGs. This application is related to the independent, but chronologically-earlier,
work of Braverman, Rao, Raz and Yehudayoff [5] (which might be submitted to this FOCS).

1 Introduction

Suppose you have an unfair coin that is either slightly biased toward heads, or slightly biased toward tails,
and the goal is to determine in which direction the coin is biased. What is the best strategy for determining
whether the coin is biased toward heads or biased toward tails? The naive solution is to flip the coin several
times and guess heads if the results of the coin flips were heads more often than tails. If the outcome is tails
more often than heads, guessing tails is the right choice.

In this game, the naive solution turns out to be optimal. Furthermore, if the goal is to guess correctly
most of the time, there is a well-known tradeoff between the error probability and the number of coin flips
required. Specifically, if the coin is heads with probability 1/2 + 1/t or heads with probability1/2 − 1/t,
thenΘ(t2) flips are needed to guess the correct bias with2/3 confidence. Conversely, if you are restricted
to flipping the coin at mostn times, and you want to be2/3 confident of guessing correctly, the bias must
Ω(1/

√
n).

There is a subtle drawback to the solution described above: in order to output whether at least half the
coin flips were heads, one must count the number of heads, using log n bits of space;n could be quite large,
and in such cases we would want to use less space. At a high level, we consider the following:

1

Question: Supposen coin flips are available, but computation is restricted to a machineM that
uses only a constant amount of space. What is the smallestβ such thatM distinguishes a coin
which lands on head with probability1/2 + β from one which lands on heads with probability
1/2 − β ?

Several possibilities to model constant-space computation exist. In this work, we consider constant-
width, read-once branching programs (ROBPs). Informally,branching programs are layered directed acyclic
graphs. States are labeled with variablesxi, and edges are labeled with possible values forxi and transition
to some state in the next layer. The first layer contains a single start state, and the last layer contains
accept and reject states. Thus, a path from the start vertex to an end state describes a computation where
variables are queried, and the state changes based on the values of these variables. Thewidthof a branching
program is the maximum number of states per layer. Branchingprograms with small width capture the
notion of computation using limited space. (The space, in bits, is the logarithm of the width). In aread once
branching program, all states in layeri are labeled withxi. Thus, the branching program readsxi exactly
once, at layeri.

Note that non-read-once branching programs are extremely strong, as shown by Barrington [3]: he
proved that width-5 polynomial-sized branching programs recognize any language in NC1; in particular,
they can compute Majority. In contrast, the model we are interested in isread-onceprograms, which are
much weaker. They can be thought of as automata which has a different transition function at each point in
time. Still, these machines are quite strong. For example, we show in this work that branching programs
can solve the coin problem surprisingly well. In this work wedo bound their power, by proving they cannot
solve the coin problem whenβ is too small.

The results that we prove on the coin problem and its relatives might have various applications to the
study of small-space computation, such as in the field of streaming algorithms. Furthermore, the ideas we
introduce here might be useful for studying other “low” models such asAC0, ACC0, and low-degree poly-
nomials, among others. (Here, by “low” model, we mean a modelthat does not seem to be able to compute
the majority function). Finally, the coin problem seems particularly relevant in the study of pseudorandom
generators, and we present an application of our results in that field.

1.1 Our Results on the Coin and Dice Problems

Let X = (X1, . . . ,Xn) be a product distribution, i.e. the distribution of the coordinates is mutually inde-
pendent. Similarly, letY = (Y1, . . . , Yn) be a product distribution. Our task is to construct width-w ROBPs
that distinguishX andY , when for eachi, Xi is close toYi. In thecoin problem, each input is a random
coin, i.e.,Xi andYi take values in{0, 1}. We also consider a more general problem, where the inputs take
values in{1, . . . ,m}. We think of these variables asm-sided dice, and call the problem of distinguishing
such distributions thedice problem. In either case, we wish to determine how closeX andY can be and
still be distinguishable by a width-w ROBPf . Note that we do not require coordinates to correspond to the
“same” coin/die—Xi andXj may have different distributions. Our only requirement is that the distributions
are independent.

Our first theorem shows that iff distinguishesX from Y , then the statistical distance between pairs of
variables(Xi, Yi) cannot be too small.

Theorem 1. (Main Theorem, informally stated). If a width-w read once branching program distinguishes
X andY such that∆(Xi, Yi) ≤ β for all i, thenβ = Ω ((δ/ log n)w). This assumes that for each outcome
e, Pr[Xi = e],Pr[Yi = e] ≥ δ.

2

In this formulation we required that the “mass” of the sides of the dice not be too small (or, in coin
problem language, that the “gap” of the coins not be around0 or 1). As an extreme case of the coin problem
where thisdoes nothold, consider the coin problem where the coin in world1 is heads with probability1/n,
and in world2 the coin is heads with probability zero. Then, a width-2 ROBP can distinguishX andY by
computing theOR of the input variables. We thus see that branching programs can exploit small differences
in probabilities to distinguishX andY , when the probabilities themselves are small. To avoid thiscase, we
must either require a lower bound on the masses of the elements in the coin/dice, as we did in Theorem 1,
or defineβ based onratios of probabilities, e.g.,Pr[Xi = e]/Pr[Yi = e] instead of absolute differences, as
in the following theorem.

Theorem 2. (Lower Bound, relative version, informally stated). If a read once branching program distin-
guishesX fromY such that

1

1 + β
≤ Pr[Xi = e]

Pr[Yi = e]
≤ 1 + β

for all i and all outcomese, then

• β = Ω
(

(log n)−2w
)

in the coin problem,

• β = Ω
(

(log n)−3w
)

in the dice problem.

For the case of coins, we give an almost matching upper bound.

Theorem 3. (Coin Problem Upper Bound). There exists a width-w read once branching program that
distinguishes coins that are heads with probability1/2 + O

(

(log n)2−w
)

from coins that are heads with
probability 1/2 − O

(

(log n)2−w
)

.

1.2 Work Related to the Coin Problem

To the best of our knowledge, this is the first work to considerconstant-width branching programs that
distinguish two close distributions; however, constructing distinguishers in general has a long history in the
literature.

Our upper bound can be interpreted as an attempt to approximate the majority function using small space.
Several recent papers consider the problem of approximating MAJ under different computation models. The
closest to our work is the recent work of Amano [2], which provides size/depth tradeoffs forAC

0 circuits
that approximate majority. O’Donnell and Wimmer [13] previously provided lower bounds on the size
required to approximate majority with depth-d circuits; Amano’s work gives a matching upper bound. The
work of Viola [15] also has similar spirit. Also see the references therein. We remark that the notion
of approximation considered in the coin problem is of dual nature: it both concentrate on inputs that are
significantly biased, and it allows mistake of1/3 (in the distributional sense).

To the best of our knowledge, the current paper is the first work to study approximate-majority-type
problems on read-once branching programs.

1.3 Techniques

In this section, we briefly describe the techniques used to prove Theorem 1, for the case of the coin problem,
where the probability of heads is either1/2 + β or 1/2 − β.

In the proof, we first perform a monotonization step. Roughlyspeaking, we order the states at each level
by how confident we are that the distribution comes from world1 instead of world2, conditioned on having

3

reached the state. We prove that in thebestbranching program, i.e. the one with the highest probability of
success on the coin problem, there is a way to order the statessuch that the1-transition coming out of a state
always goesabove or equal tothe0-transition coming out of the same state. Otherwise, we could change
transitions and increase the success probability.

Our second step is to perform a series ofO(w) random restrictions. We show that with high probabil-
ity, after the random restrictions, we are left with a branching program whose input only depends on few
variables. Note that for this to work, the monotonization step was necessary: a (non-monotone) width-2
ROBP can compute the XOR of all the input bits, and the XOR function is incredibly resilient to random
restrictions. The monotonization step allows us to assume that the ROBP is monotone, and such programs
are, as we show, “killed” by random restrictions.

Finally, we show that a ROBP that is “killed” by random restrictions cannot distinguish two close distri-
butions. We do this by an easy reduction argument, that in fact works for any function class. This finishes
the proof of the coin theorem.

To generalize this proof for the case of dice, we use couplings instead of random restrictions. (Interest-
ingly, couplings can be seen to be a natural generalization of random restriction in our setting). We also need
to generalize the above concepts appropriately. For the “relative” dice theorem (Theorem 2), we perform a
careful reduction to the non-relative case.

All of the above claims are formalized and proved in Section 3.

1.4 Our results on PRGs

One of the main open questions in theoretical computer science is to derandomize log-space computations,
namely to prove that L=RL. One approach for doing that is to construct pseudorandom generators (PRGs)
for ROBPs with widthw = poly(n). The PRG should use seedlengthO(log n), and the PRG itself should
be computable in log-space. For width2 it is known how to construct such PRGs with seedlengthO(log n),
see [1], but for width3 the problem is already wide open. (See more background in Section 6).

In Section 6 we take one step in this direction. We show how to achieve seedlengthO(w4 log n log log n+
log n log(1/ε)) for permutationread-once branching programs of widthw. Here,ε is the error parameter of
the PRG. Apermutationread-once branching program (pROBP) is a ROBP where every state has exactly
two edges entering it: one of them labeled ‘0’ and one labeled‘1’. The generator we use is Nisan’s gener-
ator [12] or the INW generator [8]. Forε = O(1/ log n) andw = O(1), the seedlength of our generator
is justO(log n log log n), while the traditional Nisan’s generator requires seedlength O(log2 n). For more
information, see Section 6.

Section 6 also contains an extensive intuitive discussion of why and how the coin problem is related to
the INW generator.

1.5 Relation to the work of Braverman, Rao, Raz and Yehudayoff

In recent work of Braverman et al [5], the authors of [5] provethat Nisan’s generator fools the class of
regular read-once branching programs(which is similar, but more general, than permutation read-once
branching programs). It seems prudent to discuss the relation between the two papers.

In [5], the authors achieve a seed length ofO((log w + log log n + log(1/ε)) log n). This isbetterthan
the seed length that we achieve. Furthermore, they have achieved the result chronologically earlier: Elad
Verbin has spoken to two of the authors of that paper in November 2009, where they have already informed
him that they are able to fool this class with good seedlengthusing Nisan’s generator by an approach based
on information theory, although no details beyond that werediscussed. The approach of fooling read-once

4

branching programs based on the coin problem have been proposed by Verbin as far back as 2008, and much
of the approach (but not the solution of the coin problem itself) was proposed back then, so we consider the
current paper to be independent work with respect to [5].

Furthermore, we believe that the approach in the current paper is potentially stronger than that of [5], in
the sense that we concentrate on the coin problem and the diceproblem, and the results on fooling pROBPs
are just a product of these theorems. In particular, we believe the coin problem and dice problem have
potential to produce PRGs for non-permutation read-once branching programs, and for larger values ofw
than we currently know how to achieve. Furthermore, we believe that the coin problem might have other
implications, for small-space computation as well as for other “low” computational models. Thus we believe
that the current paper, even if considered as subsequent work to that of [5], is still a significant contribution.

It seems to us that the work of [5] concentrates on pROBPs (orregular ROBPs), while ours is more
concentrated on ROBPs. The reason our results only give PRGsfor permutation ROBPs is a technical (but
deep) reason, explored in Section 7. Therefore, we believe that with some more ideas, the PRG approach
based on the coin/dice problem could also be made to work for non-permutation ROBPs.

1.6 Organization of the Paper

In Section 2, we formalize many of the concepts and tools usedin the rest of the paper. Sections 3 and 4
develop our lower bounds, and Section 5 constructs the upperbound. In Section 6 we show our results on
PRGs for pROBPs. Section 7 explains the barrier stopping thePRG results from giving PRGs for ROBPs.
Finally, Section 8 concludes the paper and presents some open problems. Some technical proofs are left to
Appendix A.

