
Distributed Monitoring of Conditional Entropy for
Anomaly Detection in Streams
Chrisil Arackaparambil, Sergey Bratus, Joshua Brody, and Anna Shubina

Dept. of Computer Science, Dartmouth College
Hanover, NH 03755, USA

{cja, sergey, jbrody, ashubina}@cs.dartmouth.edu

Abstract—In this work we consider the problem of monitoring
information streams for anomalies in a scalable and efficient
manner. We study the problem in the context of network streams
where the problem has received significant attention.

Monitoring the empirical Shannon entropy of a feature in a
network packet stream has previously been shown to be useful
in detecting anomalies in the network traffic. Entropy is an
information-theoretic statistic that measures the variability of
the feature under consideration. Anomalous activity in network
traffic can be captured by detecting changes in this variability.

There are several challenges, however, in monitoring this
statistic. Computing the statistic efficiently is non-trivial. Further,
when monitoring multiple features, the streaming algorithms
proposed previously would likely fail to keep up with the ever-
increasing channel bandwidth of network traffic streams. There
is also the concern that an adversary could attempt to mask
the effect of his attacks on variability by a mimicry attack
disguising his traffic to mimic the distribution of normal traffic
in the network, thus avoiding detection by an entropy monitoring
sensor. Also, the high rate of false positives is a big problem with
Intrusion Detection Systems, and the case of entropy monitoring
is no different.

In this work we propose a way to address the above challenges.
First, we leverage recent progress in sketching algorithms to
develop a distributed approach for computing entropic statistics
accurately, at reasonable memory costs. Secondly, we propose
monitoring not only regular entropy, but the related statistic
of conditional entropy, as a more reliable measure in detecting
anomalies. We implement our approach and evaluate it with real
data collected at the link layer of an 802.11 wireless network.

I. INTRODUCTION

In several information systems that generate data streams
it is imperative to monitor the streams carefully and watch
for anomalous activity. Examples include information streams
from financial systems, computer networks, and sensors in
control systems monitoring environment variables. Reliable
anomaly detection capability is of critical importance in each
of these examples, the absence of which may result in sig-
nificant loss of revenue, security, privacy, or safety. Further,
given the massive rates of the stream sources, it is necessary to
implement the detection mechanisms efficiently and scalably.
In this work we consider the problem of anomaly detection in

This paper results from a research program in the Institute for Security,
Technology, and Society (ISTS), supported by the U.S. Department of
Homeland Security under Grant Award Number 2006-CS-001-000001. The
views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the U.S. Department of Homeland Security.

the context of network streams where the problem has been
well studied. Our results should be applicable in the other
contexts mentioned above as well.

Reliably detecting attack-related anomalies in network traf-
fic is known to be a hard problem. There are many kinds
of attacks that are likely to manifest themselves as traffic
anomalies. Some examples of such attacks are: a denial of
service (DoS) attack, jamming by an attacker, scanning activity
by reconnaissance tools or botnet nodes, and covert channels
that make unintended use of (unused) features of network
protocols to communicate data out of a network. Several
approaches in recent research have focused on monitoring
various statistics of the traffic stream [15], [17], [22]. The
property desired of such a statistic is that it should capture
a characteristic of the traffic distribution that would reveal
anomalies. The statistic value is monitored for deviations from
“normal” values as ascertained by training with prior observed
data and continuous adjustment by Network Operations Center
(NOC) personnel. Several features of the observed stream may
be monitored in conjunction to improve reliability of detection.

The information-theoretic statistic of empirical entropy (or
simply entropy) has received a lot of attention in this re-
spect [4], [10], [16], [17], [18], [19], [21], [22]. Computing
entropy in the straightforward manner, by maintaining counters
to keep track of the distribution histogram, is expensive
memory-wise and computationally. Lall et al [16] showed
that computing entropy either deterministically or precisely
requires linear space, therefore in these cases no non-trivial
savings can be achieved over naı̈ve computation. Thus, one has
to consider randomized approximation algorithms to have any
hope of computing entropy efficiently. This problem of mon-
itoring entropy efficiently has received widespread interest in
the theory community, and several data streaming algorithms
are now known [2], [3], [6], [7], [11], [12], [16] that utilize
significantly lower memory than straightforward computation.
However, even such algorithms fail to keep up with ever-
increasing channel bandwidths observed at a typical NOC of
a large organization, especially considering that monitoring of
several stream features is desirable for accurate detection.

