The Coin Problem, and Pseudorandomness for Branching Programs

Joshua Brody Elad Verbin
Computer Science Department ITCS
Swarthmore College Tsinghua University
Swarthmore, PA, USA Beijing, China
joshua.e.brody @gmail.com elad.verbin @ gmail.com
Abstract

The Coin Problem is the following problem: a coin is given, which lands on head with probability
1/2+ B or 1/2 — 3. We are given the outcome of n independent tosses of this coin, and the goal
is to guess which way the coin is biased, and to answer correctly with probability > 2/3. When our
computational model is unrestricted, the majority function is optimal, and succeeds when 5 > ¢/+/n for
a large enough constant c. The coin problem is open and interesting in models that cannot compute the
majority function.

In this paper we study the coin problem in the model of read-once width-w branching programs.
We prove that in order to succeed in this model, 3 must be at least 1/(logn)®(*). For constant w, this
is tight by considering the recurfsive tribes function, and for other values of w, this is nearly tight by
considering other read-once AND-OR trees.

We generalize this to a Dice Problem, where instead of independent tosses of a coin we are given
independent tosses of one of two m-sided dice. We prove that if the distributions are too close and the
mass of each side of the dice is not too small, then the dice cannot be distinguished by small-width
read-once branching programs.

We suggest one application for this kind of theorems: we prove that Nisan’s Generator fools width-w
read-once regular branching programs, using seed length O(w*lognloglogn + lognlog(1/¢)). For
w = ¢ = O(1), this seedlength is O(lognloglogn). The coin theorem and its relatives might have
other connections to PRGs. This application is related to the independent, but chronologically-earlier,
work of Braverman, Rao, Raz and Yehudayoff.

In December 2017, Avishay Tal brought to our attention a bug in the proof of our width-
elimination lemma (Lemma 11 in the conference version, Lemma 10 in the full version). As a
result, we retract our claim on this lemma, as well as the overall Coin Problem lower bound for
ROBPs (Theorem 5 in both versions). Note: this lower bound still holds; we retract only the proof.
In fact, this result has already been reproved and strenghthened by Steinberger (CCC 2013), who
replaces our random restriction with a novel ”’interwoven hybrid” argument. In his proof, Stein-
berger uses our Collision Lemma, which we do not retract. We encourage the interested reader
to consult the Steinberger paper for a proof of the Coin Problem lower bound for constant-width
ROBPs.

The Coin Problem, and Pseudorandomness for Branchingdmsgr

Joshua Brody Elad Verbin
Department of Computer Science ITCS
Dartmouth College Tsinghua University, China
jbrody@cs.dartmouth.edu elad.verbin@gmail.com
Abstract

The Coin Problemis the following problem: a coin is given, which lands on heath probability
either1/2 + g or 1/2 — 3. We are given the outcome of independent tosses of this coin, and the
goal is to guess which way the coin is biased, and to be cowiltprobability > 2/3. When our
computational model is unrestricted, the majority funci®moptimal, and succeeds whgn> ¢/+/n for
a large enough constant The coin problem is open and interesting in models that @acompute the
majority function.

In this paper we study the coin problem in the modekaid-once widths branching programswWe
prove that in order to succeed in this mogemust be at least/ (logn)® (™). For constant this is tight
by considering the recursive tribes function.

We generalize this to Bice Problem where instead of independent tosses of a coin we are given
independent tosses of one of twosided dice. We prove that if the distributions are too cldisen the
dice cannot be distinguished by a small-width read-oncediriag program.

We suggest one application for this kind of theorems: we @theat Nisan’s Generator fools widih-
read-oncepermutationbranching programs, using seed lengthw? log n loglog n + log nlog(1/e)).
Forw = ¢ = ©(1), this seedlength i®(log nloglog n). The coin theorem and its relatives might have
other connections to PRGs. This application is related ¢dridependent, but chronologically-earlier,
work of Braverman, Rao, Raz and Yehudayoff [5] (which migatiibmitted to this FOCS).

1 Introduction

Suppose you have an unfair coin that is either slightly idsevard heads, or slightly biased toward tails,
and the goal is to determine in which direction the coin iséth What is the best strategy for determining
whether the coin is biased toward heads or biased towas?t&@ihe naive solution is to flip the coin several
times and guess heads if the results of the coin flips wereshmade often than tails. If the outcome is tails
more often than heads, guessing tails is the right choice.

In this game, the naive solution turns out to be optimal. lkemnore, if the goal is to guess correctly
most of the time, there is a well-known tradeoff between thergrobability and the number of coin flips
required. Specifically, if the coin is heads with probailit/2 + 1/t or heads with probability /2 — 1/¢,
then©(t?) flips are needed to guess the correct bias @jth confidence. Conversely, if you are restricted
to flipping the coin at most times, and you want to b2/3 confident of guessing correctly, the bias must
Q(1/ /).

There is a subtle drawback to the solution described aboverder to output whether at least half the
coin flips were heads, one must count the number of heads) lagin bits of spacepn could be quite large,
and in such cases we would want to use less space. At a highweveonsider the following:

Question: Supposer coin flips are available, but computation is restricted tcegihine) that
uses only a constant amount of space. What is the smallesth that) distinguishes a coin
which lands on head with probabilitly2 + 3 from one which lands on heads with probability

1/2— 372

Several possibilities to model constant-space computatiast. In this work, we consider constant-
width, read-once branching programs (ROBPSs). Informblgnching programs are layered directed acyclic
graphs. States are labeled with variablgsand edges are labeled with possible values:fand transition
to some state in the next layer. The first layer contains aesisgrt state, and the last layer contains
accept and reject states. Thus, a path from the start vartam £nd state describes a computation where
variables are queried, and the state changes based ontiles @éthese variables. Thedth of a branching
program is the maximum number of states per layer. Brancpimgrams with small width capture the
notion of computation using limited space. (The space,t#) [the logarithm of the width). Inr@ad once
branching program, all states in layeare labeled withe;. Thus, the branching program readsexactly
once, at layet.

Note that non-read-once branching programs are extreni@gigs as shown by Barrington [3]: he
proved that widths polynomial-sized branching programs recognize any laggua NC'; in particular,
they can compute Majority. In contrast, the model we arergsted in isread-onceprograms, which are
much weaker. They can be thought of as automata which hageeedif transition function at each point in
time. Still, these machines are quite strong. For exampéeshow in this work that branching programs
can solve the coin problem surprisingly well. In this work da&bound their power, by proving they cannot
solve the coin problem whefis too small.

The results that we prove on the coin problem and its relatmeght have various applications to the
study of small-space computation, such as in the field ofstheg algorithms. Furthermore, the ideas we
introduce here might be useful for studying other “low” misdguch asAC?, ACC?, and low-degree poly-
nomials, among others. (Here, by “low” model, we mean a muuldoes not seem to be able to compute
the majority function). Finally, the coin problem seemstigatarly relevant in the study of pseudorandom
generators, and we present an application of our resultgirfield.

1.1 Our Results on the Coin and Dice Problems

Let X = (X,...,X,) be a product distribution, i.e. the distribution of the atinates is mutually inde-
pendent. Similarly, let” = (Y1,...,Y,,) be a product distribution. Our task is to construct widtiROBPs
that distinguishX andY’, when for eachi, X; is close toY;. In thecoin problem, each input is a random
coin, i.e.,X; andY; take values if0,1}. We also consider a more general problem, where the inpkes ta
values in{1,...,m}. We think of these variables as-sided dice, and call the problem of distinguishing
such distributions théice problem. In either case, we wish to determine how cld§eandY can be and
still be distinguishable by a width- ROBP f. Note that we do not require coordinates to correspond to the
“same” coin/die—X; and.X; may have different distributions. Our only requiremenhiatithe distributions
are independent.

Our first theorem shows that ff distinguishesX from Y, then the statistical distance between pairs of
variables(X;, ;) cannot be too small.

Theorem 1. (Main Theorem, informally stated). If a width—+ead once branching program distinguishes
X andY such thatA(X;,Y;) < gforall i, theng = Q ((§/log n)™). This assumes that for each outcome
e, Pr[X; = e],Pr[Y; = ¢] > 0.

In this formulation we required that the “mass” of the sidéshe dice not be too small (or, in coin
problem language, that the “gap” of the coins not be arduadl). As an extreme case of the coin problem
where thisdoes nohold, consider the coin problem where the coin in wdrld heads with probability /n,
and in world2 the coin is heads with probability zero. Then, a wigtROBP can distinguistX’ andY” by
computing theor of the input variables. We thus see that branching programsgploit small differences
in probabilities to distinguiskX andY”’, when the probabilities themselves are small. To avoiddase, we
must either require a lower bound on the masses of the elsnretite coin/dice, as we did in Theorem 1,
or define based omatios of probabilities, e.g.Pr[X; = ¢|/ Pr[Y; = ¢] instead of absolute differences, as
in the following theorem.

Theorem 2. (Lower Bound, relative version, informally stated). If @deonce branching program distin-
guishesX fromY such that
1 PI‘[XZ = 6]
< <145
1+ 5 ~ PrlYy; =€

for all < and all outcomes, then
e 3=2Q((logn)~?") in the coin problem,
e 3=20((logn)~*") in the dice problem.
For the case of coins, we give an almost matching upper bound.

Theorem 3. (Coin Problem Upper Bound). There exists a widilread once branching program that
distinguishes coins that are heads with probabilitf2 + O ((log n)*~*) from coins that are heads with
probability 1/2 — O ((log n)*~).

1.2 Work Related to the Coin Problem

To the best of our knowledge, this is the first work to considenstant-width branching programs that
distinguish two close distributions; however, constmgtdistinguishers in general has a long history in the
literature.

Our upper bound can be interpreted as an attempt to apprtexthamajority function using small space.
Several recent papers consider the problem of approximsid under different computation models. The
closest to our work is the recent work of Amano [2], which pdes size/depth tradeoffs féxC® circuits
that approximate majority. O’Donnell and Wimmer [13] prawsly provided lower bounds on the size
required to approximate majority with deptheircuits; Amano’s work gives a matching upper bound. The
work of Viola [15] also has similar spirit. Also see the refieces therein. We remark that the notion
of approximation considered in the coin problem is of dudlres it both concentrate on inputs that are
significantly biased, and it allows mistake 1of3 (in the distributional sense).

To the best of our knowledge, the current paper is the firskworstudy approximate-majority-type
problems on read-once branching programs.

1.3 Techniques

In this section, we briefly describe the techniques useddegptheorem 1, for the case of the coin problem,
where the probability of heads is eithef2 + 5 or1/2 — S.

In the proof, we first perform a monotonization step. Rougigaking, we order the states at each level
by how confident we are that the distribution comes from warildstead of world2, conditioned on having

3

reached the state. We prove that in bBestbranching program, i.e. the one with the highest probaalt
success on the coin problem, there is a way to order the statbghat thé-transition coming out of a state
always goesbove or equal tdhe 0-transition coming out of the same state. Otherwise, wedcobinge
transitions and increase the success probability.

Our second step is to perform a seriexfv) random restrictions. We show that with high probabil-
ity, after the random restrictions, we are left with a branghprogram whose input only depends on few
variables. Note that for this to work, the monotonizatioapstvas necessary: a (non-monotone) wilth-
ROBP can compute the XOR of all the input bits, and the XOR tionds incredibly resilient to random
restrictions. The monotonization step allows us to assuraetihhe ROBP is monotone, and such programs
are, as we show, “killed” by random restrictions.