2 Preliminaries and Notation

In this section, we provide some technical background and concepts needed in the rest of the paper.

Definition 4 (Statistical Distance). LetX andY be random variables that both take values on a finite setV.
Thestatistical distance betweenX andY is defined as

∆(X,Y) :=
1

2

∑

v∈V

|Pr[X = v] − Pr[Y = v]| .

We now formalize what it means for a branching program to distinguish two distributions. The branching
programs we consider take as inputn-bit strings, which correspond ton coin flips. We consider distributions
X = (X1, . . . ,Xn) where theXi are mutually independent. In the coin problem, allXi come from the
domain{0, 1}; in the dice version, variables come from some finite domain[m] := {1, . . . ,m}.

We use two different notions of what it means to distinguish.We say thatf weaklydistinguishesX,Y
if ∆(f(X), f(Y)) > 1/3, and thatf stronglydistinguishesX,Y if it accepts with probability at least2/3
when the strings come from distributionX, and rejects with probability2/3 when the strings come from
Y . Note that the former is a necessary condition for the latter. We give our lower bound in terms of weak
distinguishers, and our upper bound in terms of strong distinguishers. It will be clear from context which
notion we’re using, and for that reason, we drop the weak/strong distinction and discuss only distinguishers.

A branching programf distinguishesβ if f distinguishes distributionsX,Y such that∆(Xi, Yi) ≤ β
for all i. Width-w branching programs distinguishβ if there exists a width-w branching program that
distinguishesβ. Our goal is to determine the smallestβ distinguishable by width-w branching programs.

5

2.1 Probabilities, Transitions, and Support

In this subsection, we define and describe many of the concepts we’ll use to analyze branching programs.
For any states and anye ∈ [m], let s(e) denote the state reached by following thee-transition froms.

For any branching programf and any inputx, we definef(x) := 1 if f acceptsx, andf(x) := 0
if f rejects. For a random variableX and states, let f(X|s) denote the expected output off given X,
conditioned on the event that we reach states. Also, letβX(s) := PrX [f reachess]. Define thesupport of
f at levelk givenX to be the set of states at levelk that are reachable from the start state, givenX. Usually,
bothf andX will be clear from context; in this case, we say “the support of level k”.

The probabilities{βX(s)} provide a convenient way of expressingf(X) in terms of the states at a
particular level. Specifically, lets1, . . . , sw denote the states at some arbitrary levelk. Then, we have

f(X) =
w
∑

j=1

βX(sj)f(X|sj) . (1)

Suppose thats is a state at levelk. It’s not hard to see thatf(X|s) is a convex combination of
{f(X|s(e)) : e ∈ [m]}. Specifically, we have

f(X|s) =
∑

e∈[m]

Pr[Xi = e]f(X|s(e)) . (2)

3 The Lower Bound

In this section, we prove the following theorem, which is themain result of our paper:

Theorem 5 (Main Theorem). SupposeX = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn) are collections of
independent random variables, all on a finite set[m]. Further suppose that for alle ∈ [m] andi ∈ [n]

1. Pr[Xi = e] = 0 if and only ifPr[Yi = e] = 0.

2. Pr[Xi = e],Pr[Yi = e] ≥ δ whenever they are nonzero.

3. ∆(Xi, Yi) ≤ β.

Then, for all constantw, if a width-w ROBP distinguishesX fromY , thenβ = Ω ((δ/(log n))w).

We prove this theorem in three steps. First we prove acollision lemma. A branching program has
the collision property if the transitions from any levelk to the next levelk + 1 either form an identity
permutation, or for somee ∈ [m], thee-wires collide; that is, there ares, t such thats(e) = t(e). In the
collision lemma, we show that anygoodbranching program has this property—if a branching programf
does not have the collision property, then we can replace it with one that does, and simultaneously increase
the statistical distance∆(f(X), f(Y)).

We prove the collision lemma by demonstrating that the transitions aremonotonicin a weak sense.
Specifically, we order the states at each level such that the transitions that are more likely in distributionY
will always precede transitions that are more likely in distribution X.

In the second step, we use the coupling method, together witha an iterative sampling process—each
variablexi will be sampled with probability1− p, and if a variable is sampled, what value it becomes takes
will come from the average ofXi andYi. We then condition on both which variables get sampled, and the

6

value they take. We show that after each conditioning, the support of each level decreases by1 (with high
probability).

After w − 1 steps, each remaining free level is likely to have support ononly one state. Since the
branching program reaches this state no matter what happensin earlier levels, it follows that the function
computed by the branching program is independent of all preceding levels. This implies that the function
depends only on the few levels that follow the last level whose support contains a single state. Our final step
shows that any function that depends on a few variables cannot distinguish two close distributions.

To prove the main theorem, we must surmount several technicalities. For this reason, we divide the proof
into sections. In Section 3.1, we establish our notion of monotonicity and prove the collision lemma. Sec-
tion 3.2 uses the collision lemma to prove the main theorem. This proof requires a lemma that is technical.
For this reason, we defer the lemma’s proof until Section 3.3.

3.1 The Collision Lemma

We wish to determine the smallestβ such that∆(f(X), f(Y)) > 1/3. Without loss of generality, assume
that the branching program attempts to accept strings from world 1, and reject when strings come from
world 2. Thus we may assume thatPr[f(X) = 1] > Pr[f(Y) = 1]. It follows that∆(f(X), f(Y)) =
Pr[f(X) = 1] − Pr[f(Y) = 1].

For any levelk of the branching program, define an ordering on the states at that level in terms of
f(X|s). Specifically, defines ≤ t if and only if f(X|s) ≤ f(X|t). Next, label the statess1, . . . , sw in
increasing order off(X|s). Thus, we havef(X|si) < f(X|sj) for all i < j.1 We call this thecanonical
orderingof {s1, . . . , sw}.

Our next lemma states that this ordering holds forY as well.

Lemma 6. In any good branching program for the coin problem,s < t impliesf(Y |s) < f(Y |t).

Proof. Suppose for the sake of contradiction that there exist states s < t such thatf(Y |s) > f(Y |t). Fix
somes′ andb such thats′(b) = s. Then, moving this transition such thats′(b) := t increasesf(X|s′) and
decreasesf(Y |s′). Using equations (1) and (2), it follows thatf(X) increases andf(Y) decreases. Hence,
we improve∆(f(X), f(Y)), which contradicts the optimality off .

The proof of the above lemma also shows that it is safe to assume that the canonical ordering is strict;
that is, thatf(X|sj) < f(X|sj+1) for all 1 ≤ j < m. Otherwise, we could take all transitions that go into
sj and move them to point tosj+1 without changing∆(f(X), f(Y)).

The next lemma uses wire-switching to show a weak form of monotonicity. We leave the proof to the
Appendix.

Lemma 7. Fix some levelk of the branching program, and lets be a state at levelk. Assume states are
ordered canonically, and leta, b ∈ [m] be such thatpi,a ≥ qi,a butpi,b ≤ qi,b. Then, in any good branching
program,s(a) ≥ s(b).

Our final lemma in this section is a collision lemma. Formally, for e ∈ [m], ane-collision is a pair of
statess andt such thats(e) = t(e). In general, only collisions among states in the support of alevel concern
us, since the other states are unreachable. Now, it’s easy tosee by the pigeonhole principle that if there are
d states in the support of levelk and fewer thand states in the support of levelk + 1, then some collision(s)

1Technically at this point the inequality should not be strict; however, we’ll soon see that we can assume strict inequalities
without loss of generality.

7

must occur. The next lemma characterizes when collisions occur if the number of states does not decrease
across levels.

Lemma 8 (Collision Lemma). Lets1, . . . , sd andt1, . . . , td denote the support of two consecutive levels of
the branching program. Suppose there are no collisions among s1, . . . , sd. Then, the transitions from{si}
to {ti} form an identity permutation; that is,si(e) = ti for all 1 ≤ i ≤ d and for all e ∈ [m].

3.2 Proof of Main Theorem

Given distributionsX,Y , definepi,e := Pr[Xi = e] andqi,e := Pr[Yi = e]. Let ri,e := (pi,e + qi,e)/2
denote the average of the probabilitiespi,e andqi,e, and letδi,e := (pi,e − qi,e)/2.

In this section, we prove the following theorem.

Theorem 9. Fix p := δ/(1000 log n) for some constantδ, and suppose thatX = (X1, . . . ,Xn) and
Y = (Y1, . . . , Yn) are each a collection of mutually independent random variables such that for alle ∈ [m]
andi ∈ [n] the following conditions hold:

1. pi,e = 0 if and only ifqi,e = 0,

2. pi,e, qi,e ≥ δ wheneverpi,e andqi,e are nonzero.

3. ∆(Xi, Yi) ≤ β.

Then we have∆(f(X), f(Y)) ≤ β · p−(w).

Our main theorem follows directly from Theorem 9.

Proof of Theorem 5. If f distinguishesβ, then there exist twoβ-close distributionsX andY such that
∆(f(X), f(Y)) > 1/3. By Theorem 9,∆(f(X), f(Y)) ≤ β · p−w. Hence, we haveβ = Ω(pw) =
Ω ((log n)−w). 2

We will prove Theorem 9 using a coupling method. It’s well known that under any couplingω of
distributionsµ, ν, we have∆(X,Y) ≤ Prω[X 6= Y]. Fix β′ := β · p−(w−1). Define distributionsX ′ and
Y ′ in the following iterative manner. Create a set of indicesS1 ⊆ [n] by placing eachi ∈ S1 independently
with probability1 − p. For eachi ∈ S1 and eache ∈ [m] we setX ′

i := Y ′
i := e with probabilityri,e.

From the coordinatesnot in S1, we sample a new set of coordinatesS2 ⊆ S \ S1 in the same manner,
and again we setX ′

i andY ′
i for eachi ∈ S2 in the same way.

We repeat this sampling processw − 1 times, after which we set the remainingi ∈ S \
(

⋃

j Sj

)

such

that Pr[X ′
i = e] = ri,e + δi,ep

−w+1, Pr[Y ′
i = e] = ri,e − δi,ep

−w+1, and the joint distribution(X ′
i, Y

′
i)

is distributed according to a couplingω2 to be defined later. Note that no matter the choice ofω2, we have
∆(X ′

i, Y
′
i) ≤ β′. Simple calculations show that

Pr[X ′
i = e] = (1 − pw−1)ri,e + pw−1(ri,e + δi,ep

−w+1) = ri,e + δi,e = pi,e ,

Pr[Y ′
i = e] = (1 − pw−1)ri,e + pw−1(ri,e − δi,ep

−w+1) = ri,e − δi,e = qi,e .

Hence,X andX ′ are equidistributed, as areY andY ′. It’s not hard to see that the same holds forf(X)
andf(X ′) and forf(Y) andf(Y ′). Hence, the joint distribution(X ′, Y ′) defines a coupling forf(X) and
f(Y). For the sake of notation, we’ll now drop the superscripts, and refer toX andY instead ofX ′ andY ′.

8

Our goal now will be to boundPr[f(X) 6= f(Y)] by iteratively conditioning onS1, S2, . . . , Sw−1. We
write “conditioning onSj” as shorthand for “conditioning on both the choice ofi ∈ Sj andon the setting of
Xi, Yi for i ∈ Sj .” If i 6∈ ⋃1≤j≤k Sj, then we say thatXi remainsfreeafter the firstk conditionings. When
k is clear from context, we simply say thatXi is free. If Xi is not free, we say that it isrestricted.