Our contributions.: We refer the reader to the above-
mentioned previous research for the strong justification of
entropy’s usefulness in network anomaly detection. In this
paper, we concentrate on making such entropy estimations
on real traffic scalable and efficient, and extending them to

conditional entropy. In particular, we
• implement and evaluate the Hierarchical Sample Sketch-

ing (HSS) algorithm [3] for estimating entropy, and
compare it with a previously studied streaming algorithm;

• show that it can easily be adapted to compute pairwise-
conditional entropy with reasonable accuracy;

• make a case study of conditional entropy successfully
detecting an attack-related anomaly more efficiently than
single-feature entropies.

We now discuss these contributions in more detail.

A. Sketching algorithms

In this work, we take advantage of a useful feature of
some of the streaming algorithms mentioned previously. The
algorithms of Bhuvanagiri and Ganguly [3] and Harvey et
al [12] are in a class of algorithms called sketching algorithms.
A sketching algorithm is a streaming algorithm that maintains
a data structure called a sketch. A sketch can be combined
with other sketch instances corresponding to other streams to
obtain a “global” sketch for the union of the streams under
consideration. As we shall see in the next section, this property
is useful when trying to make our monitoring algorithms
distributed, scalable and hence practically usable.

B. The case for conditional entropy

Even given algorithms for monitoring entropy efficiently
and scalably, there are two challenges while deploying
anomaly detection systems. First is the high rate of false
positives. Monitoring entropy is subject to the activity of the
users in a network, and it is difficult to have a reasonable
model of its “normal” range even with continuous adjustment
by dedicated personnel. For instance, at a university, when
students in a sizable class are required to download a large
software package, the high bandwidth usage pattern might
well trigger a false alarm. Second, it is conceivable that an
attacker would attempt to mask his effect on network traffic
by trying to mimic the normal distribution of features in the
packets he introduces or even train the intrusion detection
system gradually to accept attack traffic as normal [9]. Both
of these problems somewhat take away from the benefit of
monitoring entropy of traffic distributions.

To overcome these obstacles, we propose monitoring the re-
lated statistic of conditional entropy, which tracks the average
dependence of one feature on another. The value of conditional
entropy indicates the extent to which the first feature can be
predicted given the value of the second feature, or, how much
uncertainty about the value of the second feature remains once
the value of the first one is known. Monitoring this relationship
between features is a promising direction in network anomaly
detection. A change in the “predictability relationship” raises
the possibility of suspicious activity. This dependence tends
to persist in the course of normal traffic even through varied
activities of network users, such as in the university example
mentioned previously, so that the rate of false positives is
minimized. Monitoring conditional entropy also has the added
benefit in that it makes the job of masking by the attacker

harder. Maintaining dependencies between features while at
the same time carrying out an attack is harder than just
maintaining the distribution of features independently. Also,
the attacker would have a harder time guessing which pairs of
features the defender has chosen to monitor.

Need for distributed, scalable algorithms.: With pairs of
distributions for conditional entropy, the amount of processing
and memory required is effectively increased quadratically.
This further motivates the requirement of a scalable, dis-
tributed monitoring scheme. In response to this challenge,
we produced and evaluated the first implementation of the
sketching algorithm that naturally lends itself to a distributed
implementation, namely, the Hierarchical Sample Sketch algo-
rithm of Bhuvanigiri and Ganguly [3]. We also compared its
accuracy and performance with that of our implementation
of the Lall et al. algorithm. The algorithm of Lall et al
was previously the first streaming algorithm to have been
experimentally evaluated for network anomaly detection.