Finally, we show that a ROBP that is “killed” by random restinns cannot distinguish two close distri-
butions. We do this by an easy reduction argument, that inwiacks for any function class. This finishes
the proof of the coin theorem.

To generalize this proof for the case of dice, we use couplingtead of random restrictions. (Interest-
ingly, couplings can be seen to be a natural generalizaficamolom restriction in our setting). We also need
to generalize the above concepts appropriately. For tHatitre” dice theorem (Theorem 2), we perform a
careful reduction to the non-relative case.

All of the above claims are formalized and proved in Section 3

1.4 Ourresults on PRGs

One of the main open questions in theoretical computer seiento derandomize log-space computations,
namely to prove that L=RL. One approach for doing that is tastwict pseudorandom generators (PRGS)
for ROBPs with widthw = poly(n). The PRG should use seedlengifilog »), and the PRG itself should
be computable in log-space. For widtlit is known how to construct such PRGs with seedler@thog n),
see [1], but for widtlB the problem is already wide open. (See more background itcBes).

In Section 6 we take one step in this direction. We show howhiesre seedlengti? (w* log n log log n+
log nlog(1/¢)) for permutationread-once branching programs of width Here ¢ is the error parameter of
the PRG. Apermutationread-once branching program (pROBP) is a ROBP where evaty sas exactly
two edges entering it: one of them labeled ‘0’ and one labdledrhe generator we use is Nisan’s gener-
ator [12] or the INW generator [8]. Far = O(1/logn) andw = O(1), the seedlength of our generator
is just O (log n log log n), while the traditional Nisan’s generator requires seegtte(log® n). For more
information, see Section 6.

Section 6 also contains an extensive intuitive discussiamhy and how the coin problem is related to
the INW generator.

1.5 Relation to the work of Braverman, Rao, Raz and Yehudaydf

In recent work of Braverman et al [5], the authors of [5] prdkat Nisan’s generator fools the class of
regular read-once branching progran{gvhich is similar, but more general, than permutation reade
branching programs). It seems prudent to discuss thearlbgtween the two papers.

In [5], the authors achieve a seed lengttOgflog w + log log n + log(1/¢)) log n). This isbetterthan
the seed length that we achieve. Furthermore, they havewachihe result chronologically earlier: Elad
Verbin has spoken to two of the authors of that paper in Nowr2B09, where they have already informed
him that they are able to fool this class with good seedlengihg Nisan’s generator by an approach based
on information theory, although no details beyond that wkseussed. The approach of fooling read-once

branching programs based on the coin problem have beengmoby Verbin as far back as 2008, and much
of the approach (but not the solution of the coin problenifitseas proposed back then, so we consider the
current paper to be independent work with respect to [5].

Furthermore, we believe that the approach in the currergrgamotentially stronger than that of [5], in
the sense that we concentrate on the coin problem and themibkem, and the results on fooling pPROBPs
are just a product of these theorems. In particular, we \elibe coin problem and dice problem have
potential to produce PRGs for non-permutation read-onaadbing programs, and for larger valuesuof
than we currently know how to achieve. Furthermore, we belibat the coin problem might have other
implications, for small-space computation as well as fbeotlow” computational models. Thus we believe
that the current paper, even if considered as subsequehttovtirat of [5], is still a significant contribution.

It seems to us that the work of [5] concentrates on pROBPsefmrlar ROBPSs), while ours is more
concentrated on ROBPs. The reason our results only give R&t@srmutation ROBPs is a technical (but
deep) reason, explored in Section 7. Therefore, we belleatevtith some more ideas, the PRG approach
based on the coin/dice problem could also be made to workdioipermutation ROBPs.

1.6 Organization of the Paper

In Section 2, we formalize many of the concepts and tools usdlte rest of the paper. Sections 3 and 4
develop our lower bounds, and Section 5 constructs the upperd. In Section 6 we show our results on
PRGs for pROBPs. Section 7 explains the barrier stoppindg®B@ results from giving PRGs for ROBPs.

Finally, Section 8 concludes the paper and presents sonmepblems. Some technical proofs are left to
Appendix A.

2 Preliminaries and Notation

In this section, we provide some technical background andegats needed in the rest of the paper.

Definition 4 (Statistical Distance)Let X andY be random variables that both take values on a finite set
Thestatistical distance between andY is defined as

AX,Y) = %Zm[x — o] = Pr[Y =]| .
veY

We now formalize what it means for a branching program tardistish two distributions. The branching
programs we consider take as inpubit strings, which correspond tocoin flips. We consider distributions
X = (Xi,...,X,) where theX; are mutually independent. In the coin problem, &}l come from the
domain{0, 1}; in the dice version, variables come from some finite domain:= {1,...,m}.

We use two different notions of what it means to distinguidfe say thatf weaklydistinguishesX, Y
if A(f(X), f(Y)) > 1/3, and thatf stronglydistinguishesX, Y if it accepts with probability at leag/3
when the strings come from distributioXi, and rejects with probabilit@/3 when the strings come from
Y. Note that the former is a necessary condition for the laiés give our lower bound in terms of weak
distinguishers, and our upper bound in terms of strongmdjstshers. It will be clear from context which
notion we're using, and for that reason, we drop the wealkdgtdistinction and discuss only distinguishers.

A branching prograny distinguishess if f distinguishes distribution&’, Y such thatA(X;,Y;) < 8
for all <. Width-w branching programs distinguish if there exists a widthy branching program that
distinguishess. Our goal is to determine the smallgstistinguishable by widths branching programs.

2.1 Probabilities, Transitions, and Support

In this subsection, we define and describe many of the comeegtl use to analyze branching programs.
For any states and anye € [m], let s(e) denote the state reached by following theransition froms.

For any branching prograrfi and any inputz, we definef(z) := 1 if f acceptse, and f(z) := 0
if f rejects. For a random variabl€ and states, let f(X|s) denote the expected output pfgiven X,
conditioned on the event that we reach stat@lso, let5x (s) := Prx[f reachess]. Define thesupport of
f atlevelk givenX to be the set of states at levethat are reachable from the start state, gisernJsually,
both f and X will be clear from context; in this case, we say “the suppofeeel k"

The probabilities{5x (s)} provide a convenient way of expressirfg.X) in terms of the states at a
particular level. Specifically, lety, . . ., s,, denote the states at some arbitrary léueThen, we have

ZﬁX Sj X|SJ 1)

Suppose that is a state at levek. It's not hard to see thaf(X|s) is a convex combination of
{f(X]|s(e)) : e € [m]}. Specifically, we have

= > PrX Xls(e)) .)

e€[m)]

3 The Lower Bound

In this section, we prove the following theorem, which is thain result of our paper:

Theorem 5 (Main Theorem). SupposeX = (Xi,...,X,) andY = (Y3,...,Y,) are collections of
independent random variables, all on a finite Bet. Further suppose that for all € [m| andi € [n]

1. Pr[X; = e] = 0ifand only ifPr[Y; =e] = 0.
2. Pr[X; = €], Pr]Y; = e] > § whenever they are nonzero.
3. A(X,,Y;) < .
Then, for all constanty, if a width-w ROBP distinguisheX fromY’, thens = Q ((6/(log n))").

We prove this theorem in three steps. First we prowaléision lemma A branching program has
the collision property if the transitions from any levelto the next levelk + 1 either form an identity
permutation, or for some € [m|, the e-wires collide; that is, there are ¢ such thats(e) = t(e). In the
collision lemma, we show that argood branching program has this property—if a branching progyfam
does not have the collision property, then we can replacéhtene that does, and simultaneously increase
the statistical distancA(f(X), f(Y)).

We prove the collision lemma by demonstrating that the tt@ns aremonotonicin a weak sense.
Specifically, we order the states at each level such thatainsitions that are more likely in distributidn
will always precede transitions that are more likely in mligttion X .

In the second step, we use the coupling method, togetherandth iterative sampling process—each
variablez; will be sampled with probability — p, and if a variable is sampled, what value it becomes takes
will come from the average ok; andY;. We then condition on both which variables get sampled, bad t

value they take. We show that after each conditioning, tippert of each level decreases bywith high
probability).

After w — 1 steps, each remaining free level is likely to have supporboly one state Since the
branching program reaches this state no matter what happeaslier levels, it follows that the function
computed by the branching program is independent of allgolieg levels. This implies that the function
depends only on the few levels that follow the last level véhaigpport contains a single state. Our final step
shows that any function that depends on a few variables talistinguish two close distributions.

To prove the main theorem, we must surmount several tediti@saFor this reason, we divide the proof
into sections. In Section 3.1, we establish our notion of atamnicity and prove the collision lemma. Sec-
tion 3.2 uses the collision lemma to prove the main theorehis proof requires a lemma that is technical.
For this reason, we defer the lemma’s proof until Section 3.3

3.1 The Collision Lemma

We wish to determine the smalleStsuch thatA(f(X), f(Y)) > 1/3. Without loss of generality, assume
that the branching program attempts to accept strings framdwl, and reject when strings come from
world 2. Thus we may assume thBi:[f(X) = 1] > Pr[f(Y) = 1]. It follows that A(f(X), f(Y)) =
Pr[f(X) = 1] - Pr[f(Y) = 1].

For any levelk of the branching program, define an ordering on the statelsaatldvel in terms of
f(X|s). Specifically, defines < ¢ if and only if f(X|s) < f(X]t). Next, label the states, ..., s, in
increasing order of (X|s). Thus, we havef (X |s;) < f(X|s;) foralli < j.! We call this thecanonical
orderingof {s1,..., sy}

Our next lemma states that this ordering holdsYoas well.

Lemma 6. In any good branching program for the coin problesng ¢ implies f(Y|s) < f(Yt).

Proof. Suppose for the sake of contradiction that there existstate ¢ such thatf (Y'|s) > f(Y|t). Fix
somes’ andb such thats’(b) = s. Then, moving this transition such thétb) := t increasesf (X|s’) and
decreaseg(Y'|s’). Using equations (1) and (2), it follows thAfX) increases and(Y") decreases. Hence,
we improveA(f(X), f(Y)), which contradicts the optimality of. O

The proof of the above lemma also shows that it is safe to assbat the canonical ordering is strict;
that is, thatf (X|s;) < f(X|sj4+1) forall 1 < j < m. Otherwise, we could take all transitions that go into
s; and move them to point te;; without changingA(f(X), f(Y)).

The next lemma uses wire-switching to show a weak form of rtmmiocity. We leave the proof to the
Appendix.

Lemma 7. Fix some levek of the branching program, and letbe a state at levet. Assume states are
ordered canonically, and let, b € [m] be such thap; , > ¢; . butp; ;, < ¢; . Then, in any good branching
program,s(a) > s(b).

Our final lemma in this section is a collision lemma. Formdity e € [m], ane-collision is a pair of
statess andt such thats(e) = t(e). In general, only collisions among states in the supportlefel concern
us, since the other states are unreachable. Now, it's easetby the pigeonhole principle that if there are
d states in the support of levkland fewer thanl states in the support of levkl+ 1, then some collision(s)

Technically at this point the inequality should not be strttowever, we’ll soon see that we can assume strict inetipsli
without loss of generality.

must occur. The next lemma characterizes when collisionaratthe number of states does not decrease
across levels.