In the next lemma, we prove that conditioned onS1, . . . , Sw−1, the branching programf is likely to be
anO(log n)-junta.

Lemma 10 (Width Elimination). Suppose there is a width-w branching program that is weakly monotone.
Then, after conditioning onS1, . . . , Sw−1, the branching program is anO(log n)-junta onΩ

(

n/(log n)w−1
)

variables with probability greater than1 − 1/n.

We defer this proof until Section 3.3. The rest of the theoremfollows from the following lemma:

Lemma 11. Suppose thatg is ak-junta and∆(Xi, Yi) ≤ β for all relevant variablesi. Then, we have

∆(g(X), g(Y)) ≤ kβ .

Proof. We use a hybrid argument. Without loss of generality, assumethatf depends on the firstk variables.
Let Z0 := Y , and for1 ≤ i ≤ k, let Zi := X1X2 . . . XiYi+1 . . . Yk. Note thatZk = X. It’s not hard to see
that for all1 ≤ i ≤ k, we have∆(Zi−1, Zi) = ∆(Xi, Yi) ≤ β. Then, by the triangle inequality, we have

∆(g(X), g(Y)) ≤ ∆(X,Y) = ∆(Z0, Zk) ≤
k
∑

i=1

∆(Zi−1, Zi) ≤ kβ .

Proof of Theorem 9.Let R1 denote the random coins used to generate the samplingS1, . . . , Sw−1, and let
R2 denote the rest of the random coins, i.e., the randomness used to chooseXi andYi for thosei that remain
free after the conditioning is complete. Then, we havePrω[f(X) 6= f(Y)] = PrR1,R2

[f(X) 6= f(Y)].
For given random stringsr1, r2, let E(r1, r2) be the event thatf(X) 6= f(Y), given that

R1 = r1 and R2 = r2. Next, let h(r1, r2) be an indicator variable for the eventE(r1, r2), and set
ζ(r1) := ER2

[h(r1, R2)]. Then, we haveER1
[ζ(R1)] = Prω[f(X) 6= f(Y)]. Now, let us callr1

good if ζ(r1) ≤ 2 ER1
[ζ(R1)], andbad otherwise. By Markov’s Inequality, at most half ther1s are bad.

By the union bound and Lemma 10, there exists a goodr1 such that conditioned onR1 = r1, the branching
program is anO(log n)-junta. Fix thisr1.

We now construct a branching programg on m := npw−1 variables that distinguishesβ′. Let y
be an input tog. We “embed” this into an inputx for f : for each free variablexi, we assign a vari-
able fromy. Finally, let ω2 be a coupling such that∆(g(X), g(Y)) = Prω2

[g(X) 6= g(Y)]. Note that
PrR2

[f(X) 6= f(Y) | R1 = r1] = Prω2
[g(X) 6= g(Y)]. Therefore, we have

∆(f(X), f(Y)) ≤ Pr
ω

[f(X) 6= f(Y)] ≤ 2Pr
ω2

[g(X) 6= g(Y)]

= 2∆(g(X), g(Y))

≤ 2β′ log n

= O (β(log n)w) ,

where the first inequality follows from the coupling ofω, the second follows from our choice ofr1, the
penultimate equality comes from the choice ofω2, and the final inequality comes from Lemma 11.2

9

3.3 Proof of Lemma 10

Definition 12. We say that levelk is inactiveif for all statessi, sj at levelk, and for alla, b ∈ [m], we have
si(a) = si(b), sj(a) = sj(b), andsi(a) 6= sj(a). A level isactiveif it is not inactive.

Unless otherwise specified, assume that a level is active. Inactive levels are effectively identity permu-
tations – each state in the support of levelk maps directly to some state in the next level. Moreover, it is
easy to see that the output of the branching program is independent ofxk. Also, note that levels that are
active may becomeinactiveafter a conditioning, since conditioning can decrease the support of a level. In
our analysis, we shall perform a series of conditionings. For the most part, weignore levels that become
inactive.

Proof of Lemma 10.Let us call an eventE unlikely if Pr[E] ≤ 1/n3. Through out this proof, we carry an
implicit assumption that we are conditioning on the event that noneof the unlikely events happen. At the
end, we will show via a union bound that this assumption is reasonable, i.e., with high probability none of
the unlikely events will happen.

Our proof uses induction, and can be seen at a high level as a form of width elimination. We shall show
that after conditioning onS1, . . . , Sk, each of the remaining unrestricted levels is likely to havesupport on
only w − k states.

Leta := (50 log n)/δ. Through these conditionings, we wish to maintain the invariant thatexceptfor the
first a free layers, the layers are likely to have small width. Specifically, we wish to maintain the following
invariant:

Invariant: After conditioning onS1, . . . , Sk, let xi be any variable that remains free. If there
are at leasta levelsj such thatxj is free and active andj < i, then with probability at least0.9,
the support of leveli is at mostw − k.

We say thatxi is niceafter conditioning onS1, . . . , Sk if the support of leveli is at mostw − k. When
k, S1, . . . , Sk are clear from context, we simply say thatxi is nice.

As a base case, consider the first conditioning. Pick an arbitrary free levelxi, and consider thea active
levels that precede it. Then, the probability that alla preceding levels are restricted is

(1 − p)a ≥ e−2ap = e−0.1/δ > 0.9 , (3)

where the first inequality holds because1 − x ≥ e−2x for all 0 ≤ x < 1/2.
Next, consider the levels that remain free, and consider anyconsecutive pairi1, i2 such that at leasta

restricted levels lie between them. We wish to show that the support of the layeri2 is at mostw−1. To prove
the support of layeri2 is at mostw − 1, we use a pebbling argument. Specifically, place a pebble at each
state in the support of level(i1 + 1), and move these pebbles down the layers, along whichever transitions
are dictated by the conditioning. Note that whenever two pebbles arrive at the same state, they stay together
for the remainder. By the Collision Lemma, at any active level there exists ane-collision for somee ∈ [m]
such thatri,e > δ. Therefore, each active level will have a collision with probability at leastδ.

Note that in between two free layers, if a collision exists onany layer, then at mostw − 1 states in
the free level at the bottom will receive pebbles. We are guaranteed to never reach state(s) that receive no
pebbles, and so the support of leveli2 is precisely the set of states receiving pebbles. Ifa active restricted
levels lie between a free leveli and the free level that preceded it, then the probability that level i will not
decrease in width is(1 − δ)a ≤ e−δa = e−50 log n = n−50/ ln 2, which is unlikely.

10

Therefore, each level that remains free after the first conditioning is likely to have support≤ w − 1
as long as there area = (50 log n)/δ levels preceding it. Trivially, at mosta levels donot havea levels
preceding them. Hence, the invariant holds after the first conditioning.

The logic behind the invariant for subsequent conditionings has the same flavor, but there are a couple
of subtle complications, which we present below.

Assume for the sake of induction that the invariant holds after conditioning onS1, . . . , Sk. LetFk denote
the set of free levels after thekth conditioning. Note thatFk+1 ⊆ Fk. Now, take anyj ∈ Fk+1. There are
two cases.

For the first case, suppose that prior to conditioning onSk+1, at least2a free (active) levels precedej,
and consider thea free levels immediately precedingj. Then, as in equation (3), with probability> 0.9,
these layersall become restricted. Suppose that this is indeed the case. Now, if any of these layers had
supportw′ < w − k, then by the pebbling argument, layerj will also have width at mostw′ ≤ w − k − 1.
Otherwise, by the invariant, each of these layers arenicewith probability> 0.9. Therefore, we expect0.9a
of them to be nice. Since the probability that each of these layers is nice is independent of the others, by
another Chernoff bound, the event that less than0.6a of them are nice is unlikely. On the other hand, with
0.6a nice layers, there are at least0.1a consecutive pairs of nice layers. Each of these pairs have support
w−k, and since they are active, each layer of transitions must have ane-collision. Hence, the probability that
there areno collisions in thea restricted layers precedingj is at most(1 − δ)−0.1a ≤ e−5 log n/ = n−5/ ln 2,
which is unlikely. It follows that with high probability,j will have support at mostw − k − 1.

In the second case, suppose that at most2a free levels precedesj. Then, we make no guarantees on
the support ofj. On the other hand, we will show there will not be too many suchfree j. Consider layers
i1, . . . , i2a. Conditioning onSk+1, each layer remains free with probabilityp, and these probabilities are
independent. LetE be the event that at least half ofi1, . . . , i2a remain free after conditioning onSk+1. By a
Chernoff bound,

Pr[E] ≤ exp

(

−2a(1/2 − p)2

2(1 − p)

)

≤ exp
(

−a · 0.492
)

≤ n−12 .

This event is unlikely. Therefore, with high probability, we make no guarantees about at mosta free levels
after conditioning onSk+1. Together, these cases prove that the invariant holds afterconditioning onSk+1.

By induction, the invariant holds after conditioning onS1, . . . , Sw−1. Now consider what remains. Let
f̂ denotef after conditioning onS1, . . . , Sw−1. By the invariant, if more thana free layers exist, then the
later layers have a support of1 with probability greater than0.9. Now, let x∗ denote the last free active
layer with support1. Note that sincef̂ sends all probability to a single state inx∗, then the output is
independent of the layers beforex∗. Suppose thatx∗ is theDth free layer from the end of the branching
program. Since each of these layers has support1 independently with probability greater than0.9, then
Pr[D > log n] = (0.1)log n < n−3. Hence this event is unlikely. It follows that̂f depends on at most
a + log n < (51 log n)/δ variables, i.e.,̂f is anO(log n)-junta.

Finally, we performedw − 1 conditionings, and each time we definedO(n) unlikely events. Hence, by
the union bound, the probability that some unlikely event occurred is at mostO(w/n2) = O(1/n). 2

4 Lower Bounds – Relative Versions

In this section, we generalize and strengthen the lower bound from the previous section to handle outcomes
that occur witho(1) probability. We begin with the coin problem.

11

t1

t2

t1

t2

s
1

0

1 1

00

0,1
0,1

s

1

0

Figure 1: Replacing each(s(0), s(1)) pair with a width-2 balanced ROBP

Theorem 13. SupposeX = (X1, . . . ,Xn) andY = (Y1, . . . , Yn) are collections of mutually independent
random coins such that

1

1 + β
≤ Pr[Xi = 0]

Pr[Yi = 0]
,
Pr[Xi = 1]

Pr[Yi = 1]
≤ 1 + β .

Then, if a width-w ROBP distinguishesX andY , thenβ = Ω
(

(log n)−2w
)

.

Proof. We reduce from Theorem 5. Specifically, we take a width-w branching program that distinguishes
distributions where the coins can have very low probabilities, and construct a width-(2w) branching program
that distinguishesβ, using only slightly unbalanced coins—each of the coins we use will have probability
of heads between1/4 and3/4.

Let pi := Pr[Xi = 1] andqi := Pr[Yi = 1]. First, we handle the case whenpi /∈ (1/n2, 1 − 1/n2)
by rounding. Specifically, define a distributionX ′ = (X ′

1, . . . ,X
′
n) in the following manner. For each

1 ≤ i ≤ n, set

X ′
i =











1 , if pi > 1 − 1/n2 ,

0 , if pi < 1/n2 ,

Xi, otherwise.

Clearly,∆(Xi,X
′
i) ≤ 1/n2, so by a hybrid argument,∆(f(X), f(X ′)) ≤ ∆(X,X ′) ≤ 1/n. DefineY ′ in

a similar fashion. By the triangle inequality, we have

∆(f(X), f(Y)) ≤ ∆(f(X), f(X ′)) + ∆(f(X ′), f(Y ′)) + ∆(f(Y ′), f(Y))

≤ ∆(f(X ′), f(Y ′)) + 2/n.