C. Evaluations on the stream of 802.11 link layer headers

We evaluate the strength of our approaches by experiment-
ing with link layer headers collected in real-time from an
802.11 wireless network.

The 802.11a/b/g link layer is feature-rich and complex,
and therefore allows a range of interesting attacks with cor-
responding statistical distribution anomalies. In particular, it
includes large (2346–2358 bytes) management frames that
can contain an entire kernel-level exploit in their link-layer
payload alone1. Besides the frame type and subtype fields, the
link layer header may contain 1–4 MAC address fields, 8 bit
flags (two of which affect interpretation of the address fields),
and 2 16-bit fields, frame sequence number and duration (the
distribution of which has been shown2 to identify wireless
chipset–driver combination as a distinctive fingerprint). The
earlier WEP (the Wired Equivalent Privacy standard) encryp-
tion implementations could be leveraged to leak encryption
key bits by responding to specially crafted injected frames,
using for example the so-called KoreK attack, which we chose
as an example to showcase our methods. We use this attack in
our evaluations to demonstrate the effect on our entropy-based
monitoring methods of the kind of anomalies it introduces
in information streams. To the best of our knowledge, our
experiments are the first application of streaming entropy
estimation methods to 802.11 wireless headers.

The rest of the paper is organized as follows. In Section II,
we detail how conditional entropy can be monitored for
anomaly detection. In Section III, we detail our evaluations
of the proposed approach by testing our implementation with
real data from a wireless network. Finally, we discuss prior
research related to entropy-based anomaly detection methods.

1Demonstrated by Ellch and Maynor at BlackHat 2006 for a vulnerability
in MacBook’s Wi-Fi kernel driver

2J.Cache, “Fingerprinting 802.11 Implementations via Statistical Analysis
of the Duration Field”, http://uninformed.org/?v=5&a=1

II. ESTIMATING AND MONITORING CONDITIONAL
ENTROPY

Before we describe our methodology for monitoring of
conditional entropy, we need some definitions. A feature is
any property of a network packet/frame computable without
additional context. It may be simply a field of the packet, or
it may be an overall property such as the length of the frame.
The values of the feature over all observed packets in the
network form the data stream. We denote the universe of a
feature under consideration to be [n] = {1, 2, . . . , n}. Items
in the stream are drawn from this universe. For instance, if
the feature under consideration is the source IP address, then
n = 232. The length of the stream is denoted by m. We
first define the kinds of error in the estimates produced by
streaming algorithms.

Definition 1 (Error types): If Ŷ denotes the estimate pro-
duced by a randomized streaming algorithm computing a
statistic with the exact value Y , then the error is said to be a
multiplicative ε-error with probability δ if

Pr[|Ŷ − Y | > ε · Y] ≤ δ,

and it is said to be an additive ε-error with probability δ if

Pr[|Ŷ − Y | > ε] ≤ δ,

where the probabilities are over the random bits used by the
algorithm.
Thus for at least δ fraction of random bit sequences supplied to
the algorithm, it will produce an accurate estimate depending
on the parameter ε. The space and (update and estimation)
time required by the algorithm typically depend on these
parameters, increasing as ε and δ are made smaller. See Table I
for actual space bounds of the algorithms we consider.

We now formalize the notion of sketching algorithms that
we had described earlier.

Definition 2 (Sketching algorithm): A sketching algorithm
is a streaming algorithm that, on observing stream S, maintains
a data structure D(S) called a sketch, with the following prop-
erty. If D(S1) and D(S2) are the sketches corresponding to
two independent instances of the algorithm observing streams
S1 and S2 respectively, then given D(S1) and D(S2), it is
possible to obtain D(S1 ∪ S2) efficiently (time linear in the
size of the sketches).

Next, we define the entropies that we consider.
Definition 3 (Entropy): If we let fi denote the count of item

i (1 ≤ i ≤ n) in a feature stream and let X denote the
random variable corresponding to the empirical distribution
of the feature so that

Pr[X = i] = fi/m, ∀i ∈ [n],

then the empirical Shannon entropy of X is

H(X) = −
∑
i∈n

(fi/m) log(fi/m).