Lemma 8 (Collision Lemma). Letsq,...,sqandty,...,t,; denote the support of two consecutive levels of
the branching program. Suppose there are no collisions amen .., s4. Then, the transitions frors; }
to {¢;} form an identity permutation; that is;(e) = ¢; forall 1 <i < d and for alle € [m)].

3.2 Proof of Main Theorem

Given distributionsX, Y, definep; . := Pr[X; = e] andg; . := Pr[Y; = e]. Letr;c := (ie + Gie)/2
denote the average of the probabilitigs andg; ., and letd; . :== (p;c — gie)/2.
In this section, we prove the following theorem.

Theorem 9. Fix p := §/(10001log n) for some constand, and suppose thak = (Xq,...,X,) and
Y = (Y1,...,Y,) are each a collection of mutually independent random vaesisuch that for alt € [m]
and: € [n] the following conditions hold:

1. p;. = Oifand only ifg; . = 0,

2. pie,qie > 0 Whenevep; . andg; . are nonzero.

Then we have\ (f(X), f(Y)) < 3-p~®),

Our main theorem follows directly from Theorem 9.

Proof of Theorem 5. If f distinguishes3, then there exist tw@-close distributionsX andY such that
A(f(X), f(Y)) > 1/3. By Theorem 9A(f(X), f(Y)) < B-p~™. Hence, we havgy = Q(p*) =
Q((logn)™™). O

We will prove Theorem 9 using a coupling method. It's well Wwmthat under any coupling of
distributionsy., v, we haveA(X,Y) < Pr,[X # Y]. Fix 3’ := - p~ (=1, Define distributionsX’ and
Y’ in the following iterative manner. Create a set of indi®esC [n] by placing eachi € S; independently
with probability 1 — p. For each € S; and eacte € [m] we setX! := Y/ := e with probability r; ..

From the coordinatesot in S;, we sample a new set of coordinatgs C S \ S; in the same manner,
and again we seX’ andY; for eachi € S in the same way.

We repeat this sampling process— 1 times, after which we set the remaininge S \ (Uj Sj) such
that Pr[X! = e] = ric + 8iep T Pr[Y/ = €] = i — diep~ T, and the joint distributior(X/, Y)
is distributed according to a coupling, to be defined later. Note that no matter the choicesQfwe have
A(X!,Y!) < . Simple calculations show that

PriX/=e] = (1= p“ Drie+ 0" (rie +8iep™ ™) = 1ie + i = Dic
PrlY/ =e] = (1 —p“ Vrie + 0" (rie — iep) =1ie — die = Gic -

Hence,X and X’ are equidistributed, as aié andY”. It's not hard to see that the same holds fgiX)
and f(X’) and for f(Y) and f(Y”). Hence, the joint distributiofi.X’, Y") defines a coupling fof (X) and
f(Y). For the sake of notation, we’ll now drop the superscripts efer toX andY” instead ofX’ andY”.

Our goal now will be to boundr[f(X) # f(Y)] by iteratively conditioning orby, So, ..., Sy,—1. We
write “conditioning onS;” as shorthand for “conditioning on both the choice & S; andon the setting of
X;,Yiforie S;If i ¢ Uy << Sj, then we say thak; remainsfreeafter the first: conditionings. When
k is clear from context, we simply say th&t is free If X is not free, we say that it iestricted

In the next lemma, we prove that conditioned$n. .., S,,_1, the branching prograri is likely to be
anO(log n)-junta.

Lemma 10 (Width Elimination) Suppose there is a widtl-branching program that is weakly monotone.
Then, after conditioning off1, .. ., S,,—1, the branching program is a@(log n)-junta onQ (n/(log n)“ 1)
variables with probability greater thah — 1/n.

We defer this proof until Section 3.3. The rest of the theofeltows from the following lemma:

Lemma 11. Suppose thaj is a k-junta andA(X;,Y;) < (3 for all relevant variables. Then, we have

Ag(X),9(Y)) <k

Proof. We use a hybrid argument. Without loss of generality, assiiatef depends on the firétvariables.
LetZy:=Y,andforl <i <k, letZ; := X1X5...X;Y;41...Y:. Note thatZ, = X. It's not hard to see
that for alll <i < k, we haveA(Z;_1, Z;) = A(X;,Y;) < 8. Then, by the triangle inequality, we have

k
A(g(X),g(Y)) S A(X,Y) = A(Zo, Zk) < ZA(ZFh Zi) < kB .
i1

O

Proof of Theorem 9.Let R; denote the random coins used to generate the sam$ling., S,,_1, and let
Ry denote the rest of the random coins, i.e., the randomneddasbooseX; andY; for those; that remain
free after the conditioning is complete. Then, we hBvg|[f(X) # f(Y)] = Prr, r,[f(X) # f(Y)].

For given random strings-,rs, let £(ri,7m2) be the event thatf(X) # f(Y), given that
Ry =7y and Ry = 1. Next, let h(ri,72) be an indicator variable for the eve#t(ri,r), and set
C(r1) = Eg,[h(r1,R2)]. Then, we haveiy, [((R1)] = Pr,[f(X) # f(Y)]. Now, let us callr
goodif ¢(r1) < 2 Eg,[¢(R;1)], andbad otherwise. By Markov’s Inequality, at most half thes are bad.
By the union bound and Lemma 10, there exists a gqaglich that conditioned oR; = ry, the branching
program is arO(log n)-junta. Fix thisry.

We now construct a branching progragnon m := np¥~! variables that distinguishes’. Let y
be an input tog. We “embed” this into an input for f: for each free variable:;, we assign a vari-
able fromy. Finally, letw, be a coupling such thah(g(X),g(Y)) = Pry,[g(X) # ¢g(Y)]. Note that
Prr,[f(X) # f(Y) | Ri = ri] = Pry,[9(X) # g(Y)]. Therefore, we have

A(F(X), (V) < PILF(X) £ F(V)] < 2Prlg(X) # g(V)

2A(9(X),9(Y))
23" logn
= O(B(logn)*) ,

where the first inequality follows from the coupling of the second follows from our choice of, the
penultimate equality comes from the choicewf and the final inequality comes from Lemma I1.

I IA

IN

3.3 Proof of Lemma 10

Definition 12. We say that levet is inactiveif for all statess;, s; at levelk, and for alla, b € [m], we have
si(a) = si(b),s;(a) = sj(b), ands;(a) # s;(a). Alevel isactiveif it is not inactive.

Unless otherwise specified, assume that a level is actiaztiie levels are effectively identity permu-
tations — each state in the support of lekahaps directly to some state in the next level. Moreover, it is
easy to see that the output of the branching program is imadlgme ofz;,. Also, note that levels that are
active may becomaactiveafter a conditioning, since conditioning can decrease tippart of a level. In
our analysis, we shall perform a series of conditioningst tRe most part, wégnore levels that become
inactive.

Proof of Lemma 10.Let us call an evenf unlikelyif Pr[€] < 1/n3. Through out this proof, we carry an
implicit assumption that we are conditioning on the eveat ttoneof the unlikely events happen. At the
end, we will show via a union bound that this assumption iseeable, i.e., with high probability none of
the unlikely events will happen.

Our proof uses induction, and can be seen at a high level asedfowidth elimination. We shall show
that after conditioning oi%4, ..., S, each of the remaining unrestricted levels is likely to hsupport on
only w — k states.

Leta := (50log n)/d. Through these conditionings, we wish to maintain the ilavdrthatexceptfor the
first a free layers, the layers are likely to have small width. Sipeadly, we wish to maintain the following
invariant:

Invariant: After conditioning onSy, ..., Sk, letxz; be any variable that remains free. If there
are at least levels; such thatr; is free and active angl < 7, then with probability at least.9,
the support of level is at mostw — k.

We say thatr; is niceafter conditioning orby, . .., S if the support of level is at mostw — k. When
k,S1,...,Sy are clear from context, we simply say thatis nice

As a base case, consider the first conditioning. Pick anrarpifree levelr;, and consider the active
levels that precede it. Then, the probability thateigtireceding levels are restricted is

(1—p)>e2® = ¢ 91/ 509, 3)

where the first inequality holds because = > e ?* forall 0 < z < 1/2.

Next, consider the levels that remain free, and considercangecutive pait;, io such that at least
restricted levels lie between them. We wish to show thattippsrt of the layet; is at mosto — 1. To prove
the support of layets is at mostw — 1, we use a pebbling argument. Specifically, place a pebbladit e
state in the support of levé¢l; + 1), and move these pebbles down the layers, along whichevesiticms
are dictated by the conditioning. Note that whenever twdjebarrive at the same state, they stay together
for the remainder. By the Collision Lemma, at any active lélere exists am-collision for somee € [m]
such that; . > 4. Therefore, each active level will have a collision with lpability at leas®.

Note that in between two free layers, if a collision existsamy layer, then at most — 1 states in
the free level at the bottom will receive pebbles. We are ajutaed to never reach state(s) that receive no
pebbles, and so the support of levgls precisely the set of states receiving pebbles. dttive restricted
levels lie between a free leveéland the free level that preceded it, then the probability gl i will not
decrease in width i§l — §)* < e=9® = ¢=%0logn — ;,=50/In2 \which is unlikely.

10

Therefore, each level that remains free after the first ¢mming is likely to have suppor w — 1
as long as there are = (501logn)/d levels preceding it. Trivially, at most levels donot havea levels
preceding them. Hence, the invariant holds after the finstitimning.

The logic behind the invariant for subsequent conditiogihgs the same flavor, but there are a couple
of subtle complications, which we present below.

Assume for the sake of induction that the invariant holdsrafonditioning orSy, . .., Si. Let £}, denote
the set of free levels after thigh conditioning. Note that},; C Fj. Now, take anyj € Fj1. There are
two cases.

For the first case, suppose that prior to conditioningSgn;, at least2a free (active) levels precedg
and consider the free levels immediately preceding Then, as in equation (3), with probability 0.9,
these layerall become restricted. Suppose that this is indeed the case, iNamy of these layers had
supportw’ < w — k, then by the pebbling argument, layewill also have width at most/ < w — k — 1.
Otherwise, by the invariant, each of these layersngzewith probability > 0.9. Therefore, we expecta
of them to be nice. Since the probability that each of thegertais nice is independent of the others, by
another Chernoff bound, the event that less th&n of them are nice is unlikely. On the other hand, with
0.6a nice layers, there are at ledsiia consecutive pairs of nice layers. Each of these pairs hgweosu
w—k, and since they are active, each layer of transitions must&e-collision. Hence, the probability that
there areno collisions in thex restricted layers precedingis at most(1 — §)~0-1¢ < ¢=%logn/ — ;=5/In2,
which is unlikely. It follows that with high probabilityj will have support at most — k£ — 1.

In the second case, suppose that at Mastree levels precedegs Then, we make no guarantees on
the support ofj. On the other hand, we will show there will not be too many siuek j. Consider layers
i1,...,%24. Conditioning onSy.1, each layer remains free with probability and these probabilities are
independent. Lef be the event that at least half@f . . . , io, remain free after conditioning o$;. By a
Chernoff bound,

Pr[€] < exp (—%

This event is unlikely. Therefore, with high probabilityewnake no guarantees about at mosiee levels
after conditioning orbj;. Together, these cases prove that the invariant holdsaftetitioning onSy 1.