Therefore, it suffices to bound∆(f(X ′), f(Y ′)). For the rest of the proof, we consider this case and
assume thatpi, qi ∈ (1/n2, 1 − 1/n2). Our next step is to construct for eachi a width-2, depth-O(log n)
ROBPCi that uses only balanced coins and accepts strings from world1 with probability pi and accepts
strings from world2 with probability qi. Then, we replace the transitions in our unbalanced ROBP with
these mini-ROBPs—for each states, we first transition toCi, except we replace the accept and reject states
in Ci with s(1) and s(0) respectively. The resulting branching program will have width 2w and length
O(n log n), and the output distributions in worlds1 and2 will match those of the original ROBP.

We now show how to constructCi. Assume without loss of generality thatqi < 1/2 andpi = qi(1+β).
We constructCi to be width-2 ROBP that usesO(log n) independent balanced coins and accepts strings
from world 1 with probabilitypi and accepts strings from world2 with probabilityqi. If pi > 1/2, there is
nothing to prove—Xi andYi are already balanced. Otherwise, Fixk ≥ 0 such thatk+1 ≤ − log pi < k+2.
Let Ci be theAND of k + 1 coins. The firstk coins will be fair in both worlds1 and world2. The final coin

12

will be heads with probability2kpi in world 1 and2kqi in world 2. It is easy to see thatCi accepts strings
with probability2−k · 2kpi = pi in world 1 and2−k · 2kqi = qi in world 2.

The new branching program now hasn · O(log n) = O(n log n) coins and width2w, and its output
distributions given coins from world1 or 2 matches those of the original ROBP. From Theorem 5 we know
that if the new ROBP distinguishesβ, thenβ = Ω

(

(log(n log n))−2w
)

= Ω
(

(log n)−2w
)

. By reduction,
the same bound holds for the original ROBP.

We obtain a similar result for the dice problem.

Theorem 14. SupposeX = (X1, . . . ,Xn) andY = (Y1, . . . , Yn) are collections of mutually independent
random variables on a finite domain[m] such that

1

1 + β
≤ pie

qie
≤ 1 + β

for all 1 ≤ i ≤ n ande ∈ [m]. If a width-w ROBP distinguishesX andY , thenβ = Ω
(

(log(mn))−3w
)

.

As in the proof of Theorem 13, we reduce from Theorem 5. For completeness, we provide the proof in
Appendix B.

5 The Upper Bound

In this section, we construct width-w branching programs that distinguish(1/2 + β)-biased coins from
(1/2 − β)-biased coins for someβ = O

(

(log n)−(w−2)
)

.

Theorem 15. For all constantw, there existsβ = O
(

(log n)−(w−2)
)

and a width-w branching programf
such that, when fed a series ofn independentβ-biased coin flips,f accepts with probability at least2/3,
and when fed a series ofn independent(−β)-biased coin flips,f rejects with probability at least2/3.

For the sake of brevity, we include only a proof sketch here and leave the full proof to Appendix C.
Our branching programs will compute the output ofAC

0 circuits—specifically, of depth-(w − 1) AND-
OR trees. First, we claim that width-w branching programs are able to compute depth-(w − 1) AND-OR
trees. This is somewhat similar to a proof in [6, Sec. 5.1]. Weargue this by induction. As a base case,
consider the number of states needed to compute theAND of m coins, i.e.,∧xi. A width-2 branching
program can computeAND in the following manner: transition to state2 if x1 = 1 and to state1 otherwise.
For later levels, once we reach state1, we stay there, and if we are in state2, we transition to state1 if xi = 0
and remain in state2 otherwise. In this way, state1 represents the event thatxi = 0 for somei, and state2
represents thatxi = 1 for all i so far. At the end, we reject from state1 and accept if we remain in state2
throughout. TheOR function is computed in the same way, except that the roles of0 and1 are reversed.

For depth-(w − 1) AND-OR trees, suppose that the root node is anAND gate. Usew − 1 states to
compute each child; however, instead of accepting or rejecting, transition to statew if the subtree evaluates
to 0, and transition to state1 if the subtree evaluates to1, allowing us to usew − 1 states to compute the
next subtree. If we ever reach statew, we reject. Otherwise, we accept.

It remains to carefully choose the number of subtrees at eachlevel, and to show that these branching
programs distinguish1/2 ± β coins for someβ = O

(

(log n)−(w−2)
)

. For this, we closely follow Amano’s
construction [2] ofAC

0 circuits that approximateMAJ. Our construction is left to Appendix C.

13

6 The INW Generator Fools pROBP with Small Seed

Let C be a set of functions from{0, 1}n to {0, 1}. For example,C might be the set of functions computable
by width-w pROBPs.

Let G : {0, 1}s → {0, 1}n be another function, called thepseudorandom generator. G is said toε-fool
C, if for everyf ∈ C,

∣

∣Ex∈{0,1}n [f(x)] − Ey∈{0,1}s [f(G(y))]
∣

∣ ≤ ε .

In other words,G ε-fools C if for any function in the classC, the probability off to be1 when its input is
uniform is up toε from its probability to be1 when its input is taken from the generator.s is called theseed
length.

We are interested in constructing explicit generatorsG that fools interesting classes, and in makings as
small as possible. It is well known, and easy to see, that no matter whatC is, if G is taken to be a random

function ands = Θ
(

log
(

log|C|
ε2

))

then with high probability,G ε-fools C. WhenC is the class of width-

poly(n) ROBP, the size ofC is 2poly(n), and thus there is a PRG that1/poly(n)-fools C with seed length
O(log n). The challenge is to find such an explicitly-definedG, which is hopefully also computable in a low
complexity class, such as LOGSPACE. Such aG will immediately imply thatL = RL, a central outstanding
open problem. The best results that are known are that for width-2 ROBP,O(log n) seed length is achievable
by using epsilon-biased generators, see e.g. [1], for an extension see [4] and that for the classC of width-
poly(n) ROBP, Nisan’s generator [12] can fool them with seed lengthO(log2 n). An improvement/variant
on Nisan’s generator is the INW generator [8]. See below for adefinition of the INW generator. It is a famous
open problem even to get a PRG for width-3 ROBP that surpasses Nisan’s generator. In this section we offer
a partial solution to this problem, which only fools pROBPs,and achieves seed lengthO(log n log log n),
whenε and the width are both constants. Our generator is the INW generator, but our proof is novel. Some
more recent results touching on this problem, see e.g. [11, 10]. For more background on pseudorandomness,
see e.g. the survey by Luby and Wigderson [9].

Given a distributionD, we say themassof an elementx with respect toD is the probability thatD
assigns tox.

We will deal extensively with ROBPs and pROBPs. These were defined in Section 1.
In this section, we prove the following:

Theorem 16. The INW generatorε-fools the class of width-w permutationread-once branching programs
of lengthn, with seed lengthO(w4 log n log log n + log n log(1/ε)) bits.

For ε = O(1/ log n) andw = O(1), this seedlength is justO(log n log log n), while the traditional
proof of the INW generator requires seedlengthO(log2 n).

It should be noted that all of our discussion applies both forNisan’s generator and for the INW generator,
except where otherwise noted. We find the INW generator easier for the purpose of exposition, so we base
our results on them.

In the following we prove Theorem 16. We first introduce the INW generator, and explain the intuition
behind our improvement. We then show our improvement in the simple setting of thebaby-INWgenerator,
which we define, and then apply the same ideas to improve the INW generator itself.

6.1 PRGs: Some Preliminaries

We start by defining some parameters.n is the length of the string which the PRG outputs.d is the degree of
the expanders; we leave it un-set for now. The seedlength of the generator isO(log n log d). s0 = log n is

14

the length of a bottom-level seed.s∆ = log d is the length of the seed needed for each level; this is because
log d is the number of bits needed to choose an outgoing edge in ad-regular graph.ℓ = log(n/ log n) is
the number of levels of the generator (also called the depth of the recursion, or the depth of theINW tree).
si = s0 + is∆ is the length of the seed at leveli. The length of the overall seed iss = sℓ = s0 + ℓs∆.

We now define the INW generator. The generator is defined usingℓ expanders,G1, . . . , Gℓ, Gi =
(Vi, Ei). Each of the expanders isd-regular. The expanderGi has |Vi| = 2si = ndi vertices; it is a
Ramanujan or near-Ramanujan graph. The eigenvalue gap of such expanders isλ2 ≈ 1/

√
d. We do not

defineλ2 or other notions related to expanders here, since they will be of little use: for our analysis we just
need the expander mixing lemma. For more information on expanders, see e.g. [7].

The INW generator works as follows. Start with a uniformly random seed of lengths = sℓ. Partition
it to a first part, consisting ofsℓ−1 bits, and to a second part, consisting ofs∆ bits. Use the first part to
select a vertex,v, in Gℓ, and the second part to select an edge,(v, u) coming out of this vertex.v andu are
individually uniform inVℓ, but they are dependent. Now, considerv as a seed for the(ℓ − 1)-th level, and
proceed recursively with the expanderGℓ−1. Similarly, consideru as a seed for the(ℓ − 1)-th level, and
proceed recursively, also withGℓ−1. Concatenate the twon/2-bit strings you get from these two recursive
operations, to produce onen-bit string; this string is the output of the generator. In other words, given
seedx, the outputINWℓ(x) is the concatenation ofINWℓ−1(v) with INWℓ−1(u). The base case is that
INW0(x) = x, i.e. when the bottom-most level0 of the generator gets a seed, it simply returns it as-is.

Notice that implicit in the definition of the INW generator isa one-to-one labeling of the vertices of
eachVi by (log |Vi|)-bit strings, as well as a one-to-one labeling of the edges touching each vertexv by
(log d)-bit strings. We refer to these two labelings together as theexpander-labeling. The labeling of the
edges is defined for each vertex separately, and the labelingof en edge does not have to be consistent on
both sides: i.e. the edge(u, v) might be labeled ‘4’ if coming fromv but ‘7’ when coming fromu. It is not
particularly important what these labelings are as long as they are one-to-one, because our proofs work no
mater what the labeling is. Therefore we do not discuss the labeling here; the labeling does, however, play
a role in the negative result in Section 7.

The INW generator implicitly defines a rooted ordered complete binary tree of depthℓ. We call this the
INW tree. Each node in the tree is associated with some seed. The seed of the root is chosen uniformly at
random, and the seeds in the rest of the tree are computed deterministically from the root-seed. The seeds
at the leaves are concatenated to get the output of the generator.

The original Nisan’s generator [12] uses hash functions rather than expanders, but the idea is very similar.
We do not discuss it further here.

The traditional theorem about the INW generator is the following:

Theorem 17.Whend = poly(nw/ε) then the INW generatorε-fools the class of width-w read-once branch-
ing programs of lengthn.

While our theorem states:

Theorem 18. Whend = (log n)Θ(w4)/ε2 then the INW generatorε-fools the class of width-w permutation
read-once branching programs of lengthn.

With the traditional setting of parameters, the INW generator uses a seed length ofO(log n log d) =
O(log n log(nw/ε)) bits. We now shortly outline the traditional proof of Theorem 17. We need this, since
our proof of Theorem 18 is obtained by an improvement of it. Toshow the proof, we start by quoting the
Expander Mixing Lemma:

15

Lemma 19 (Expander Mixing Lemma). For everyd-regular graphG = (V,E) and for every two sets
A,B ⊆ V , it holds that

∣

∣

∣

∣

|(A × B) ∩ E|
|E| − |A| |B|

|V |2
∣

∣

∣

∣

≤ λ2(G)

d
·
√

|A| |B|
|V |2

≤ λ2(G)

d
.