Definition 4 (Conditional entropy): Let X and Y be ran-
dom variables corresponding to two features in the observed

stream drawn from universes [n1] and [n2] respectively, and
let Z = (X,Y). Then the empirical conditional entropy of X
given Y is

H(X|Y) = H(Z)−H(Y) = H(X,Y)−H(Y).

The quantity H(Z) = H(X,Y) is known as the joint entropy
of random variables X and Y . entropies. For an excellent
treatise on information theory and more information on these
statistics we refer the reader to Cover and Thomas [8].

A. Estimating conditional entropy

As we noted in the introduction, monitoring conditional
entropy has several benefits towards the goal of anomaly
detection. In this section we describe how this monitor-
ing is achieved. Although several streaming algorithms are

Algorithm Space requirement
Naı̈ve O(m logn)

Lall et al3 [16] O((1/ε)2 log(1/δ) logm logn)
Bhuvanagiri & Ganguly [3] O((1/ε3) log(1/δ) log5m)

Harvey et al [12] O((1/ε)2 log(1/δ) logm logn log(mn))

TABLE I: Comparison of theoretical space bounds of entropy esti-
mation algorithms.

available (see Table I) for estimating entropy, the case for
conditional entropy turns out to be different. Indyk and
McGregor [13] showed that estimating conditional entropy
with ε-multiplicative error requires Ω(m) space, so that no
non-trivial savings are possible over naı̈ve computation even
with randomized, approximation algorithms. However, it is
possible to obtain ε-additive error estimates of conditional
entropy using streaming algorithms that estimate entropy
multiplicatively, at the expense of some additional factor
increase in space. To get an ε-additive error approximation of
conditional entropy H(X|Y), entropy estimation algorithms
are run to get accurate estimates of H(X,Y) and H(Y), with
multiplicative error parameter ε′ = ε/(2 logm). The estimate
Ĥ(X|Y) = Ĥ(X,Y)− Ĥ(Y) is then returned. We have,

|Ĥ(X|Y)−H(X|Y)|
= |(Ĥ(X,Y)−H(X,Y))− (Ĥ(Y)−H(Y))|
≤ |Ĥ(X,Y)−H(X,Y)|+ |Ĥ(Y)−H(Y)|
≤ εH(X,Y)/(2 logm) + εH(Y)/(2 logm)
≤ ε.

The last bound follows because both entropies are at most
logm. This shows that our error is indeed an ε-additive error.

To estimate the entropies H(X,Y) and H(X) we could
use any of the algorithms listed in Table I. In Section III
we evaluate and compare implementations of both the Lall
et al algorithm and the Hierarchical Sample Sketching (HSS)
algorithm of Bhuvanagiri and Ganguly, but we focus our
attention on the latter since it is in addition a sketching
algorithm. For the sake of completeness, we next give a short
outline of this algorithm.

B. A brief overview of the HSS algorithm

At a very basic level, the HSS algorithm maintains a set
of counters organized hierarchically into levels. Each time
an item is observed in the stream, the algorithm employs
a clever sampling scheme that propagates the item to some
of those levels, and a counter at each of the chosen levels
is incremented. Pairwise-independent universal hash function
families [5] are used at each level to decide which counter at
this level is to be incremented. The final estimate is computed
using the values of all counters grouped in a special manner.
Figure 1 gives an idea of the organization of counters in
the HSS sketch and of how an item appearing in the stream
updates the sketch data structure. For more specific details on
the algorithm we refer the reader to [3].

Fig. 1: The HSS sketch. The levels a certain item is propagated to
are marked by the brace. The corresponding counters incremented
are marked “c++”.

C. Distributed monitoring

As already mentioned, since computation time available per
item is extremely limited in high bandwidth channels, it is
highly desirable to run a monitoring system in a distributed
fashion. In fact, it is likely that this is the only practical way of
building actual streaming based intrusion detection systems.