By induction, the invariant holds after conditioning 8k, . .., .S,,_1. Now consider what remains. Let
f‘denotef after conditioning orfSy, ..., S,_1. By the invariant, if more than free layers exist, then the
later layers have a support ofwith probability greater thaf.9. Now, letz* denote the last free active
layer with supportl. Note that sincef‘ sends all probability to a single state ifi, then the output is
independent of the layers befaré. Suppose that* is the Dth free layer from the end of the branching
program. Since each of these layers has suppartependently with probability greater thard, then
Pr[D > logn] = (0.1)'°8™ < n=3. Hence this event is unlikely. It follows thgt depends on at most
a+logn < (51logn)/d variables, i.e.f is anO(log n)-junta.

Finally, we performedv — 1 conditionings, and each time we defin@¢n) unlikely events. Hence, by
the union bound, the probability that some unlikely evertuoeed is at mosO (w/n?) = O(1/n). O

) < exp (—a . 0.492) < n~ 12,

4 Lower Bounds — Relative Versions

In this section, we generalize and strengthen the lower dbénam the previous section to handle outcomes
that occur witho(1) probability. We begin with the coin problem.

11

Figure 1: Replacing eadfs(0), s(1)) pair with a width2 balanced ROBP

Theorem 13. SupposeX = (X1,...,X,)andY = (Y1,...,Y,) are collections of mutually independent

random coins such that
Pr[X; =0] Pr[X; =1]

<
1+5 = Pr[Y; = 0] Pr[Y; = 1
Then, if a widthws ROBP distinguishe andY’, thens = Q ((log n)~2v).

<1+4.

Proof. We reduce from Theorem 5. Specifically, we take a widtbranching program that distinguishes
distributions where the coins can have very low probaégiteand construct a widtf2w) branching program
that distinguishess, using only slightly unbalanced coins—each of the coins sewill have probability
of heads between/4 and3/4.

Let p; := Pr[X; = 1] andg; := Pr[Y; = 1]. First, we handle the case when¢ (1/n?,1 — 1/n?)
by rounding. Specifically, define a distributioX’ = (X7,...,X],) in the following manner. For each
1 <7<n,set

1, if p; >1—1/n%,
X; =<0, ifp<1/n?,
X; otherwise.

Clearly, A(X;, X!) < 1/n?, so by a hybrid argument\(f(X), f(X’)) < A(X, X’) < 1/n. DefineY” in
a similar fashion. By the triangle inequality, we have

A(f(X), f(Y) < A(f(X), f(X) + AF(X), f(Y') + A(F(Y), £(Y))
< A(f(X), f(Y) +2/n.

Therefore, it suffices to bound (f(X’), f(Y”)). For the rest of the proof, we consider this case and
assume thap;,¢; € (1/n2,1 — 1/n?). Our next step is to construct for each width2, depth©O(log n)
ROBP C; that uses only balanced coins and accepts strings from woslith probability p; and accepts
strings from world2 with probability ¢;. Then, we replace the transitions in our unbalanced ROBR wit
these mini-ROBPs—for each statewe first transition ta”;, except we replace the accept and reject states
in C; with s(1) and s(0) respectively. The resulting branching program will haveltwi2w and length
O(nlogn), and the output distributions in worldsand2 will match those of the original ROBP.

We now show how to construct;. Assume without loss of generality that< 1/2 andp; = ¢;(1+ 3).

We constructC; to be width2 ROBP that use®)(logn) independent balanced coins and accepts strings
from world 1 with probability p; and accepts strings from worfwith probability ¢;. If p; > 1/2, there is
nothing to prove—X; andY; are already balanced. Otherwise, Ei% 0 such that+1 < —logp; < k+2.

Let C; be theanD of k& + 1 coins. The firs& coins will be fair in both worldd and world2. The final coin

12

will be heads with probabilit2*p; in world 1 and2*¢; in world 2. It is easy to see that; accepts strings
with probability 2% - 2%p;, = p; in world 1 and2=% - 2k¢; = ¢, in world 2.

The new branching program now has O(logn) = O(nlogn) coins and width2w, and its output
distributions given coins from worldl or 2 matches those of the original ROBP. From Theorem 5 we know
that if the new ROBP distinguished then3 = Q ((log(nlogn))~2*) = Q ((log n)~**). By reduction,
the same bound holds for the original ROBP. O

We obtain a similar result for the dice problem.

Theorem 14. SupposeX = (X1,...,X,)andY = (Y1,...,Y,) are collections of mutually independent
random variables on a finite domajm] such that
1 Die
— < —<1+p
1 + ﬁ Gie

forall 1 <i <nande € [m]. If a width«w ROBP distinguishe&” andY’, then = Q ((log(mn))~>*).

As in the proof of Theorem 13, we reduce from Theorem 5. Forpetaness, we provide the proof in
Appendix B.

5 The Upper Bound

In this section, we construct widtla-branching programs that distinguigh/2 + 3)-biased coins from
(1/2 — B)-biased coins for somé = O ((log n)~(v=2)).

Theorem 15. For all constantw, there exists? = O ((logn)~(*~2)) and a widthw branching programf
such that, when fed a series ofindependenf3-biased coin flips,f accepts with probability at least/3,
and when fed a series efindependent—3)-biased coin flipsf rejects with probability at leas2/3.

For the sake of brevity, we include only a proof sketch heiklaave the full proof to Appendix C.

Our branching programs will compute the outputAdi® circuits—specifically, of deptttw — 1) AND-
OR trees. First, we claim that width-branching programs are able to compute ddpth- 1) AND-OR
trees. This is somewhat similar to a proof in [6, Sec. 5.1]. &kge this by induction. As a base case,
consider the number of states needed to computenitee of m coins, i.e.,Az;. A width-2 branching
program can computenD in the following manner: transition to stadf 2y = 1 and to statd otherwise.
For later levels, once we reach statave stay there, and if we are in st&ewe transition to statéif z; = 0
and remain in stat2 otherwise. In this way, staterepresents the event that = 0 for somei, and state
represents that; = 1 for all i so far. At the end, we reject from stateand accept if we remain in stae
throughout. Theor function is computed in the same way, except that the rol@saoid1 are reversed.

For depthfw — 1) AND-OR trees, suppose that the root node isaamn gate. Usew — 1 states to
compute each child; however, instead of accepting or liegctransition to statev if the subtree evaluates
to 0, and transition to staté if the subtree evaluates g allowing us to usev — 1 states to compute the
next subtree. If we ever reach statewe reject. Otherwise, we accept.

It remains to carefully choose the number of subtrees at kesveth and to show that these branching
programs distinguish /2 + /3 coins for somes = O ((log n)*(w*Q)). For this, we closely follow Amano’s
construction [2] ofAC? circuits that approximatsiAJ. Our construction is left to Appendix C.

13

6 The INW Generator Fools pROBP with Small Seed

Let C be a set of functions frorfi0, 1}" to {0, 1}. For example(' might be the set of functions computable
by width-w pROBPs.

LetG : {0,1}* — {0,1}" be another function, called thpseudorandom generatog is said tos-fool
C,ifforevery f € C,

‘Exe{o,l}" [f(z)] — Eye{o,l}s[f(G(?/))H <e.

In other words (G e-fools C' if for any function in the clasg”, the probability off to bel when its input is
uniform is up tos from its probability to bel when its input is taken from the generateiis called theseed
length

We are interested in constructing explicit generatéithat fools interesting classes, and in makinas
small as possible. It is well known, and easy to see, that ritemahatC'is, if G is taken to be a random

function ands = © <log (loi—'?c‘)) then with high probabilityG e-fools C. When(is the class of width-

poly(n) ROBP, the size ot is 27°¥(") and thus there is a PRG thitpoly(n)-fools C with seed length
O(logn). The challenge is to find such an explicitly-defin@dwhich is hopefully also computable in a low
complexity class, such as LOGSPACE. Such will immediately imply thatZ, = RL, a central outstanding
open problem. The best results that are known are that fahviddROBPO (log n) seed length is achievable
by using epsilon-biased generators, see e.g. [1], for aansixin see [4] and that for the claSsof width-
poly(n) ROBP, Nisan’s generator [12] can fool them with seed ler@tivg®). An improvement/variant
on Nisan’s generator is the INW generator [8]. See below ttefanition of the INW generator. Itis a famous
open problem even to get a PRG for widtflROBP that surpasses Nisan’s generator. In this sectionfee of
a partial solution to this problem, which only fools pROBRBed achieves seed lengthlog n loglogn),
whene and the width are both constants. Our generator is the INVErgéor, but our proof is novel. Some
more recent results touching on this problem, see e.g. [l1Fbr more background on pseudorandomness,
see e.g. the survey by Luby and Wigderson [9].

Given a distributionD, we say themassof an element: with respect taD is the probability thatD
assigns tac.

We will deal extensively with ROBPs and pROBPs. These wefiaeltin Section 1.

In this section, we prove the following:

Theorem 16. The INW generatoe-fools the class of width: permutatiorread-once branching programs
of lengthn, with seed lengtl® (w* log n log log n + log nlog(1/¢)) bits.

Fore = O(1/logn) andw = O(1), this seedlength is jusd(logn loglog n), while the traditional
proof of the INW generator requires seedlen@tfiog® n).

It should be noted that all of our discussion applies botiNisan’s generator and for the INW generator,
except where otherwise noted. We find the INW generator efmi¢he purpose of exposition, so we base
our results on them.

In the following we prove Theorem 16. We first introduce th&\INgenerator, and explain the intuition
behind our improvement. We then show our improvement in itin@le setting of thdaby-INWgenerator,
which we define, and then apply the same ideas to improve édBinerator itself.

6.1 PRGs: Some Preliminaries

We start by defining some parametetss the length of the string which the PRG outputss the degree of
the expanders; we leave it un-set for now. The seedlengtheafénerator i€ (lognlogd). sy = logn is

14

the length of a bottom-level seegs = logd is the length of the seed needed for each level; this is becaus
log d is the number of bits needed to choose an outgoing edgeliregular graph./ = log(n/logn) is

the number of levels of the generator (also called the defptheorecursion, or the depth of thRW tree.

s; = 8o + isa is the length of the seed at levielThe length of the overall seedds= s, = sg + £sa.

We now define the INW generator. The generator is defined usexpandersGy,...,Gy, G; =
(Vi, E;). Each of the expanders isregular. The expandef; has|V;| = 2% = nd’ vertices; it is a
Ramanujan or near-Ramanujan graph. The eigenvalue gaghfespanders i, ~ 1/v/d. We do not
define 5 or other notions related to expanders here, since they widifbittle use: for our analysis we just
need the expander mixing lemma. For more information onmd@es, see e.g. [7].

The INW generator works as follows. Start with a uniformlydam seed of lengtk = s,. Partition
it to a first part, consisting of,_; bits, and to a second part, consistingsaf bits. Use the first part to
select a vertexy, in G4, and the second part to select an edgey) coming out of this vertexv andu are
individually uniform inV/, but they are dependent. Now, consideas a seed for th¢ — 1)-th level, and
proceed recursively with the expand&y_;. Similarly, consider: as a seed for the — 1)-th level, and
proceed recursively, also witll,_;. Concatenate the twe/2-bit strings you get from these two recursive
operations, to produce onebit string; this string is the output of the generator. lhestwords, given
seedz, the output/ NW,(z) is the concatenation dfNW,_,(v) with INW,_;(u). The base case is that
INWy(z) = z, i.e. when the bottom-most levélof the generator gets a seed, it simply returns it as-is.