In the last equation,λ2(G) is the normalized value of the second-largest (in absolute value) eigenvalue
of the adjacency matric ofG. We do not include a proof of the expander mixing lemma here. For details,
see [7]. When the graphG is a Ramanujan expander, thenλ2(G) ≤ 2/

√
d, so the right hand side of this

equation is at most2/
√

d. Denoteβ0 = 2/
√

d.
The expander mixing lemma states that for any cut in the expander, the probability that a uniformly-

sampled edge fromE belongs to this cut is roughly equal to the probability that auniformly sampled edge
from the complete graph belongs to the cut. More accurately,it states that the difference between these two
probabilities is at mostβ0.

The intuition is that the expander mixing lemma is useful forthe proof because each node of a branch-
ing program can be implicitly seen as acut-distinguisher, i.e. a function that checks if an edge (which is
somehow inferred from the input string) is in a given cut. Thewhole branching program can be seen as a
collection of such cut-distinguishers, trying to tell if the input comes from the uniform world or from the
PRG world. (Here, the “uniform world” means the uniform distribution overn-bit strings, and the “PRG
world” means the distribution induced by the PRG). Once these ideas are understood, the analysis of the
INW generator is easy: roughly speaking, the proof is simplyan application of the triangle inequality onnw
such cut-distinguishers, where each cut-distinguisher, because of the expander mixing lemma, contributes
only a difference ofβ0 = ε/nw.2

The proof of Theorem 17 proceeds as follows (still not entirely formally): consider the middle layer of
the branching program. The middle level is the only way to “communicate” between the left half and the
right half. Each of the nodes in the middle layer can, at most,act as a cut-distinguisher. Thus, the total
difference amassed in the middle layer is at mostwβ0. Since this is the only way to communicate between
the two sides, then each side can now be assumed to be independently uniform, and the same arguments can
be used recursively. We end up with a total difference of at most wnβ0, and this gives Theorem 17. The
formal proof is a little more involved, since one needs to formalize the phrase “can now be assumed to be
independently uniform” and similar vague concepts, but this level of detail suffices as background for our
purposes. The interested reader is referred to [9] for more details. (When we prove Theorem 16 we will not
make such intuitive claims, and we will prove everything formally).

6.2 Some High-Level Arguments Behind Our Improvements

The standard proof that the INW generator fools ROBPs has a striking place where it seems non-tight: It
performs a hybrid argument, that states that if the statistical difference in each node isβ0, then the over-
all statistical difference at the end is upper-bounded bynwβ0. This is true of course, but does not seem
tight for small-width programs, especially in light of our results on the coin problem. This hybrid argu-
ment is the reason that the analysis in Theorem 17 requires the degree of the expanders to bepoly(nw/ε),
rather than, say, justpoly(w/ε). This is the weakness that we improve in this section. We showthat since
branching programs cannot boost/amplify, then there is no way to amplify a difference ofβ0 in each state
to an overall difference ofnwβ0. Sweeping many technical details under the rug, what happens is that we

2This use of the triangle inequality can alternatively be thought of as a union bound or, most accurately, as an application of a
hybrid argument.

16

think of the ROBP as being applied to roughlynw “coins”, each with statistical differenceβ0; then, by the
coin theorem, the statistical difference in the output should be only about(log n)O(w)β0, assuming various
technical conditions such as the “gap” being around the middle, and so on. To get this difference to be at
mostε, we need to chooseβ0 = ε/(log n)O(w), and sinced = poly(1/β0), we get that the seedlength is
O(log n log d) = O(log n(w log log n + log(1/ε))). This is more or less the seedlength that we promise in
Theorem 18. The discrepancy between the two quantities (w is replaced byw4) is due to various technical
complications.

In order to go through with the rough argument shown in the last paragraph, two major technical dif-
ficulties must be overcome. First, the coin theorem requiresthat the location of the gap be bounded away
from 0 and1. We need to prove this property, which actuallydoes nothold for ROBPs. It does hold for
pROBPs, and we show this in Lemmas 21 and 22. (This is the only place where the proof fails for ROBPs).
Second, when trying to fool pROBPs (or ROBPs), they should bethought of as dual-duty machines: they
are used simultaneously both to find the differences betweenthe uniform world and the PRG world, and in
order to boost/amplify those differences. Due to this dual nature, it is hard to apply the ideas of the coin
theorem directly on the pROBP: one of the most obvious reasons is because we cannot make the program
monotone or weakly-monotone without losing its distinguisher properties (these concepts, “monotonicity”
and “weak monotonicity” are described in the proof of the coin and dice theorems). To circumvent this dif-
ficulty, we strengthen the model of pROBPs to a stronger modelcalled super-pROBPs, where the two duties
are well-separated. These super-pROBPs are “primary” pROBP, that gets as input the output of “secondary”
pROBPs. The primary pROBP has the role of statically boosting the differences, while the secondary ones
have the role of creating the differences in the first place. We prove in Lemma 20 that super-pROBPs can
simulate pROBPs (this is not obvious), and then our analysisapplies the dice theorem to the primary pROBP,
treating the secondary pROBPs as the dice.

6.3 The Baby-INW Generator, Super-pROBPs, and Some More Intuition

We now set some parameters. These parameters are used throughout the rest of this section. The degree
of the expanders is chosen to bed = (log n)Θ(w4)/ε2. Note that here and in the rest of the arguments we
hide some constants in Oh-notation; This hiding will be donein a consistent way, and no hairy issues will
arise. Next, the “error” parameterβ0 is chosen to be1/

√
d = ε/(log n)Θ(w4). Another error parameter is

β = w3β0 = ε/(log n)Θ(w4). A final error parameter isδ = 1/4w4

. It can be seen that the seedlength that
we declared in Theorem 18 is justlog n log d, thus to prove Theorem 16 it suffices to prove that an INW
generator with degreed indeedε-fools width-w pROBPs.

We now define the baby-INW generator. The baby-INW generatoronly performs the INW procedure
on the bottom level of the INW-tree, and is uniform in all other levels. It is equivalent to choosingG1 just
like in the INW generator, and choosing the other expandersG2, . . . , Gℓ to be complete graphs.

We first prove in Section 6.6 that the baby-INW generator(ε/ℓ)-fools width-w pROBPs. Then, in
Section 6.7 we show how to generalize this proof for the actual INW generator; this step simply consists of
applying a hybrid argument on top of the proof of the baby-INWgenerator. The hybrid argument will have
ℓ steps, because the INW generator hasℓ levels, and thus the final error will beε. We believe that getting
better analysis of the baby-INW generator might be an important step in future work, since it provides a
simple “training-ground”.

We now define the baby-INW generator more concretely. Letm = n/2 log n. The baby-INW generator
produces2m elements, divided into pairs. We call each pair achunk. Each chunk consists of thelog n-bit
labelings of two verticesv, u in G1, chosen by drawingv uniformly at random, and then choosingu to be
a uniformly random neighbor ofv in G1. Thus, we see that the output of the baby-INW generator consists

17

of m independent chunks, each corresponding to one edge of the expander. It should be obvious why
such a generator is easier to analyze than the INW generator.This generator has awful seedlength (more
thann/ log n), but analysis on it can in some cases be generalized to hold for the actual INW generator.
Furthermore, it should be relatively easy to see why this generator is related to the coin problem: consider the
i-th chunk. The expander mixing lemma shows that the statistical distance created by any cut-distinguisher
running on thei-th chunk in the uniform world versus in the PRG world isβ0. Think of this as a “coin”.
The approach of the classical analysis of the INW generator would be just to apply a triangle inequality on
thewm differences, and get a total difference of at mostwmβ0. Instead, our analysis exploits the fact that
a pROBP cannot boost/amplify the statistical distances generated by the cut-distinguishers.

We now define super-pROBPs. Awidth-w super-pROBPconsists of a width-w length-m pROBP, whose
inputs, rather than being bits, are2w3

-sided dice (more accurately, they are random variables over the uni-
verse{0, 1}w3

). In the i-th die, thej-th of these bits is the output ofanother width-w pROBP, call it fi,j,
which is applied only on thei-th chunk of the string. To summarize, a super-pROBP is a length-m pROBP,
each of whose inputs consists ofw3 bits, which are the outputs of individual pROBPs run on the correspond-
ing chunk. Intuitively, one should think of theprimary pROBP as the part that intends to boost the error,
and thesecondarypROBPs as the cut-distinguishers. Note that in the baby-INWgenerator, the inputs of the
primary pROBP aremutually independentrandom variables over{0, 1}w3

. This independence is crucial,
since we are going to think of these inputs as the dice in the dice theorem, and the dice must be independent.

6.4 Simulating pROBPs by super-pROBPs

We now prove that any width-w pROBP can be simulated by a width-w super-pROBP. Note that this is
not entirely trivial, since in a super-pROBP, the main pROBPdoes not get direct access to the input, but is
restricted to access the input only through the secondary pROBPs, which, in their turn, are restricted to just
look at one chunk each.

Lemma 20. A width-w pROBP can be simulated by a width-w super-pROBP. Also, in this simulation, each
secondary pROBPfi,j is a cut-distinguisher on chunki.

Note that when we say “simulate” we mean that the simulating super-pROBP and the simulated pROBP
always return the same output given the same input. I.e., they compute the same function. In particular, this
lemma does not assume that the input comes from the INW generator. It does use the notion of chunks (in
the definition of super-pROBPs), but it just thinks of the chinks as a partitioning of the input, so it does not
make any assumptions about the input.

Proof. Denote the original pROBP byf . Consider the behavior off on thei-th chunk. For each nodev
of f in the layer just before the beginning of the chunk, and for every nodeu of f in the layer in the exact
middle of the chunk and for every nodew of f in the layer just after the end of the chunk, define a function
fi,j, wherej = (v, u,w), i.e.j is indexed by the nodesv, u andw. fi,j returns1 if when the program starts
from nodev and proceeds according to the branching programf and reads thei-th chunk of the input, it
goes through both nodeu and nodew; fi,j returns0 otherwise. Note that in particularfi,j is just a cut-
distinguisher applied on chunki. Also note that for everyv, there is only one choice for a pair(u,w) that
makesfi,(v,u,w) equal to1.

Now, to simulate the programf on inputx, we consider the start vertexv0, and choose the nodesu0, w0

that makefi,(v0,u0,w0) = 1. (By the previous discussion there is only one choice for theseu0, w0). Now we
setv1 = w0 and find the nodesu1, w1 that makefi,(v1,u1,w1) = 1, and so on. In the end we get a final vertex
vm−1 = wm−2 in the output-layer, and we return it. Obviously, this procedure returns the correctf(x).

18

However, we still need to show that this procedure can be simulated by a super-pROBP. We need to
build the primary pROBP to correspond to this procedure. We do it as follows: The state between layers
i − 1 andi of the primary pROBP corresponds to the state of the simulated pROBP between chunksi − 1
andi. Now, we just need to prove that for each possiblew3-bit input in the(i − 1)-th layer, the transition is
a permutation on the states. This can easily be seen to be the case, since for any pROBP, and in particular in
the original pROBPf , any composition of layers is always a permutation as well. Informally, the input to
the primary pROBP tells us which path we should traverse for any node that we start in, and no two of these
paths end at the same node.

We remark that some choices ofw3-bit inputs are impossible to obtain with the simulation (for example
ones that are all-0). For these choices we define the transition to be an arbitrary permutation.

We have thus seen how to simulate the pROBP by a super-pROBP with the same width, and have proved
the lemma.