We now describe how the sketching property of the HSS
algorithm can be utilized towards this goal. It is easy to
see why the data structure maintained by the algorithm (see
Figure 1) is indeed a sketch. For if two such data structures
corresponding to two streams are provided, the new structure
obtained by simply adding corresponding counters in the two
structures is the data structure corresponding to the union of
the two streams under consideration.

To utilize this property in a distributed monitoring scheme,
we have a load balancer at the NOC that splits the observed
stream of packets evenly over a set of sensors and forwards the
packets to those sensors. Each sensor has the job of monitoring
the (conditional) entropy of the forwarded stream. In order
to get global estimates of the entropy, sensors forward their
counter values (sketch) to an accumulator node that is able to
use the sketching property to return entropy estimates. This
scenario is shown in Figure 2.

III. EVALUATIONS AND OBSERVATIONS

In this section we present the results of our evaluations
of the techniques mentioned in previous sections. We first
describe the setup behind our evaluations.

Fig. 2: Distributed monitoring of (conditional) entropy using sketch-
ing.

Datasets.: Our datasets consist of 802.11 wireless head-
ers collected by Air Monitors (AMs) distributed across the
Computer Science department at Dartmouth College. For a
technical description of our infrastructure see [20]. The AMs
are sniffers that monitor several 802.11 channels for frames
and forward the link layer headers from the sniffed frames to
a server. The headers arriving at the server are anonymized to
protect MAC addresses by applying a pre-generated random
one-to-one mapping so that distinct MACs never collide.

In our evaluations we use two traces collected in this
manner, denoted further as Trace 1 and Trace 2. For both traces
four AMs were used to collect data. Trace1 was collected over
56 continuous hours of normal network activity. Trace2 was
collected over 41 hours, and apart from normal traffic this trace
contained the data sniffed by an AM while we conducted the
KoreK attack [14] on a setup in the same vicinity. More details
on the attack are given in Section III-B. Data in both traces was
collected at the average rate of about 130,000 frames every 10
minutes. We bin the data in each trace into disjoint windows
of 100,000 frames each. On average each window represents
a time frame of about 7 minutes.

Distributions.: In our evaluations we consider three fea-
tures for entropy monitoring: source MAC address (last 2
bytes), frame length, and duration/ID. This gives a total of 6
combinations for computing the conditional entropy H(X|Y)
when X and Y are taken to be random variables representing
different feature distributions. In the discussion that follows,
we omit the plots for the feature pair of source MAC and
duration/ID due to space constraints.

Whenever values of (conditional) entropy are presented,
they are normalized by a factor of 1/ logm = 1/ log(100000)
in order to allow for comparisons of these values between
different pairs of features.

In all evaluations, our algorithms were tested on a server
with four Intel x86 64 Xeon processors at 3.0 GHz, 4GB of
RAM, running Linux kernel 2.6.22.14.

A. Algorithm performance in conditional entropy estimation

We now detail the performance in conditional entropy esti-
mation of the two algorithms we consider: the HSS algorithm
and Algorithm 1 of Lall et al [16]. Our tests in this section

(a) H(X|Y), 40,000 counters (b) H(Y |X), 25,000 counters

Fig. 3: Relative error of estimates, X ≡ Frame length, Y ≡ Src MAC

(a) H(X|Y), 16,000 counters (b) H(Y |X), 40,000 counters

Fig. 4: Relative error of estimates, X ≡ Frame length, Y ≡ Duration/ID

were performed on Trace 1 and follow along the lines of the
evaluations in [16]. The performance of the algorithms was
evaluated with respect to the accuracy of the algorithms and
the memory used in the algorithms. We evaluate the accuracy
by determining the relative error in computing conditional
entropy over each window. The relative error in computing
H(X|Y) is |H(X|Y)− Ĥ(X|Y)|/H(X|Y), where Ĥ(X|Y)
is the estimate returned by the algorithm. The memory usage
of the algorithms is a function of the parameters ε and δ,
since these determine the number of counters used in the
algorithms. When comparing the relative errors between the
two algorithms, we choose ε and δ in the two cases so that
the number of counters is the same for both algorithms.