Notice that implicit in the definition of the INW generator asone-to-one labeling of the vertices of
eachV; by (log |V;|)-bit strings, as well as a one-to-one labeling of the edgashing each vertex by
(log d)-bit strings. We refer to these two labelings together aseitpander-labeling The labeling of the
edges is defined for each vertex separately, and the labafieg edge does not have to be consistent on
both sides: i.e. the edde, v) might be labeled ‘4’ if coming fromv but ‘7’ when coming fromu. It is not
particularly important what these labelings are as londhag are one-to-one, because our proofs work no
mater what the labeling is. Therefore we do not discuss thelileg here; the labeling does, however, play
arole in the negative result in Section 7.

The INW generator implicitly defines a rooted ordered corgplenary tree of depth. We call this the
INW tree Each node in the tree is associated with some seed. The s#edroot is chosen uniformly at
random, and the seeds in the rest of the tree are computeathdggtically from the root-seed. The seeds
at the leaves are concatenated to get the output of the genera

The original Nisan’s generator [12] uses hash functiortgerahan expanders, but the idea is very similar.
We do not discuss it further here.

The traditional theorem about the INW generator is the Yaithg:

Theorem 17. Whend = poly(nw/<) then the INW generatar-fools the class of widths read-once branch-
ing programs of length.

While our theorem states:

Theorem 18. Whend = (logn)®®") /e2 then the INW generatar-fools the class of widths permutation
read-once branching programs of length

With the traditional setting of parameters, the INW germraises a seed length 6f(lognlogd) =
O(log nlog(nw/e)) bits. We now shortly outline the traditional proof of Thewrd7. We need this, since
our proof of Theorem 18 is obtained by an improvement of it.sfiow the proof, we start by quoting the
Expander Mixing Lemma:

15

Lemma 19 (Expander Mixing Lemma)For everyd-regular graphG = (V, E) and for every two sets

A, B C V,itholds that
_ (@) [IAIIB] _ 2e(G)
- d v — d

In the last equation)y(G) is the normalized value of the second-largest (in absolalieey eigenvalue
of the adjacency matric aff. We do not include a proof of the expander mixing lemma hege.détails,
see [7]. When the grapf¥ is a Ramanujan expander, thap(G) < 2/+/d, so the right hand side of this
equation is at most/+/d. Denote3y = 2//d.

The expander mixing lemma states that for any cut in the edgrathe probability that a uniformly-
sampled edge fronk’ belongs to this cut is roughly equal to the probability thangormly sampled edge
from the complete graph belongs to the cut. More accuratediates that the difference between these two
probabilities is at mosty.

The intuition is that the expander mixing lemma is usefultfer proof because each node of a branch-
ing program can be implicitly seen ascat-distinguisheri.e. a function that checks if an edge (which is
somehow inferred from the input string) is in a given cut. T¥ele branching program can be seen as a
collection of such cut-distinguishers, trying to tell ifettnput comes from the uniform world or from the
PRG world. (Here, the “uniform world” means the uniform disiition overn-bit strings, and the “PRG
world” means the distribution induced by the PRG). Oncedhdsas are understood, the analysis of the
INW generator is easy: roughly speaking, the proof is sinaplypplication of the triangle inequality amw
such cut-distinguishers, where each cut-distinguishecabise of the expander mixing lemma, contributes
only a difference of3y = ¢/nw.?

The proof of Theorem 17 proceeds as follows (still not ehtifermally): consider the middle layer of
the branching program. The middle level is the only way tomoaunicate” between the left half and the
right half. Each of the nodes in the middle layer can, at mast,as a cut-distinguisher. Thus, the total
difference amassed in the middle layer is at mo8§. Since this is the only way to communicate between
the two sides, then each side can now be assumed to be inaéeplgnchiform, and the same arguments can
be used recursively. We end up with a total difference of astmm 3, and this gives Theorem 17. The
formal proof is a little more involved, since one needs tarfalize the phrase “can now be assumed to be
independently uniform” and similar vague concepts, bug tevel of detail suffices as background for our
purposes. The interested reader is referred to [9] for metaild. (When we prove Theorem 16 we will not
make such intuitive claims, and we will prove everythingnfaily).

(AxB)nE| [A]|B|
|E| v?

6.2 Some High-Level Arguments Behind Our Improvements

The standard proof that the INW generator fools ROBPs hasgkinst place where it seems non-tight: It
performs a hybrid argument, that states that if the stediktlifference in each node %, then the over-
all statistical difference at the end is upper-boundedchiyg,. This is true of course, but does not seem
tight for small-width programs, especially in light of owrsults on the coin problem. This hybrid argu-
ment is the reason that the analysis in Theorem 17 requieedeyree of the expanders tolgy(nw/e),
rather than, say, jugtoly(w/e). This is the weakness that we improve in this section. We shatvsince
branching programs cannot boost/amplify, then there is ap @ amplify a difference of, in each state
to an overall difference ofiw3,. Sweeping many technical details under the rug, what hapisethat we

2This use of the triangle inequality can alternatively beutjtat of as a union bound or, most accurately, as an applicafia
hybrid argument.

16

think of the ROBP as being applied to roughilyw “coins”, each with statistical differengg,; then, by the
coin theorem, the statistical difference in the output $thése only abouflog n)o(w)ﬁo, assuming various
technical conditions such as the “gap” being around the lajdthd so on. To get this difference to be at
moste, we need to choosgy = ¢/(logn)°™), and sincal = poly(1/3), we get that the seedlength is
O(lognlogd) = O(log n(wloglogn + log(1/¢))). This is more or less the seedlength that we promise in
Theorem 18. The discrepancy between the two quantitieis teplaced byw?) is due to various technical
complications.

In order to go through with the rough argument shown in thepasagraph, two major technical dif-
ficulties must be overcome. First, the coin theorem requhrasthe location of the gap be bounded away
from 0 and1. We need to prove this property, which actuallyes nothold for ROBPs. It does hold for
pROBPs, and we show this in Lemmas 21 and 22. (This is the dabepvhere the proof fails for ROBPS).
Second, when trying to fool pPROBPs (or ROBPS), they shoulthbaght of as dual-duty machines: they
are used simultaneously both to find the differences betwreenniform world and the PRG world, and in
order to boost/amplify those differences. Due to this dwdlre, it is hard to apply the ideas of the coin
theorem directly on the pROBP: one of the most obvious reasohecause we cannot make the program
monotone or weakly-monotone without losing its distingeisproperties (these concepts, “monotonicity”
and “weak monotonicity” are described in the proof of thencand dice theorems). To circumvent this dif-
ficulty, we strengthen the model of pPROBPs to a stronger mealidd super-pROBPSs, where the two duties
are well-separated. These super-pROBPs are “primary” gR@Rt gets as input the output of “secondary”
pROBPs. The primary pROBP has the role of statically bogdtie differences, while the secondary ones
have the role of creating the differences in the first place. pidve in Lemma 20 that super-pROBPs can
simulate pROBPs (this is not obvious), and then our anaiymidies the dice theorem to the primary pROBP,
treating the secondary pROBPs as the dice.

6.3 The Baby-INW Generator, Super-pROBPs, and Some More Intition

We now set some parameters. These parameters are usechtiubtige rest of this section. The degree
of the expanders is chosen to the= (log n)@(w4)/52. Note that here and in the rest of the arguments we
hide some constants in Oh-notation; This hiding will be doma consistent way, and no hairy issues will
arise. Next, the “error’ parametg is chosen to ba /v/d = ¢/(log n)@(w4). Another error parameter is
B = w3y = ¢/(logn)®™"). Afinal error parameter i§ = 1/4*". It can be seen that the seedlength that
we declared in Theorem 18 is jusig n log d, thus to prove Theorem 16 it suffices to prove that an INW
generator with degree indeedz-fools width<v pROBPS.

We now define the baby-INW generator. The baby-INW generatty performs the INW procedure
on the bottom level of the INW-tree, and is uniform in all athevels. It is equivalent to choosing; just
like in the INW generator, and choosing the other expandgrs. . , G, to be complete graphs.

We first prove in Section 6.6 that the baby-INW generdtof?)-fools width-w pROBPs. Then, in
Section 6.7 we show how to generalize this proof for the a¢NMY generator; this step simply consists of
applying a hybrid argument on top of the proof of the baby-Ilg@&herator. The hybrid argument will have
¢ steps, because the INW generator hdsvels, and thus the final error will be We believe that getting
better analysis of the baby-INW generator might be an ingmbrstep in future work, since it provides a
simple “training-ground”.

We now define the baby-INW generator more concretely.nh.et n/2logn. The baby-INW generator
produce2m elements, divided into pairs. We call each paghaink Each chunk consists of theg n-bit
labelings of two vertices, v in G1, chosen by drawing uniformly at random, and then choosingo be
a uniformly random neighbor af in G;. Thus, we see that the output of the baby-INW generator stmsi

17

of m independent chunks, each corresponding to one edge of fanasr. It should be obvious why
such a generator is easier to analyze than the INW generglis. generator has awful seedlength (more
thann/logn), but analysis on it can in some cases be generalized to bolihé actual INW generator.
Furthermore, it should be relatively easy to see why thigegsor is related to the coin problem: consider the
i-th chunk. The expander mixing lemma shows that the staistiistance created by any cut-distinguisher
running on thei-th chunk in the uniform world versus in the PRG worldgg Think of this as a “coin”.
The approach of the classical analysis of the INW generatuidvbe just to apply a triangle inequality on
thewm differences, and get a total difference of at most 5. Instead, our analysis exploits the fact that
a pROBP cannot boost/amplify the statistical distancegsigéad by the cut-distinguishers.

We now define super-pROBPs.vAdth-w super-pROBRonsists of a widths lengthsn pROBP, whose
inputs, rather than being bits, a8’ -sided dice (more accurately, they are random variables tbeeuni-
verse{0, 1}“’3). In thei-th die, thej-th of these bits is the output another widthew pROBR call it f; ;,
which is applied only on théth chunk of the string. To summarize, a super-pROBP is altengpROBP,
each of whose inputs consistswot bits, which are the outputs of individual pPROBPs run on thee=pond-
ing chunk. Intuitively, one should think of therimary pROBP as the part that intends to boost the error,
and thesecondarypROBPs as the cut-distinguishers. Note that in the baby-téWerator, the inputs of the
primary pROBP arenutually independentandom variables ovefo, 1}“’3. This independence is crucial,
since we are going to think of these inputs as the dice in tteettieorem, and the dice must be independent.

6.4 Simulating pROBPs by super-pROBPs

We now prove that any widths pROBP can be simulated by a widih-super-pROBP. Note that this is
not entirely trivial, since in a super-pROBP, the main pRGf®Rs not get direct access to the input, but is
restricted to access the input only through the seconda@B#®, which, in their turn, are restricted to just
look at one chunk each.

Lemma 20. A width<v pROBP can be simulated by a widihsuper-pROBP. Also, in this simulation, each
secondary pROBF, ; is a cut-distinguisher on chunk

Note that when we say “simulate” we mean that the simulatipmpspROBP and the simulated pROBP
always return the same output given the same input. |.e/,dbmpute the same function. In particular, this
lemma does not assume that the input comes from the INW genetladoes use the notion of chunks (in
the definition of super-pROBPS), but it just thinks of thenisi as a partitioning of the input, so it does not
make any assumptions about the input.