6.5 A Useful Lemma about Mass of States in pROBPs

We now prove a lemma, which states that in a pROBP no state has too-small probability (unless it has
probability0). This is in fact theonly place in this section that we use the fact that we are fooling pROBPs
rather than ROBPs. The inspired reader might claim she has nodesire for such a lemma, and could probably
prove the pseudorandomness without it; the reason we need the lemma is that the coin theorem requires the
“gap” to not only be small but to be “around the middle” and there is also an analogous restriction in the
die theorem.3 Furthermore, in Section 7, we show that in a strong sense, theINW generator simplydoes
not work without a lemma such as this, or at least one can design aspecific expander-labelingfor which the
INW generator fails.

Lemma 21. Let f be a width-w pROBP. Consider runningf on a uniformly random inputx. Let v be a
node in the programf . The probability off applied onx to pass throughv is either0, or at least1/2w.

Proof. Call the probability to pass at a vertexv themassof v. We will now prove a stronger claim than the
lemma. We prove that for every layer, the following holds: assume the number of nodes with nonzero mass
in the layer isr. Then for each node in the level, its mass is either0, or at least1/2r−1.

The proof proceeds by induction on the layers of the branching program. The base case is trivial (in the
first layer one node has mass1 and the other nodes have mass0, sor = 1). Fix a layeri−1 where the claim
holds, and let us prove it for layeri. Denote byri−1 andri the number of states with nonzero mass in layers
i − 1 andi, respectively. It is easy to see that the number of states with nonzero mass cannot decrease, thus
ri ≥ ri−1.

Consider a nodev in layer i. If both of its in-arrows come from states with mass zero, then its mass
is also zero and we are done. If both of its in-arrows come fromstates with mass nonzero, then by the
induction hypothesis they both have mass≥ 1/2ri−1−1. But v’s mass is the average of its in-neighbors mass
(since the input is uniform), and sinceri ≥ ri−1 we are again finished.

If one ofv’s in-arrows come from a state with mass zero and one comes from a state with mass non-zero,
thenv’s mass might be as small as1/2ri−1 . But in this case, it is easy to see thatri > ri−1. One way to
see this is that there are2(w − ri−1) “available” arrows coming from the zero-mass states in layer i − 1. v

3The lemma we are about to prove and its use shed some light on ideas of Reingold [14]. Reingold says that what is important
in order to fool small-width models is to have good estimatesof the probability masses of being in various states. The following
lemma and its uses in our arguments suggest that what is important, at least in our setting, is to have some lower-bound on the mass
of states; i.e. we just need that the masses are not too small,and we do not need good estimates of them.

19

took only one of them and a node in layeri that has zero mass must take two of them, thus there are at most
w − ri−1 − 1 nodes with zero mass in layeri.

Overall, by induction we have the stronger claim, and the lemma follows from it.

We now need a generalization of this lemma, for the case wherek pROBPs are applied on the same
input simultaneously.

Lemma 22. Letf1, . . . , fk bek width-w pROBPs. Letx be a uniformly random input, and consider running
f1, . . . , fk on thisx. Let v1, . . . , vk be nodes in the programs such thatvi is in fi and they are all in the
same layer. Then the probability that for alli, fi when applied tox passes throughvi, is either0, or at least
1/2wk.

Note that this lemma is not trivial, since the different pROBPs run on the same input, so their outputs
are not independent.

Proof. The lemma proceeds just like the proof of the previous lemma,except that we work on allk programs
at the same time.

6.6 The Proof for The Baby-INW Generator

We now wish to prove that the inputs of the primary pROBP satisfy the conditions of the dice theorem.
Consider thei-th input to the primary pROBP. Denote it byXi in the PRG world andYi in the uniform

world. Recall thatXi andYi are random variables over the domain{0, 1}w3

.

Lemma 23. The statistical difference betweenXi andYi is at mostβ = w3 · β0.

The idea behind the proof is that for each1 ≤ j ≤ w3, it holds by the expander mixing lemma that
∆(Xi,j , Yi,j) ≤ β0. By a “union bound” on the different coordinates we get the lemma. (Formally we do
this using a simple coupling).

Proof. For anyj, the value offi,j is a deterministic function of thei-th chunk. The Expander Mixing
Lemma says that∆(Xi,j , Yi,j) ≤ β0. (Note thatXi,j is the output offi,j applied to thei-th chunk in the
PRG world, and similarlyYi,j is the output offi,j applied to thei-th chunk in the uniform world). We can
easily define a coupling ofXi andYi where for eachj, Pr(Xi,j 6= Yi,j) ≤ β0. We now union-bound over
the differentj and get that under this coupling,Pr(Xi 6= Yi) ≤ w3β0, and by the standard property of
couplings, we get the lemma.

Lemma 24. For each element in the output domain{0, 1}w3

, either its mass inXi andYi is both zero, or
its mass is at leastδ = 1/4w4

in both of them.

Proof. ConsiderYi. We have seen in Lemma 23 that the probability ofYi to take each value is either0, or
at least1/2w4

. If the probability ofYi to take a certain value is0, thenXi never takes that value as well,
because the paths that the branching program can take in the PRG world are a subset of the paths it can
take in the uniform world. On the other hand, if the probability of taking the value is at least1/2w4

in the
uniform world, then by the previous lemma, this means that the probability thatXi takes this value is at least
1/2w4 − β, which is≥ 1/4w4

= δ. Thus we are finished.

We now get the final result of this subsection: that the baby-INW generator fools super-pROBPs, and by
Lemma 20, it thus fools pROBPs.

20

Theorem 25. The baby-INW generator with our parameters(ε/ log n)-fools width-w pROBPs.

Proof. Simulate the pROBP by a super-pROBP of the same width. By the two previous lemmas, the inputs
of the primary pROBP have all the properties required of the dice in the dice theorem. Apply Theorem 9 on
the primary pROBP to get the conclusion.

6.7 The Full Proof for the INW Generator

In this subsection we get the main result of this paper by considering the INW generator rather than its
baby version. This is a simple hybrid argument over the layers, where for any layer we use essentially the
argument of the last subsection.

Consider the INW generator. LetX be the output of the generator, andY be a uniformly random string
of lengthn. Consider a sequence of random variables,X0,X1, . . . ,Xℓ. X0 is the same asX, while Xℓ

is the same asY . Xi is obtained by using full randomness for the firsti levels of the INW-tree with full
randomness, and performing the rest of the layers accordingto the procedure of the INW generator. This is
equivalent to choosingG1, . . . , Gi to be complete graphs, and choosingGi+1, . . . , Gℓ just like in the INW
generator.

Consider a pROBPf . We wish to prove that the statistical distance betweenf(X0) andf(Xℓ) is at
mostε. This is the statement of the main theorem of this paper.

Theorem 26. The statistical distance betweenf(X) andf(Y) is at mostε.

By the triangle inequality, it suffices to prove the next lemma.

Lemma 27. The statistical distance betweenf(Xi) andf(Xi+1) is at mostε/ log n

Proof. Consider the distributionsf(Xi) andf(Xi+1). Since the topi layers use perfect randomness in
both distributions, the distributions can be thought of as aconcatenation of2i equal-length chunks, where
the different chunks are mutually independent. In each chunk, Xi is drawn by iterating the INW procedure
ℓ − i times, whileXi+1 is drawn by choosing two independent seeds, and iterating the INW procedure on
each of them,ℓ − i − 1 times.

Now, simulatef by a super-pROBP, working on these chunks. Thej-th input of the primary pROBP
consists ofw3 bits derived from thej-th chunk. Each of thesew3 bits corresponds to a triplet of nodes of
the original pROBP: one at the beginning of the chunk, one at the middle and one at the end. The left half
of thej-th chunk is equidistributed inf(Xi) andf(Xi+1), and so is the right half. Therefore we can follow
the same steps as in the analysis of the baby-INW generator and get the lemma.

7 Why Our Technique Fails to Fool ROBP

In this section we explain why our technique fails to fool ROBPs, despite the fact that we do solve the coin
and dice problems for ROBPs. The only place in the analysis ofthe PRG that we use the fact that we’re
working on pROBPs rather than ROBPs is in Lemmas 21 and 22. It is easy to construct a ROBP for which
these lemmas fail, for example the ROBP that computes the OR function onn bits. In this section we show
something more far-reaching: that the INW generator itselffails to (1/2)-fool the class of width-3 ROBPs
if the seed length iso(log2 n). We prove this only in the case that an evil adversary is allowed to design
the expander-labeling as he pleases. Note that our results do not rule out the possibility that designing
an expander-labeling carefully, or just picking the labeling in a pseudorandom way, will allow the INW

21

generator to fool ROBPs with small seedlength. We remark that the traditional proof of the INW generator,
and our proof of the INW generator on pROBPs, work foranyexpander-labeling, even one designed by an
evil adversary.

For simplicity, we prove the negative result for the baby-INW generator. It can be strengthened to apply
for the INW generator in a straightforward way. Since we workon the baby-INW generator, we just need
to specify how the evil adversary designs one expander: the one at the bottom level. Letm = n/2 log n be
the number of chunks, and recall that the number of vertices of the expander isn and that it isd-regular. We
wish to prove thatd ≥ n1/3; once we prove this we will be able to get the negative result easily.

Since the expander isd-regular, it contains a matching; choose a matching of sizend/2m. LetA denote
the left side of the matching andB denote its right side (assign vertices to sides arbitrarily, as long as the
two endpoints of each edge in the matching are on different sides). Letk = log2(2m/d). (We assume for
simplicity that2m/d us a power of2). Label the vertices ofA by all labels that start withk 0’s, and label
the vertices ofB by all labels that start withk 1’s. Label the other vertices, and all the edges, arbitrarily.

Now, design a ROBP as follows: the ROBP goes over each chunk, and checks if the firstk bits in the left
half of the chunk are0 and if the firstk bits in the right half of the chunk are1. If there is a chunk where both
of these conditions hold then the ROBP accepts, otherwise itrejects. It is not hard to see that this function
can be implemented by a width-3 ROBP. (In short: keep one sink state exclusively as an “accept track”, and
make the required checks over each chunk using the other two states).

Now, the probability of accepting in the uniform world is, bythe union bound, at most

n · (d/2m)2 ≤ O

(

d2 log n

m

)

.

If d ≤ n1/3 then this iso(1). On the other hand, in the PRG world, the probability of accepting is ≥
1 − (1 − 1/m)m ≥ 1 − 1/e. Therefore, to have any hope to fool width-3 ROBPs, the expander must have
degreed ≥ n1/3 . Since in the INW generator the seedlength is roughlylog n log d, we get:

Theorem 28. The INW generator fails to(1/2)-fool width-3 ROBPs, unless its seedlength isΩ(log2 n), as
long as an evil adversary is allowed to design the expander-labeling.

Strictly speaking, to prove this theorem as it is stated for the INW generator rather than the baby-INW
generator, we must design the expanders of all levels, and show that all of them must have large degree. The
details are routine and we omit them here.

We believe that the expanders can be labeled either carefully or pseudorandomly to bypass the barrier
posed by the last theorem, but we do not know how to do this.

8 Conclusions

In this paper, we provide tight upper and lower bounds on how close two distributions can be and still be
distinguishable by constant-width branching programs. Onone hand, we prove that even with just three
states, branching programs can distinguish two distributions that are within a factor ofO(1/ log n). On
the other hand, we show that any width-w branching program cannot distinguish two distributions that are
o ((log n)−w) from each other.

The above results are nearly tight for constantw. It would be interesting to investigate the case in which
w is nonconstant. It would also be interesting to consider thecoin and dice problems on other small-space
models of computation, such asw-state automata or permutation branching programs. These models are

22

more restrictive than constant-width branching programs,but are still interesting from the perspective of
pseudo-random generators.