Before detailing the results of our performance evaluations it
is useful to note what the values of conditional entropy look
like for the different feature distributions over the windows
in the trace. As we will see, the relative error in estimates
produced by the algorithms depend on the magnitude of
conditional entropy. This is not surprising, since the allowed

relative error grows as the value of estimates gets smaller,
when the algorithm only guarantees bounds on additive error.
Table II lists the mean values of conditional entropy over the
windows, for each combination of features. We now show how

Frame length Duration/ID Source MAC
Frame length – 0.115 0.0105
Duration/ID 0.00351 – 0.00621
Source MAC 0.107 0.214 –

TABLE II: Mean values of actual conditional entropy H(X|Y). Rows represent
variable X , and columns represent variable Y .

the relative errors of the estimates vary with different features
and different number of counters used in the algorithms. In
Figures 3 and 4 we plot the cumulative distribution function
(CDF) of the relative error, showing in what fraction of
windows the algorithms produce small relative error. Doing
this for different numbers of counters shows what minimum
number of counters is necessary in each case. For the sake
of brevity, we include only plots where the median relative

(a) H(X|Y) (b) H(Y |X)

Fig. 5: Mean relative error with varying numbers of counters, X ≡ Frame length, Y ≡ Src MAC

(a) H(X|Y) (b) H(Y |X), 40,000 counters

Fig. 6: Mean relative error with varying numbers of counters, X ≡ Frame length, Y ≡ Duration/ID

error is at most 10%. The first observation we can draw
from these figures is that we can estimate conditional entropy
accurately using the HSS algorithm, since in each case the
relative error is at most 10% for a majority of windows and
reaches a maximum of 20% in a small fraction of cases. We
also observe that the HSS algorithm does consistently better in
producing accurate estimates as compared to Algorithm 1, Lall
et al. We attribute this to the fact that the error guarantees of
Algorithm 1, Lall et al require assumption of certain bounds on
the actual values of entropy. In our cases where the normalized
conditional entropy is very small, these assumptions may not
hold, and indeed we observe that for the cases of Frame length
given Src MAC, and Duration/ID given Frame length where
the conditional entropy was at most 0.01 (see Table II), the
difference in accuracy between the two algorithms particularly
stands out. In these cases, while the maximum relative error of
the HSS algorithm is about 30%, the error due to Algorithm 1,
Lall et al is > 100%. Lastly, we observe that the number of
counters required to compute estimates with reasonable error

varies by the choice of features. To demonstrate this better we
vary the number of counters used in estimating each feature
pair and plot the mean relative error for the two algorithms.
Figures 5 and 6 show these plots. It is easily observed that
the number of counters required by Algorithm 1, Lall et al
to obtain the same level of accuracy as the HSS algorithm
is much higher in the cases mentioned above where the true
conditional entropy values are low. Also the HSS algorithm
is able to achieve a mean relative error of 10% in all cases
using 25,000 counters, while Algorithm 1, Lall et al is not
able to achieve this kind of accuracy at all in the cases when
conditional entropy is low.

B. Detecting attacks with conditional entropy

We now look at how our methodology for detecting anoma-
lies fares in the presence of a known attack.

For the purpose of demonstrating our methods, we chose
the so-called KoreK attack on WEP. Although WEP should be
considered antiquitated as a security measure, in our opinion

(a) H(X|Y) (b) H(Y |X)

Fig. 7: Relative deviation of conditional entropy estimates from median, X ≡ Frame length, Y ≡ Src MAC

(a) H(X) (b) H(Y)

Fig. 8: Relative deviation of entropy estimates from median, X ≡ Frame length, Y ≡ Src MAC

this attack has a number of exemplary properties. In particular,
it attacks a cryptographic system via a weakness in its particu-
lar implementation specific to a class of devices (a significant
practical concern for 802.11 equipment, as successful attacks
have shown); it relies on the attacker’s capability to inject
custom-built 802.11 frames including malformed frames; it
does not recover the encryption key, but rather gives the
attacker access to sensitive information about the network.