Proof. Denote the original pPROBP by. Consider the behavior gf on thei-th chunk. For each node

of f in the layer just before the beginning of the chunk, and f@rgwodeu of f in the layer in the exact
middle of the chunk and for every nodeof f in the layer just after the end of the chunk, define a function
fij» wherej = (v, u,w), i.e.j is indexed by the nodes v andw. f; ; returnsl if when the program starts
from nodev and proceeds according to the branching progyfaamd reads theé-th chunk of the input, it
goes through both node and nodew; f; ; returnsO otherwise. Note that in particulaf; ; is just a cut-
distinguisher applied on chunk Also note that for every, there is only one choice for a pdit, w) that
makesf; (,.u,w) equal tol.

Now, to simulate the prograrfion inputa, we consider the start vertey, and choose the nodesg, wq
that makef; (,,u0,w0) = 1 (BY the previous discussion there is only one choice foséhg, w,). Now we
setv; = wp and find the nodes;, w; that makef; (,, 4, ;) = 1, @and so on. In the end we get a final vertex
Um—1 = Wm—2 IN the output-layer, and we return it. Obviously, this prdwes returns the corregt(z).

18

However, we still need to show that this procedure can be lated by a super-pROBP. We need to
build the primary pROBP to correspond to this procedure. W/ ds follows: The state between layers
1 — 1 and: of the primary pROBP corresponds to the state of the similipROBP between chunks— 1
andi. Now, we just need to prove that for each possibfebit input in the(i — 1)-th layer, the transition is
a permutation on the states. This can easily be seen to baskesince for any pROBP, and in particular in
the original pROBPf, any composition of layers is always a permutation as waflormally, the input to
the primary pROBP tells us which path we should traverserigmade that we start in, and no two of these
paths end at the same node.

We remark that some choiceswf-bit inputs are impossible to obtain with the simulatiorr @aample
ones that are ally. For these choices we define the transition to be an anpiemmutation.

We have thus seen how to simulate the pROBP by a super-pROBRheisame width, and have proved
the lemma. O

6.5 A Useful Lemma about Mass of States in pPROBPs

We now prove a lemma, which states that in a pROBP no statedoasmall probability (unless it has
probability 0). This is in fact theonly place in this section that we use the fact that we are foolRQBPs
rather than ROBPs. The inspired reader might claim she hdesice for such a lemma, and could probably
prove the pseudorandomness without it; the reason we neddrtima is that the coin theorem requires the
“gap” to not only be small but to be “around the middle” andréhes also an analogous restriction in the
die theoren?. Furthermore, in Section 7, we show that in a strong sensdNMégenerator simplydoes
not work without a lemma such as this, or at least one can dessge@ific expander-labelinfpr which the
INW generator fails.

Lemma 21. Let f be a width« pROBP. Consider running on a uniformly random input. Letv be a
node in the programny. The probability off applied onx to pass through is either0, or at least1 /2.

Proof. Call the probability to pass at a vertexhemassof v. We will now prove a stronger claim than the
lemma. We prove that for every layer, the following holdssuaee the number of nodes with nonzero mass
in the layer isr. Then for each node in the level, its mass is eitheor at leastl /2" *.

The proof proceeds by induction on the layers of the bramcphmgram. The base case is trivial (in the
first layer one node has makand the other nodes have massor = 1). Fix a layeri — 1 where the claim
holds, and let us prove it for layeér Denote byr;_; andr; the number of states with nonzero mass in layers
1 — 1 ands, respectively. It is easy to see that the number of statdsnihzero mass cannot decrease, thus
Ty 2 Ti1-

Consider a node in layeri. If both of its in-arrows come from states with mass zerontlie mass
is also zero and we are done. If both of its in-arrows come febates with mass nonzero, then by the
induction hypothesis they both have massg /2"i-1~1. Butv's mass is the average of its in-neighbors mass
(since the input is uniform), and sineg> r;_; we are again finished.

If one of v’s in-arrows come from a state with mass zero and one comesdrstate with mass non-zero,
thenv’s mass might be as small ag2"-1. But in this case, it is easy to see that> r;_;. One way to
see this is that there aPéw — r;_1) “available” arrows coming from the zero-mass states inrfaye 1. v

3The lemma we are about to prove and its use shed some lighean af Reingold [14]. Reingold says that what is important
in order to fool small-width models is to have good estimatethe probability masses of being in various states. Thewahg
lemma and its uses in our arguments suggest that what is iamppat least in our setting, is to have some lower-boundhemtass
of states; i.e. we just need that the masses are not too smdllye do not need good estimates of them.

19

took only one of them and a node in layighat has zero mass must take two of them, thus there are at most
w — r;—1 — 1 nodes with zero mass in layéer
Overall, by induction we have the stronger claim, and thenbenfollows from it. O

We now need a generalization of this lemma, for the case whgROBPs are applied on the same
input simultaneously.

Lemma?22. Letf1,..., fi bek width-w pROBPs. Let be a uniformly random input, and consider running
fi,..., fr onthisxz. Letwvy,..., v, be nodes in the programs such thatis in f; and they are all in the
same layer. Then the probability that for allf; when applied ta: passes through;, is either0, or at least
1/2%F,

Note that this lemma is not trivial, since the different pR&Brun on the same input, so their outputs
are not independent.

Proof. The lemma proceeds just like the proof of the previous lenaxeegpt that we work on all programs
at the same time. O

6.6 The Proof for The Baby-INW Generator

We now wish to prove that the inputs of the primary pROBP Battge conditions of the dice theorem.
Consider the-th input to the primary pROBP. Denote it By; in the PRG world and’; in the uniform
world. Recall thatX; andY; are random variables over the doméin 1}”3.

Lemma 23. The statistical difference betweéfj andY; is at most3 = w? - .

The idea behind the proof is that for eath< j < w3, it holds by the expander mixing lemma that
A(X;;,Y;;) < Bo. By a “union bound” on the different coordinates we get tharea. (Formally we do
this using a simple coupling).

Proof. For anyj, the value off; ; is a deterministic function of théth chunk. The Expander Mixing
Lemma says thai\ (X; ;,Y; ;) < (. (Note thatX; ; is the output off; ; applied to thei-th chunk in the
PRG world, and similarlyy; ; is the output off; ; applied to thei-th chunk in the uniform world). We can
easily define a coupling oX; andY; where for eacly, Pr(X; ; # Y ;) < (y. We now union-bound over
the different;j and get that under this couplin§r(X; # Y;) < w?py, and by the standard property of
couplings, we get the lemma. O

Lemma 24. For each element in the output domdif, 1}”3, either its mass inX; andY; is both zero, or
its mass is at least = 1/47”4 in both of them.

Proof. ConsiderY;. We have seen in Lemma 23 that the probabilityypfo take each value is eithér or

at Ieast1/2w4. If the probability ofY; to take a certain value i then X; never takes that value as well,
because the paths that the branching program can take inRGewrld are a subset of the paths it can
take in the uniform world. On the other hand, if the prob&pitif taking the value is at Iea:*.l‘/2w4 in the
uniform world, then by the previous lemma, this means thapttobability thatX; takes this value is at least
1/2@" — B8, which is> 1/4*" = §. Thus we are finished. O

We now get the final result of this subsection: that the b&iIgenerator fools super-pROBPs, and by
Lemma 20, it thus fools pROBPs.

20

Theorem 25. The baby-INW generator with our parametgeg log n)-fools widthw pROBPS.

Proof. Simulate the pROBP by a super-pROBP of the same width. Bywbetevious lemmas, the inputs
of the primary pROBP have all the properties required of ile th the dice theorem. Apply Theorem 9 on
the primary pROBP to get the conclusion. O

6.7 The Full Proof for the INW Generator

In this subsection we get the main result of this paper byidengsg the INW generator rather than its
baby version. This is a simple hybrid argument over the By&here for any layer we use essentially the
argument of the last subsection.

Consider the INW generator. L&t be the output of the generator, anidoe a uniformly random string
of lengthn. Consider a sequence of random variablE8, X!, ..., X*. X0 is the same a¥, while X*
is the same a%. X' is obtained by using full randomness for the firsévels of the INW-tree with full
randomness, and performing the rest of the layers accotditige procedure of the INW generator. This is
equivalent to choosing:1, ..., G; to be complete graphs, and choosi#g, 1, . .., Gy just like in the INW
generator.

Consider a pROBF. We wish to prove that the statistical distance betwgek®) and f(X*) is at
moste. This is the statement of the main theorem of this paper.

Theorem 26. The statistical distance betwegii.X) and f(Y") is at most.
By the triangle inequality, it suffices to prove the next leeam
Lemma 27. The statistical distance betwegiiX?) and f(X**) is at most:/ log n

Proof. Consider the distributiong (X?) and f(X**!). Since the top layers use perfect randomness in
both distributions, the distributions can be thought of @rcatenation o2’ equal-length chunks, where
the different chunks are mutually independent. In each khifi is drawn by iterating the INW procedure
¢ — i times, whileX**! is drawn by choosing two independent seeds, and iteratsm¢\W procedure on
each of them{ — i — 1 times.

Now, simulatef by a super-pROBP, working on these chunks. FHb input of the primary pROBP
consists ofw? bits derived from the-th chunk. Each of these? bits corresponds to a triplet of nodes of
the original pROBP: one at the beginning of the chunk, oneamiddle and one at the end. The left half
of the j-th chunk is equidistributed ifi(X*) and f(X**1), and so is the right half. Therefore we can follow
the same steps as in the analysis of the baby-INW generadayedrine lemma. O

7 Why Our Technique Fails to Fool ROBP

In this section we explain why our technique fails to fool R& despite the fact that we do solve the coin
and dice problems for ROBPs. The only place in the analysib@PRG that we use the fact that we're
working on pROBPs rather than ROBPs is in Lemmas 21 and 28.elsy to construct a ROBP for which
these lemmas fail, for example the ROBP that computes theu@&ibn onn bits. In this section we show
something more far-reaching: that the INW generator it to (1/2)-fool the class of widtt3 ROBPs

if the seed length is(log? n). We prove this only in the case that an evil adversary is atbto design
the expander-labeling as he pleases. Note that our result®drule out the possibility that designing
an expander-labeling carefully, or just picking the labglin a pseudorandom way, will allow the INW

21

generator to fool ROBPs with small seedlength. We remarkittgatraditional proof of the INW generator,
and our proof of the INW generator on pPROBPs, workday expander-labeling, even one designed by an
evil adversary.

For simplicity, we prove the negative result for the babyAINjenerator. It can be strengthened to apply
for the INW generator in a straightforward way. Since we wornkthe baby-INW generator, we just need
to specify how the evil adversary designs one expander: ieeabthe bottom level. Let. = n/2logn be
the number of chunks, and recall that the number of vertit&secexpander is and that it isd-regular. We
wish to prove thatl > n'/3; once we prove this we will be able to get the negative ressiiye

Since the expander isregular, it contains a matching; choose a matching ofisizm. Let A denote
the left side of the matching anfl denote its right side (assign vertices to sides arbitraaidylong as the
two endpoints of each edge in the matching are on differel@s3i Letk = log,(2m/d). (We assume for
simplicity that2m /d us a power oR). Label the vertices ofl by all labels that start wittk 0’s, and label
the vertices ofB by all labels that start witlk 1's. Label the other vertices, and all the edges, arbitrarily

Now, design a ROBP as follows: the ROBP goes over each chuadlGlaecks if the firsk bits in the left
half of the chunk ar@ and if the firstk bits in the right half of the chunk are If there is a chunk where both
of these conditions hold then the ROBP accepts, otherwiggeitts. It is not hard to see that this function
can be implemented by a widthROBP. (In short: keep one sink state exclusively as an “ddcagk”, and
make the required checks over each chunk using the othertaieask

Now, the probability of accepting in the uniform world is, the union bound, at most

n-(d/2m)? <0 <d2 1°g”> .

m

If d < n'/3 then this iso(1). On the other hand, in the PRG world, the probability of atiogpis >
1—-(1-1/m)™>1-1/e. Therefore, to have any hope to fool wilslROBPs, the expander must have
degreed > n'/3 . Since in the INW generator the seedlength is roudddyn log d, we get:

Theorem 28. The INW generator fails t¢1/2)-fool width-3 ROBPs, unless its seedlengttifiog® n), as
long as an evil adversary is allowed to design the expanaleeling.