Our work seems to suggest that small-space machines arestrictly stronger when given access to a
“clock”, which counts the inputs we have seen, and allows us to decide which operation to do, based on
the clock’s value. It would be interesting to study the influence of a clock on the streaming model: what
functions can be approximated using sublogarithmic space,plus a clock? Which problems cannot be solved
even with a clock? What interesting generalizations of the proof technique of this paper are needed for such
impossibility results?

How well canAC0, ACC0 and low-degree polynomials (overF2) solve the coin problem, and what
does this entail? Of particular interest isACC0: could a technique based on couplings prove thatACC0

cannot solve the coin problem? (This will in particular prove that majority is not inACC0, settling a major
open problem). It could be interesting to try to attack this problem using couplings. Our work uses only
couplings in which the coordinates are mutually independent, but to analyze the above classes, it might be
useful to use more complicated couplings.

Finally, can the ideas in this paper, possibly together withother ideas, give a PRG against small-width
ROBP with good seedlength?

Acknowledgements

Both authors are grateful to Sourav Chakraborty, and the second author is grateful to Brendan Juba, Jaikumar
Radhakrishnan, Pranab Sen and John Steinberger, for stimulating discussions and ideas that helped progress
this work. The first author would like to thank David Barrington and the Dartmouth Theory Reading Group
for helpful discussions. The second author would like to thank Boaz Barak, Swastik Kopparty, Shachar
Lovett, Avi Wigderson and David Xiao for helpful discussions. Some of this research was done while the
authors were visiting Peter Miltersen at the Center for Algorithmic Game Theory, Aarhus University. We
would like to thank Peter and the group for their gracious hospitality.

References

[1] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple construction of almost k-wise independent
random variables. InProc. 31st Annual IEEE Symposium on Foundations of ComputerScience, pages
544–553, 1990.

[2] Kazuyuki Amano. Bounds on the size of small depth circuits for approximating majority. InProc.
36th International Colloquium on Automata, Languages and Programming, pages 59–70, 2009.

[3] David A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages inNC1. JCSS, 38(1):150–164, 1989.

[4] Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudoff. Pseudorandomness for width-2 branch-
ing programs. Manuscript, 2009.

[5] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudoff. Pseudorandom generators for regular
branching programs. Manuscript, 2010.

[6] Funda Ergün, Ravi Kumar, and Ronitt Rubenfeld. On learning bounded-width branching programs. In
Proc. 8th International Conference on Learning Theory, pages 361–368, 1995.

23

[7] Shlomo Horry, Nathan Linial, and Avi Wigderson. Expander graphs and their applications, 2006.

[8] Russel Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network algorithms. In
Proc. 26th Annual ACM Symposium on the Theory of Computing, pages 356–364, 1994.

[9] Michael Luby and Avi Wigderson. Pairwise independence and derandomization.Foundations and
Trends in Theoretical Computer Science, 1(4):237–301, 2006.

[10] Raghu Meka and David Zuckerman. Small-bias spaces for group products. InProc. 13th International
Workshop on Randomization and Approximation Techniques inComputer Science, pages 658–672,
2009.

[11] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold functions. In
Proc. 42nd Annual ACM Symposium on the Theory of Computing, 2010. To Appear.

[12] Noam Nisan. RL⊆ SC. InProc. 24th Annual ACM Symposium on the Theory of Computing, pages
619–623, 1995.

[13] Ryan O’Donnell and Karl Wimmer. Approximation by DNF: Examples and counterexamples. InProc.
34th International Colloquium on Automata, Languages and Programming, pages 195–206, 2007.

[14] Omer Reingold. Randomness vs memory: Prospects and barriers, 2009. http://
intractability.princeton.edu/attachments/omer_reingold.pptx.

[15] Emanuele Viola. On approximate majority and probabilistic time. Computational Complexity,
18(3):337–375, 2009.

A Technical Lemmas

Lemma 29(Restatement of Lemma 6). In any good branching program for the coin problem,s < t implies
f(Y |s) < f(Y |t).

Proof. Suppose for the sake of contradiction that there exist states s < t such thatf(Y |s) > f(Y |t). Fix
somes′ andb such thats′(b) = s. Then, moving this transition such thats′(b) := t increasesf(X|s′) and
decreasesf(Y |s′). Using equations (1) and (2), it follows thatf(X) increases andf(Y) decreases. Hence,
we improve∆(f(X), f(Y)), which contradicts the optimality off .

Lemma 30 (Restatement of Lemma 7). Let s be some state at leveli, and assume all states are ordered
canonically. Supposea, b ∈ [m] such thatpi,a ≥ qi,a but pi,b ≤ qi,b. Then in anygoodbranching program,
s(a) ≥ s(b).

Proof. Fix two statest1, t2 in level (i + 1) such thatt1 > t2, and consider the following cases:

1. s(a) = t2, s(b) = t1

2. s(a) = s(b) = t2

3. s(a) = s(b) = t1

24

Note thats(a) < s(b) only in the first case. Our goal is to show that this case isneveroptimal. Combining
equations 1 and 2, we see that

f(X) =
w
∑

j=1

βX(sj)
∑

e∈[m]

pi,e · f(X|s(e)) .

A similar equation exists forf(Y). To show that case 1 is never optimal, it suffices to show that
∆(f(X), f(Y)) = f(X) − f(Y) is always maximized in one of the other cases.

Let S denote the set of states at leveli except states. Let M := [m] \ {a, b} be the set of outcomes that
are neithera or b. Then, let

A :=
∑

j∈S

βX(sj)f(X|sj) − βY (sj)f(Y |sj)

and
B :=

∑

e∈M

βX(s)pi,ef(X|s(e)) − βY (s)qi,ef(Y |s(e)) .

Intuitively, A is the contribution tof(X) − f(Y) from states inS, andB is the contribution from states
and outcomes that are neithera nor b. Note that since we change onlys(a) ands(b) as we change cases,A
andB remain invariant, and we may writef(X) − f(Y) as

f(X) − f(Y) = A + B + βX(s) [pi,af(X|s(a)) + pi,bf(X|s(b))]
− βY (s) [qi,af(Y |s(a)) + qi,bf(Y |s(b))] .

To calculatef(X) − f(Y) for each case, a few more definitions will aid the computation. Let
δX := f(X|t1) − f(X|t2) and δY := f(Y |t1) − f(Y |t2). Note that the canonical ordering of
states in level(i + 1) givesδx, δy ≥ 0. Finally, let

Z := βX(s) · f(X|t2) · (pi,a + pi,b) − βY (s) · f(Y |t2) · (qi,a + qi,b) .

Then, in each case, we have:

1. f(X) − f(Y) = A + B + Z + βX(s)δXpi,b − βY (s)δY qi,b.

2. f(X) − f(Y) = A + B + Z.

3. f(X) − f(Y) = A + B + Z + βX(s)δX (pi,a + pi,b) − βY (s)δY (qi,a + qi,b).

Suppose for the sake of contradiction thatf(X)−f(Y) is maximized in case 1. Then, comparing case1
to case2, we see that

βS(s)δXpi,b > βY (s)δY qi,b ⇐⇒ βX(s)

βY (s)
>

qi,bδY

pi,bδX
.

Comparing case 1 to case 2, we see that

βX(s)δXpi,b − βY (s)δY qi,b ≥ βX(s)δX(pi,a + pi,b) − βY (s)δY (qi,a + qi,b)

⇐⇒ βX(s)δXpi,a > βY (s)δY qi,a

⇐⇒ βX(s)

βY (s)
≥ δY qi,a

δXpi,a
.

25

Combining these two inequalities, we see that

δY

δX
<

qi,bδY

pi,bδX
<

βX(s)

βY (s)
<

qi,aδY

pi,aδX
<

δY

δX
,

where the first and last inequalities come from our initial assumptions thatpi,a > qi,a but pi,b < qi,b. Thus,
we haveδY /δX < δY /δX , a contradiction.

Lemma 31(Restatement of Lemma 8). Lets1, . . . , sd andt1, . . . , td denote the support of two consecutive
levels of the branching program. Suppose there are no collisions amongs1, . . . , sd. Then, the transitions
from{si} to {ti} form an identity permutation; that is,si(e) = ti for all 1 ≤ i ≤ d and for alle ∈ [m].

Proof. Suppose for the sake of contradiction that there are no collisions amongs1, . . . , sd. Then for everyt
and everye ∈ [m], there existss such thats(e) = t. Consider anya, b ∈ [m] such thata is more likely in
Xi but b is more likely inYi. Fix i such thatsi(b) = td. By Lemma 7, it follows thatsi(a) = td as well.
Proving thatsj(a) = sj(b) for all otherj follows by induction on{sj : j 6= i} and{tj : j 6= d}. Hence,
the transitions form a permutation. It remains to show this permutation is the identity. This follows from the
ordering ofs1, . . . , sd and from equation (2).

B Dice Theorem for Small Probabilities

Theorem 32(Restatement of Theorem 14). SupposeX = (X1, . . . ,Xn) andY = (Y1, . . . , Yn) are collec-
tions of mutually independent random variables on a finite domain [m] such that

1

1 + β
≤ pie

qie
≤ 1 + β

for all 1 ≤ i ≤ n ande ∈ [m]. If a width-w ROBP distinguishesX andY , thenβ = Ω
(

(log(mn))−3w
)

.

Proof. This proof closely follows the proof of the Coin Theorem. We begin by rounding our random vari-
ables. This time, there could be up tom small probabilities; we need to round each. DefineX ′

i to take the
random variable taking valuee with probabilityp′i,e, wherep′i,e is defined by:

p′ie =











0 , if max(pie, qie) < 1/mn2 ,

pie +
∑

e:max(pie,qie)<1/mn2 pie , if e = e∗ ,

pie otherwise,

wheree∗ := argmaxe{pie}∪{qie} is the most likely value forX ′
i orY ′

i . DefineY ′
i in terms ofYi in a similar

manner. Simple calculations show that∆(Xi,X
′
i) ≤ 1/n2, hence by a hybrid argument∆(X,X ′) < 1/n.

The same bound holds for∆(Y, Y ′). Hence, we can assume that the probabilities are nevertoo low.
Suppose thatf is a ROBP such that∆(f(X), f(Y)) = o

(

(log(mn))−3w
)

. Then
∆(f(X ′), f(Y ′)) = o

(

(log(mn))−3w
)

as well. Next, we simulate each die roll inf by a ROBP that uses
only balancedcoins. There are many ways to perform this simulation; our primarygoal is to minimize the
blowup in width, since the lower bound we have from the Coin Theorem has aw-factor in the exponent. Our
secondary motivation in this construction is to make thingsas simple as possible—aside from the emphasis
on minimizing the width-blowup, we do not attempt to tightenbounds as much as possible.

Recall in the proof of the strong coin theorem that at each step, we “extracted” the low probability
by constructing an AND ofk completely fair coins with a final coin that was only slightlybiased. We’ll

26

simulate a die roll in a similar manner. Specifically, we’ll serially extractpie for eache ∈ [m]. Because we
extract these probabilities serially, we need an additional w accumulator states, one for each state in the next
level of f . In our simulation, the transitions from these states all point directly downward; i.e., once we’re
in some accumulator stateti, we remain there for the rest of the simulation of the currentdie.

To begin the simulation, pick somee ∈ [m], and construct a width-2 ROBP that accepts with probability
pie in the same manner as in the proof of the strong coin theorem. Replace the accept state with the accu-
mulator state fors(e). The reject state becomes the start state for the width-2 ROBP that computes the next
e ∈ [m].