The KoreK attack.: The KoreK attack attempts to decrypt
a WEP data packet by guessing at the plaintext byte by byte,
starting from the end of the packet [14] and making up to 256
guesses at each step. Attempting a guess, the attack produces
a packet, which is a valid encrypted packet if the guess is
correct, and transmits this packet onto the wireless network.
If the packet is valid, the AP will resend it onto the network;
if it is invalid, the AP will drop it, thus allowing to find out
the last plaintext byte. As soon as the packet is accepted and
resent by the AP, and thus the last plaintext byte is found, the
attack chops it off and continues working with the packet 1

byte shorter. Thus the KoreK attack generates different-sized
clusters of packets of the same size, the size of the packets
reduced by 1 byte from cluster to cluster. Since a number of
header field values in the resulting stream end up being more
uniformly distributed during the attack than in the absence
of the attack, corresponding entropic measures show a spike
when the KoreK attack is executed.

We used the KoreK functionality of the aireplay-ng tool [1]
to decrypt packets on our encrypted wireless network.

The resulting traffic was captured in Trace 2 and we now
present the results of running the HSS estimation algorithm
on that trace. Figure 7 shows the relative deviation in the
conditional entropies from the median value over windows
of Trace 2 when the features of Frame length and Src MAC
are considered. On the other hand, Figure 8 shows the relative
deviation of the separate entropies of these features. We chose
the median as the measure of central tendency to ignore the
effect of the KoreK attack. The spikes due to the KoreK attack
are visible by observation around the window at 18:30 hrs on

the second day in all cases. However, the conditional entropies
are affected the most, as can be observed from the prominence
of the spikes. This is due to the fact that, the KoreK attack
results in greater variability among lengths of frames that
originate from a small set of MACs.

Table III shows that the attack disturbs the conditional
entropy of Frame length given the Src MAC the most —
570%— whereas the individual entropies are affected only
modestly by up to 50%. This confirms our hypothesis that
conditional entropy, capturing dependence between feature
pairs, could be a more useful statistic in detecting anomalies.

Feature(s) Statistic median In attack Rel. change
frame len. given src MAC 0.0192 0.129 +572%
src MAC given frame len. 0.211 0.0821 -61%

src MAC 0.374 0.240 -36%
frame len. 0.187 0.287 +53%

TABLE III: Relative change in (conditional) entropy in the KoreK attack

IV. RELATED WORK

Empirical entropy applied to monitoring of network traffic
has been shown to be very useful in detecting changes in
its character, as first suggested in [18] and then developed
in [17] and other works (e.g., [4], [10], [16], [19], [21],
[22]). While possessing the significant advantage of needing
few modeling assumptions about what constitutes normal
and abnormal traffic, entropy-based methods incur substantial
computational cost, which presented an obstacle to their practi-
cal adoption. Recent advances in streaming algorithms [3], [6],
[12], [16] pave the way to overcoming this obstacle. Reducing
the computation cost opens the way not only for single-
variable entropy-based anomaly detection, but also for analysis
of pairwise feature dependencies, which can be an efficient
anomaly detection tool. Nychis et al [19] commented that
tracking the correlation between the entropy timeseries of pairs
of features might be a useful approach for anomaly detection.
Our approach is different, because we do not monitor the
correlation between entropy timeseries, but rather track the
conditional entropy. This is a direct statistic of the concerned
feature distributions, and not one of entropies of the feature
distributions. Changes in the nature of network traffic are likely
to manifest directly in the conditional entropy. We also provide
a distributed approach to handle the heavy computational
burden of monitoring conditional entropy of feature pairs.

V. CONCLUSION

The reliable detection of anomalies in streams produced in
many information systems is vital. In the case of anomaly
detection in network traffic, a strong case for monitoring em-
pirical entropy of network features has been made by a number
of researchers. However, computational challenges of keeping
up with high-bandwidth network links are still significant, even
after the recent theoretical advances in streaming algorithms.
We show that robust estimation of entropy in network streams
can be done in distributed fashion, thus dramaticially increas-
ing its scalability in practical implementation.