Strictly speaking, to prove this theorem as it is statedtierINW generator rather than the baby-INW
generator, we must design the expanders of all levels, aowd gtat all of them must have large degree. The
details are routine and we omit them here.

We believe that the expanders can be labeled either care&fufpseudorandomly to bypass the barrier
posed by the last theorem, but we do not know how to do this.

8 Conclusions

In this paper, we provide tight upper and lower bounds on hiesectwo distributions can be and still be
distinguishable by constant-width branching programs. oBa& hand, we prove that even with just three
states, branching programs can distinguish two distobstithat are within a factor ab(1/logn). On
the other hand, we show that any widthbranching program cannot distinguish two distributioret tre
o ((logn)~") from each other.

The above results are nearly tight for constanit would be interesting to investigate the case in which
w is nonconstant. It would also be interesting to considerctiie and dice problems on other small-space
models of computation, such asstate automata or permutation branching programs. Thesklmare

22

more restrictive than constant-width branching prograles,are still interesting from the perspective of
pseudo-random generators.

Our work seems to suggest that small-space machinestiacdy stronger when given access to a
“clock”, which counts the inputs we have seen, and allowsoudeicide which operation to do, based on
the clock’s value. It would be interesting to study the infloe of a clock on the streaming model: what
functions can be approximated using sublogarithmic sgaus,a clock? Which problems cannot be solved
even with a clock? What interesting generalizations of tle®fptechnique of this paper are needed for such
impossibility results?

How well can AC?, ACC" and low-degree polynomials (ov&) solve the coin problem, and what
does this entail? Of particular interestA€'C?: could a technique based on couplings prove thatC"
cannot solve the coin problem? (This will in particular pediaat majority is not inAC'C?, settling a major
open problem). It could be interesting to try to attack thiskem using couplings. Our work uses only
couplings in which the coordinates are mutually indepehdaurt to analyze the above classes, it might be
useful to use more complicated couplings.

Finally, can the ideas in this paper, possibly together witter ideas, give a PRG against small-width
ROBP with good seedlength?

Acknowledgements

Both authors are grateful to Sourav Chakraborty, and thenskauthor is grateful to Brendan Juba, Jaikumar
Radhakrishnan, Pranab Sen and John Steinberger, for atingutiscussions and ideas that helped progress
this work. The first author would like to thank David Barringtand the Dartmouth Theory Reading Group
for helpful discussions. The second author would like tonkhBoaz Barak, Swastik Kopparty, Shachar
Lovett, Avi Wigderson and David Xiao for helpful discusssonSome of this research was done while the
authors were visiting Peter Miltersen at the Center for Atgmic Game Theory, Aarhus University. We
would like to thank Peter and the group for their graciougitasty.

References

[1] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simplestruction of almost k-wise independent
random variables. IRroc. 31st Annual IEEE Symposium on Foundations of Com@diencepages
544-553, 1990.

[2] Kazuyuki Amano. Bounds on the size of small depth cikdidr approximating majority. IfProc.
36th International Colloquium on Automata, Languages armbRamming pages 59-70, 2009.

[3] David A. Barrington. Bounded-width polynomial-sizeamching programs recognize exactly those
languages inVC'!. JCS$38(1):150-164, 19809.

[4] Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehdtld®seudorandomness for width-2 branch-
ing programs. Manuscript, 2009.

[5] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudoff. udeseandom generators for regular
branching programs. Manuscript, 2010.

[6] Funda Erguin, Ravi Kumar, and Ronitt Rubenfeld. On leayiounded-width branching programs. In
Proc. 8th International Conference on Learning The@sges 361-368, 1995.

23

[7] Shlomo Horry, Nathan Linial, and Avi Wigderson. Expandeaphs and their applications, 2006.

[8] Russel Impagliazzo, Noam Nisan, and Avi Wigderson. Bseandomness for network algorithms. In
Proc. 26th Annual ACM Symposium on the Theory of Compupiages 356—364, 1994.

[9] Michael Luby and Avi Wigderson. Pairwise independenoel derandomization.Foundations and
Trends in Theoretical Computer Sciendé4):237-301, 2006.

[10] Raghu Meka and David Zuckerman. Small-bias spacestupgproducts. IiProc. 13th International
Workshop on Randomization and Approximation TechniquéSoimputer Sciencepages 658-672,
20009.

[11] Raghu Meka and David Zuckerman. Pseudorandom gemerfatopolynomial threshold functions. In
Proc. 42nd Annual ACM Symposium on the Theory of Compdt0. To Appeatr.

[12] Noam Nisan. RLC SC. InProc. 24th Annual ACM Symposium on the Theory of Computiages
619-623, 1995.

[13] Ryan O’Donnell and Karl Wimmer. Approximation by DNFx&mples and counterexamples.Aroc.
34th International Colloquium on Automata, Languages armjRamming pages 195-206, 2007.

[14] Omer Reingold. Randomness vs memory: Prospects andensar 2009. http://
intractability. princeton. edu/ attachnments/oner_rei ngol d. ppt x.

[15] Emanuele Viola. On approximate majority and probahbii time. Computational Complexity
18(3):337-375, 2009.

A Technical Lemmas

Lemma 29 (Restatement of Lemma.6)n any good branching program for the coin problesn ¢ implies

f(Yls) < f(Y1R).

Proof. Suppose for the sake of contradiction that there existstate ¢ such thatf (Y|s) > f(Y|t). Fix
somes’ andb such thats’(b) = s. Then, moving this transition such thgtb) := ¢ increasesf (X|s’) and
decreaseg(Y'|s’). Using equations (1) and (2), it follows thAfX) increases and(Y’) decreases. Hence,
we improveA(f(X), f(Y)), which contradicts the optimality of. O

Lemma 30 (Restatement of Lemma.7).et s be some state at levél and assume all states are ordered
canonically. Suppose, b € [m] such thatp; , > ¢; o butp; ;, < g; . Then in anygoodbranching program,
s(a) > s(b).

Proof. Fix two stated, t5 in level (i + 1) such that; > ¢5, and consider the following cases:
1. s(a) =tq, s(b) =1t
2. s(a) = s(b) =ty
3. s(a) =s(b) =t

24

Note thats(a) < s(b) only in the first case. Our goal is to show that this caseeigeroptimal. Combining
equations 1 and 2, we see that

FOX) =Y Bx(s5) Y pie F(X]s(e)) -
J=1 e€[m]

A similar equation exists forf (Y). To show that case 1 is never optimal, it suffices to show that
A(f(X), f(Y)) = f(X)— f(Y) is always maximized in one of the other cases.

Let S denote the set of states at levelxcept state. Let M := [m] \ {a, b} be the set of outcomes that
are neither or b. Then, let

A=) Bx(s;) f(X]s;) — By (s;) f(Y]s;)
JjeS
and

Bi= Bx(s)picf(X|s(e)) = By (s)aief(Y]s(e)) -

ecM

Intuitively, A is the contribution tof (X) — f(Y') from states inS, and B is the contribution from state
and outcomes that are neithenor . Note that since we change ordya) ands(b) as we change cases,
and B remain invariant, and we may writg X) — f(Y') as

f(X)=fY)=A+B + Bx(s)piaf(X][s(a)) +pipf(X][s(D))]
= By () [giaf(Ys(a)) + qipf(Y]s(b))].

To calculate f(X) — f(Y) for each case, a few more definitions will aid the computatidret
ox = [f(X|t1) — f(X|tz) anddy = f(Y|t1) — f(Y|t2). Note that the canonical ordering of
states in leve(i + 1) givesd,, d, > 0. Finally, let

Z = Bx(s) - [(X[t2) - (pia +pip) — By (s) - f(Y]t2) (qia + @ip) -
Then, in each case, we have:
1L f(X)=f(Y)=A+ B+ Z+ Bx(s)0xpip — By (5)0y i
2. f(X)= f(Y)= A+ B+ 2.
3. f(X) = f(Y)=A+ B+ Z+ Bx(8)0x(pi,a + pip) — By (8)0y (¢ia + ip)-

Suppose for the sake of contradiction tlié&) — f(Y) is maximized in case 1. Then, comparing case

to case2, we see that 5)
Bx (s i p0y
$)0xpip >)0y q;p = > — .
Bs(s)dxpip > By (5)0ydip B (5) ~ piodx

Comparing case 1 to case 2, we see that

Bx (s)0xpip — By (5)0y dip > Bx(5)0x (Pia + Pi) — By (5)0y (¢ia + qip)
> Bx(5)0xPia > By (5)0yGia

Bx(s) - Oy Gia

By (s) ~ 0xPia

—

25

Combining these two inequalities, we see that

Sy Gipdy _ Bx(s) Giady _ Oy
ox pipdx By(s) piadx Ox

where the first and last inequalities come from our initiaesptions thap; , > g; . butp;, < ¢; . Thus,

we havedy /d0x < dy /dx, a contradiction. O
Lemma 31 (Restatement of Lemma.8)etsy,...,sqandtq,...,t; denote the support of two consecutive
levels of the branching program. Suppose there are no amiésamongs, ..., sq. Then, the transitions

from {s;} to {¢;} form an identity permutation; that is,(e) = ¢; forall 1 < i < d and for alle € [m].

Proof. Suppose for the sake of contradiction that there are nastmié among, ..., sq. Then for every
and everye € [m], there exists such thats(e) = ¢. Consider any:, b € [m] such that is more likely in
X; butb is more likely inY;. Fix ¢ such thats;(b) = t4. By Lemma 7, it follows that;(a) = t4 as well.
Proving thats;(a) = s;(b) for all other j follows by induction on{s; : j # i} and{t; : j # d}. Hence,
the transitions form a permutation. It remains to show tleisyutation is the identity. This follows from the
ordering ofsy, ..., sq and from equation (2). O

B Dice Theorem for Small Probabilities

Theorem 32(Restatement of Theorem 143upposeX = (X,...,X,)andY = (Y1,...,Y,) are collec-
tions of mutually independent random variables on a finiteadim [2] such that
1 Die
——= < —<1+p
1+ ﬁ Qie

forall 1 <i <nande € [m]. If a width«w ROBP distinguishex andY’, thens = Q ((log(mn))~3").

Proof. This proof closely follows the proof of the Coin Theorem. Wagim by rounding our random vari-
ables. This time, there could be uprtosmall probabilities; we need to round each. Defifeto take the
random variable taking valuewith probability p; ., wherep; _ is defined by:

0, if max(piev qie) < 1/mn2 s
pg@ = Pie + Ze:max(pie,qie)<l/mn2 Pie s ife=e",
Die otherwise,

wheree* := argmax,{p;e } U{q;. } is the most likely value foX orY;. DefineY; in terms ofY; in a similar
manner. Simple calculations show thetX;, X!) < 1/n?, hence by a hybrid argument(X, X’) < 1/n.
The same bound holds féx(Y,Y”). Hence, we can assume that the probabilities are riegdow.