One subtle complication arises. The start state for the nextextraction is itself now biased—we reach it
with probabilityp′i := 1− pie in world 1, and with probabilityq′i := 1 − qie in world 2. Care must be taken
in the ordering of which probabilities to extract to ensure that the bias does not become unexpectedly large.
Suppose without loss of generality thatp′ > q′, and lete be the remaining element such thatpie > qie and
pie/qie is maximized. This is the next element to extract. Letk := ⌈− log(pie/p

′)⌉, and construct a width-2
ROBP that computes theAND of k + 1 coins. As in the proof of the strong coin theorem, the firstk coins
are fair coins in both worlds. The(k + 1)th coin will have probability2−kpie/p

′ in world 1 and probability
2−kqie/q

′ in world 2. Note that the bias in this last coin is(pie/qie)/(p
′/q′). Note that

1 ≤ p′

q′

=

∑

e∈S pie
∑

e∈S qie

≤ (pie/qie)
∑

e∈S qie
∑

e∈S qie

=
pie

qie
,

where the final inequality follows from our choice ofe. It follows that

1 ≤ pie

qie

p′

q′
≤ pie

qie
.

Therefore, the bias in each outcome remains at most1 + β.
Putting this together, we get that for each level inf , we use at mostO(m · log(mn)) coins in the

simulation, as we know by the rounding argument thatpie, qie > 1/mn2. Hence, the new ROBP has length
O(nm log(mn)). Furthermore, it has width-3w, since for each state inf we use a width-2 ROBP, and we
requirew additional accumulator states. Hence, there is a width-3w, length-O(mn log(mn)) ROBP that
computesf and uses only balanced coins. We know by theorem 5 that if sucha ROBP distinguishesβ, then

β = Ω
(

log(mn log(mn))−3w
)

= Ω
(

log(mn)−3w
)

.

The lower bound onβ for f follows.

C Proof of Upper Bound

For the sake of simplicity, we give the construction for widthsw = 3 before generalizing to any constant
width w = O(1).

27

C.1 Width-3 Branching Programs Distinguishβ = O(1/ log n)

Fix m such thatm log m = n, and consider an OR-AND tree consisting of a single OR gate atthe root andm
AND gates at the second level, each with fan-inlog m. Recall that a width-3 branching program can compute
this function. In this subsection, we show an OR-AND tree that distinguishesβ = 1/ log m = O(1/ log n).

Suppose that the coins are heads with probability1/2 + β. Then, we have

Pr
[

∧log m
i=1 xi = 1

]

=

(

1

2
(1 + 2β)

)log m

=
1

m
(1 + 2β)log m ≥ 1

m
eβ log m =

e

m
,

where the inequality uses1 − x ≥ e−x/2, which holds for all0 < x < 1/2. Therefore, we have

Pr
[

∨m
i=1 ∧log m

j=1 xi,j = 0
]

≤
(

1 − e

m

)m

≤ e(−
em
m)

= e−e < 0.066 .

Therefore, when the coins are heads with probability1/2 + β, we accept with probability at least
1 − 0.066 = 0.934 > 2/3. Alternatively, suppose that the coins are heads with probability 1/2 − β. Then,
we have

Pr
[

∧log m
i=1 xi = 1

]

= (1/2 − β)log m =
1

m
(1 − 2β)log m ≤ 1

e2m
.

Hence,

Pr
[

∨m
i=1 ∧log m

j=1 xi,j = 0
]

≥
(

1 − 1

e2m

)m

≥ e−
1

e2 ≥ 0.934 .

C.2 Width-w Branching Programs

For the general case, we closely follow the approach of Amano[2]. Fix W = (w1, . . . , wd), and consider
an AND-OR tree such that each node at leveli has fan-inwi.

Definition 33 (Amano [2]). For k = 0, . . . , d andi ∈ {0, 1}, let Ai
k : [0, 1] → [0, 1] be a series of functions

defined as follows:

• Ai
0(p) = p for all p ∈ [0, 1].

• A1
k(p) =

(

A1
k−1(p)

)wk for all oddk and allp ∈ [0, 1].

• A0
k(p) =

(

A0
k−1(p)

)wk for all evenk and allp ∈ [0, 1].

• A0
k(p) + A1

k(p) = 1 for all k and for allp ∈ [0, 1].

The functionAi
k(p) gives the probability that a subtree of depthk outputsi, given that each input is1

with probabilityp. Amano used the above function and a careful choice ofW to give an optimal size bound
for depthd AC

0 circuits that approximate the Majority function.
Couched in our language, Amano’s construction fixes a depthd andβ := ε/

√
n and gets an optimal

exp
(

Θ
(

n1/(2d−2)
))

circuit size to distinguishβ. We wish to fix a depthd := w − 1 and input sizen and
determine the bestβ we can distinguish with circuits of such depth and size.

28

Fix m := (log n)/(d − 1) − log log n + log(d − 1), and setw1 := m, wk := (ln 2) · m · 2m for
2 ≤ k ≤ d − 1, andwd := (ln 2) · 2m. Note that the number of inputs to this circuit equals

∏

wi.
Furthermore, note that

m = log
(

n1/(d−1)
)

+ log

(

d − 1

log n

)

= log

(

(d − 1)n1/(d−1)

log n

)

.

Therefore, we have2m = (d − 1)n1/(d−1)/ log n, hence

∏

1≤k≤d

wi = m · ((ln 2)m2m)d−2 · (ln 2)2m

= ((ln 2) · m · 2m)d−1

<

(

log n

d − 1
· (d − 1)n1/(d−1)

log n

)d−1

= n .

Hence the circuit family that we describe accepts at mostn inputs. We claim that these circuits distin-
guishβ = m−(d−1) = O

(

(log n)−(w−2)
)

. To prove this claim, we require two lemmas that analyze the
functionsAi

k. We leave their proofs to the Appendix and note that these lemmas closely follow Lemmas 3
and 4 of Amano [2].

Lemma 34. Letz := (ln 2) · m · 2m. Suppose that

A ≥ 2−m
(

1 + cm−k
)

for some1 ≤ k < d − 1 and some constantc > 0. If k > 1, then

(1 − A)z ≤ 2−m
(

1 − (c/3)m−k+1
)

.

If k = 1, then
(1 − A)z ≤ 2−m · 2−c.

Proof. Using1 − x ≤ e−x for all realx, we have

(1 − A)z ≤ exp(−zA)

≤ exp
(

−(ln 2) · m · 2m ·
(

2−m(1 + cm−k)
))

= 2−m(1+cm−k)

= 2−m · 2−(cm−k+1).

If k = 1, then(1 − A)z ≤ 2−m · 2−c. Otherwise, using1 − x ≥ 2−3x, which holds for all real0 ≤ x ≤ 1,
we have

(1 − A)z ≤ 2−m · 2−cm−k+1 ≤ 2−m ·
(

1 − c

3
m−k+1

)

.

29

Lemma 35. Letz := (ln 2) · m · 2m. Suppose that

A ≤ 2−m
(

1 − cm−k
)

for some1 ≤ k < d − 1 and some constantc > 0. If k > 1, then

(1 − A)z ≥ 2−m
(

1 +
c

3
m−k+1

)

.

If k = 1, then
(1 − A)z ≥ 2−m · 2c/3.

Proof. Using1 − x ≥ e−x−x2

= e−x(1+x), which holds for allx > 0, we have

(1 − A)z ≥ exp (−zA(1 + A))

≥ exp
(

−(ln 2)m(1 − cm−k)
(

1 + 2−m(1 − cm−k)
))

= 2−m exp
(

(ln 2)
(

cm−k+1 − m2−m(1 − cm−k)2
))

≥ 2−m · 2 c
1.1

m−k+1

,

where the last inequality holds for sufficiently largen (and hence sufficiently largem). Whenk = 1, then
we have(1 − A)z ≥ 2−m · 2c/1.1 > 2−m · 2c/3 and we’re done. Otherwise, using1 + x ln 2 ≤ 2x, we have

(1 − A)z ≥ 2−m

(

1 +
c ln 2

1.1
m−k+1

)

≥ 2−m
(

1 +
c

3
m−k+1

)

.

Either way, the proof is complete.

We are now ready to prove the main upper bound. We restate the theorem here for clarity.

Theorem 36.For all constantw, there existsβ = O
(

(log n)−(w−2)
)

such that width-w branching programs
distinguishβ.

Proof. Construct a depth-d := w−1 AND-OR tree in the manner described above. Fixβ := c(log n)−(w−2)

for some constantc to be determined later. Recall that width-w branching programs can simulate depth-
(w − 1) AND-OR trees, and so it remains to show that

A1
d

(

1

2
+ β

)

≥ 2/3 and A0
d

(

1

2
− β

)

≤ 1/3 .

Assume without loss of generality thatd is odd (the case in whichd is even is proved similarly). Note that
A1

0(1/2+β) = 1/2+β andA1
0(1/2−β) = 1/2−β. Using1+x ≥ ex/2, which holds for all0 < x < 1/2,

we have

A1
1

(

1

2
+ β

)

=

(

1

2
(1 + 2β)

)m

≥ 2−m exp(βm) = 2−m exp(cm−w+3) ≥ 2−m
(

1 + cm−w+3
)

.

Therefore, by Lemma 34, we haveA0
2(1/2 + β) ≤ 2−m

(

1 − (c/3)m−w+4
)

, hence by Lemma 35, we
haveA1

3(1/2 + β) ≥ 2−m
(

1 − (c/9)m−w+5
)

. Continue alternating between Lemmas 34 and 35 until

A1
d−2

(

1

2
+ β

)

≥ 2−m
(

1 +
c

3d−3
m−w+d

)

= 2−m
(

1 +
c

3d−3
m−1

)

.

30

With one final invocation of Lemma 34, we get

A0
d−1

(

1

2
+ β

)

≤ 2−m · 2−c/3d−3

.

Finally, because the root node has(ln 2) · 2m children, we have

A1
d

(

1

2
+ β

)

=

(

1 − A0
d−1

(

1

2
+ β

))(ln 2)2m

≥
(

1 − 2−m · 2−c/3d−3
)(ln 2)2m

≥ exp
(

−(ln 2)2m · 2−m · 2−c/3d−3 · 2
)

= 2−21−c/3
d−3

.

Settingc := 3d−2, we get that

A1
d

(

1

2
+ β

)

≥ 2−1/4 > 2/3 .

It remains to prove thatA0
d(1/2− β) ≥ 2/3. Usinge−2x ≤ 1− x ≤ e−x, which holds for all0 < x < 1/2,

we see that

A1
1

(

1

2
− β

)

=

(

1

2
(1 − 2β)

)m

≤ 2−me−2βm

≤ 2−m(1 − βm)

= 2−m
(

1 − cm−w+3
)

.

By Lemma 35, it follows thatA0
2(1/2 − β) ≥ 2−m

(

1 + (c/3)m−w+4
)

, and hence by Lemma 34, we have
A1

3(1/2− β) ≤ 2−m
(

1 − (c/9)m−w+5
)

. Again alternating between Lemmas 34 and 35, we continue until

A1
d−2

(

1

2
− β

)

≤ 2−m
(

1 − c

3d−3
m−1

)

.

By Lemma 35, we see that

A0
d−1

(

1

2
− β

)

≥ 2−m · 2
c

3d−2 .

Recall that the root node has(ln 2) · 2m children. Hence, we see that

A1
d

(

1

2
− β

)

=

(

1 − A0
d−1

(

1

2
− β

))(ln 2)2m

≤
(

1 − 2−m · 2c/3d−2
)(ln 2)2m

≤ exp
(

−(ln 2)2m · 2−m · 2c/3d−2
)

= 2−2c/3
d−2

= 2−2 < 1/3 .

31