Suppose thatf is a ROBP such thatA(f(X),f(Y)) = o((log(mn))=v). Then
A(f(X"), fF(Y")) = o((log(mn))~**) as well. Next, we simulate each die roll fnby a ROBP that uses
only balancedcoins There are many ways to perform this simulation; our pringogl is to minimize the
blowup in width, since the lower bound we have from the Coiedriem has a-factor in the exponent. Our
secondary motivation in this construction is to make thiagsimple as possible—aside from the emphasis
on minimizing the width-blowup, we do not attempt to tightesunds as much as possible.

Recall in the proof of the strong coin theorem that at each, stee “extracted” the low probability
by constructing an AND of completely fair coins with a final coin that was only slightiased. We'll

26

simulate a die roll in a similar manner. Specifically, wedflly extractp;. for eache € [m|. Because we
extract these probabilities serially, we need an additianaccumulator states, one for each state in the next
level of f. In our simulation, the transitions from these states alhipdirectly downward; i.e., once we're
in some accumulator statg we remain there for the rest of the simulation of the curdciet

To begin the simulation, pick songec [m], and construct a widtB-ROBP that accepts with probability
pie IN the same manner as in the proof of the strong coin theoregplaRe the accept state with the accu-
mulator state fog(e). The reject state becomes the start state for the vddRIDBP that computes the next
e € m].

One subtle complication arises. The start state for the éexaction is itself now biased—we reach it
with probability p! := 1 — p;. in world 1, and with probabilityg; := 1 — ¢;. in world 2. Care must be taken
in the ordering of which probabilities to extract to ensurattthe bias does not become unexpectedly large.
Suppose without loss of generality that> ¢/, and lete be the remaining element such that > ¢;. and
pie/ Gie 1S Maximized. This is the next element to extract. ket [— log(p;./p’)], and construct a width-
ROBP that computes thenD of k£ 4 1 coins. As in the proof of the strong coin theorem, the firsbins
are fair coins in both worlds. The: -+ 1)th coin will have probability2="p;. /p" in world 1 and probability
27%q;. /¢’ inworld 2. Note that the bias in this last coin(ig;. /¢:.)/(p'/q’). Note that

p/

q

ZEGS pie

ZEES die
(Pie/die) Zees Gie

ZEES Qie
Pie
9

Gie

1 <

where the final inequality follows from our choice aflt follows that

1< %11; < Die
Gie 4 Gie
Therefore, the bias in each outcome remains at mest.

Putting this together, we get that for each levelfinwe use at mos©(m - log(mn)) coins in the
simulation, as we know by the rounding argument fhatg;. > 1/mn?. Hence, the new ROBP has length
O(nmlog(mn)). Furthermore, it has widtB, since for each state ifi we use a widti2 ROBP, and we
requirew additional accumulator states. Hence, there is a WidthiengthO (mn log(mn)) ROBP that
computesf and uses only balanced coins. We know by theorem 5 that ifal@RMBP distinguishes, then

B = Q (log(mnlog(mn)) ") = Q (log(mn) ") .

The lower bound o for f follows. O

C Proof of Upper Bound

For the sake of simplicity, we give the construction for Wity = 3 before generalizing to any constant
width w = O(1).

27

C.1 Width-3 Branching Programs Distinguish = O(1/ log n)

Fix m such thain log m = n, and consider an OR-AND tree consisting of a single OR gatesabot andn

AND gates at the second level, each with fareigim. Recall that a widtls branching program can compute

this function. In this subsection, we show an OR-AND treg tistinguishes? = 1/logm = O(1/logn).
Suppose that the coins are heads with probabiliy/+ 5. Then, we have

logm

1 1

Pr [Aiflmxi - 1] - (—(1 + 25)) =~ (1428)8m > ~flogm — ©
2 m m m

where the inequality usds— = > ¢~%/2, which holds for all) < = < 1/2. Therefore, we have
e m

(1-7)

< e(f%)

= e ©<0.066 .

IN

P [V MO 2 =)

Therefore, when the coins are heads with probabilifg + 3, we accept with probability at least
1 —0.066 = 0.934 > 2/3. Alternatively, suppose that the coins are heads with fitihal/2 — (. Then,
we have

1 1
Pr A" a = 1] = (1/2 - §)°5™ = — (1 - 25)5" < ——.
m

~ e2m
Hence,
Pr v s 0] > (1 — U ek s 003
Viz1 T = > — 62— >e ¢ > 0. .
C.2 Width-w Branching Programs
For the general case, we closely follow the approach of AnjahdFix W = (wq,...,wy), and consider

an AND-OR tree such that each node at leMeas fan-inw;.

Definition 33 (Amano [2]). Fork = 0,...,dandi € {0,1}, let A% : [0,1] — [0, 1] be a series of functions
defined as follows:

e Ai(p) =pforall pel0,1].

o Al(p) = (A}_,(p))™* forallodd k and allp € [0,1].

) =
k(p) =
o A(p) = (AY_,(p))"" for all evenk and allp € [0, 1].
e A(p) + Al(p) = 1forall k and for allp € [0, 1].

The functionA}C(p) gives the probability that a subtree of deptloutputs:, given that each input i
with probability p. Amano used the above function and a careful choidé’db give an optimal size bound
for depthd ACY circuits that approximate the Majority function.

Couched in our language, Amano’s construction fixes a dégthd 3 := /,/n and gets an optimal
exp (© (n1/(23=2))) circuit size to distinguistB. We wish to fix a depthl := w — 1 and input size: and
determine the begt we can distinguish with circuits of such depth and size.

28

Fix m := (logn)/(d — 1) — loglogn + log(d — 1), and setw; := m, wy = (In2) - m - 2™ for
2 <k <d-1,andwy := (In2) - 2. Note that the number of inputs to this circuit equf]sw;.
Furthermore, note that

_ — 1)pt/(@-1)
m = log (n1/(d—1)> +log (Q) — log (%) ,
logn logn

Therefore, we have™ = (d — 1)n'/(4=1 /log n, hence

I w = m-(m2m2m)??. (n2)2"
1<k<d

= ((In2)-m-2m)%!

d—
<1ogn (d—l)nl/(d_1)> '
n

d—1 logn

Hence the circuit family that we describe accepts at mdsputs. We claim that these circuits distin-
guish3 = m~@=1 = O ((logn)~(*=2)). To prove this claim, we require two lemmas that analyze the
functions A%. We leave their proofs to the Appendix and note that thesenlasnclosely follow Lemmas 3
and 4 of Amano [2].

Lemma 34. Letz := (In2) - m - 2™. Suppose that
A>27™ (1 + cm*k)
for somel < k < d — 1 and some constamrt> 0. If £ > 1, then
1-AF<2™ (1 - (c/3)m*k+1) .

If £ =1, then
(1—AF <27m.27¢

Proof. Usingl — x < e~ for all realz, we have

(1—4)°

IN

exp(—zA)

exp (—(ln 2)-m-2™M. (2"“(1 + cm_k)))
g—m(l+em™F)

IN

2—771 . 2—(Cm7k+1)'
If k =1,then(1 — A)* < 27™.27¢ Otherwise, usind — = > 2737, which holds for all real < z < 1,

we have .
(1 o A)Z S 2—771 . 2—cm*k+l S 2—m . (1 _ gm—k-l—l))

29

Lemma 35. Letz := (In2) - m - 2™. Suppose that
A<2™™ (1 — cm_k)
for somel < k < d — 1 and some constamt> 0. If £ > 1, then
(1— A7 >2™ (1 + gm_k‘H) .

If £ =1, then
(1 —A)? >27m.2¢/3,

Proof. Usingl — z > e~%~%" = ¢~2(1+2) which holds for all: > 0, we have

(1-A4)° > exp(—zA(1+A))
> exp (—(ln 2)m(1 — em™F) (1 +27"(1 — cm*k))>
= 2 Mexp ((ln 2) <c7n_}"+1 —m2 ™1 — cm_k)2>>
> 27m.oram

)

where the last inequality holds for sufficiently larggand hence sufficiently large). Whenk = 1, then
we have(l — A)? > 2-™ . 2¢/1.1 5 9=m . 9¢/3 gnd we're done. Otherwise, usiig+ zIn 2 < 2%, we have

(1—A)F =2 (1 + —Clln12mk+1) > 27 (14 gm).

Either way, the proof is complete. O
We are now ready to prove the main upper bound. We restatbelestm here for clarity.

Theorem 36. For all constantw, there exist$ = O ((log n)—(w—Q)) such that widthw branching programs
distinguishg.

Proof. Construct a depthd-:= w—1 AND-OR tree in the manner described above. Fix= c(logn)~ (2
for some constant to be determined later. Recall that widihbranching programs can simulate depth-
(w — 1) AND-OR trees, and so it remains to show that

Al <%+5> >2/3 and A (%—ﬁ) <1/3.
Assume without loss of generality th&is odd (the case in whicti is even is proved similarly). Note that

A§(1/248) = 1/2+pandA}(1/2—) = 1/2— 3. Usingl +x > ¢*/2, which holds for al0 < = < 1/2,
we have

A <% + ﬁ) = (%(1 + 2ﬁ)>m > 2 M exp(Bm) = 27" exp(em ™ F?) > 27" (14 em V)

Therefore, by Lemma 34, we hav)(1/2 + 8) < 27™ (1 — (¢/3)m~***), hence by Lemma 35, we
haveA}(1/2 +) > 2™ (1 — (¢/9)m~"*+?). Continue alternating between Lemmas 34 and 35 until

1
AL, <§ + B) > m (1 + 3d%3m—w+d) —gm (1 + 3d—:m_l) .

30

With one final invocation of Lemma 34, we get
1 _ __ad—3
A21<5—+ﬂ> <27m. TS

Finally, because the root node has2) - 2™ children, we have

) 1 0 1 (In2)2™
i) - (a0 3+9)
_ In 2)2™
> (1_27m.27c/3d 3)()

> exp (—(ln 2)2m . 9=m . g=¢/317 2)
o 2721—c/3di3
Settinge := 3972, we get that
1
A§<§-+ﬂ>;z2ﬂ4>2/3.

It remains to prove thaty(1/2 — 3) > 2/3. Usinge 2* < 1 —x < e, which holds for all0 < z < 1/2,

we see that
1 1 1 " —m _—23m
Aj 5 6) = 5(1 —20) < 27Me

< 27"(1 - pm)
= 27" (1—cm vt3) .

By Lemma 35, it follows thatd9(1/2 — 8) > 2™ (1 + (¢/3)m~“**), and hence by Lemma 34, we have
A3(1/2 = B) <27™ (1 — (¢/9)m~*?). Again alternating between Lemmas 34 and 35, we continte unt

1 o c _
A}”<§—ﬁ><2 (1-3(1—_3m 1).
By Lemma 35, we see that
1 _e
Ad (5 - 5) > 2507

Recall that the root node hgk: 2) - 2™ children. Hence, we see that

. 1 0 1 (In2)2™m
A(3-0) = (-4 (3-9))
_oy\ (In2)2™
(1 _9—m, 20/3d 2)

< exp (—(111 2)2m . 97 . 20/3d‘2)

IN

3d—2

9=2¢/

= 272<1/3.

31