We produced an implementation of the Bhuvanagiri-
Ganguly HSS sketching algorithm, and evaluated its accu-
racy, and memory requirements in estimating entropy using
network data collected by our experimental wireless infras-
tructure at Dartmouth. With the extra scalability advantages
of the distrubuted approach to entropy estimation, the use
of pairwise conditional entropies for anomaly detection now
comes within reach. We study the application of HSS to
estimating conditional entropies of 802.11 link layer features,
and make a case study of the KoreK attack with both single-
feature and pairwise-conditional entropies. We demonstrate
both feasibility and superior sensitivity of this approach.

REFERENCES

[1] KoreK chopchop. http://www.aircrack-ng.org/doku.php?id=korek
chopchop.

[2] C. Arackaparambil, J. Brody, and A. Chakrabarti. Functional monitoring
without monotonicity. In Proc. of ICALP, 2009. To appear.

[3] L. Bhuvanagiri and S. Ganguly. Estimating entropy over data streams.
In Proc. of ESA, 2006.

[4] D. Brauckhoff, B. Tellenbach, A. Wagner, A. Lakhina, and M. May.
Impact of traffic sampling on anomaly detection metrics. In Proc. of
ACM/USENIX IMC, 2006.

[5] J. L. Carter and M. N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18(2):143154, 1979.

[6] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algo-
rithm for computing entropy of a stream. In Proc. of SODA, 2007.

[7] A. Chakrabarti, K. Do Ba, and S. Muthukrishnan. Estimating entropy
and entropy norm on data streams. In Proc. of STACS, 2006.

[8] T. M. Cover and J. A. Thomas. Elements of Information Theory. John
Wiley & Sons, Inc., 1991.

[9] Dorothy E. Denning. An Intrusion-Detection Model. IEEE Transactions
on Software Engineering, 13:222-232, 1987.

[10] L. Feinstein, D. Schnackenberg, R. Balupari, and D. Kindred. Statistical
approaches to DDoS attack detection and response In In Proc. of DARPA
Information Survivability Conference and Exposition, 2003.

[11] S. Guha, A. McGregor, and S. Venkatasubramanian. Streaming and
sublinear approximation of entropy and information distances. In Proc.
of SODA 2006.

[12] N. J. A. Harvey, J. Nelson, and K. Onak. Sketching and streaming
entropy via approximation theory. In Proc. of FOCS, 2008.

[13] P. Indyk and A. McGregor. Declaring independence via the sketching
of sketches. In Proc. of SODA, 2008.

[14] informIT. Byte-Sized Decryption of WEP with Chopchop. http://www.
informit.com/guides/content.asp?g=security&seqNum=196, 2009.

[15] V. Karamcheti, D. Geiger, Z. Kedem, and S. Muthukrishnan. Detecting
malacious network traffic using inverse distributions of packet contents.
In Proc. of ACM SIGCOMM Workshop on Mining Network Data
(MineNet), 2005.

[16] A. Lall, V. Sekar, M. Ogihara, J. Xu, H. Zhang. Data streaming
algorithms for estimating entropy of network traffic. In Proc. of ACM
SIGMETRICS, 2006.

[17] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic
feature distributions. In Proc. of ACM SIGCOMM, 2005.

[18] W. Lee and D. Xiang. Information-theoretic measures for anomaly
detection. In Proc. of IEEE Symposium on Security and Privacy, 2001.

[19] G. Nychis, V. Sekar, D. G. Andersen, H. Kim, H. Zhang. An empirical
evaluation of entropy-based traffic anomaly detection. In Proc. of ACM
IMC, 2008.

[20] Y. Sheng, G. Chen, H. Yin, K. Tan, U. Deshpande, B. Vance, D. Kotz,
A. Campbell, C. McDonald, T. Henderson, and Joshua Wright. MAP:
A scalable monitoring system for dependable 802.11 wireless networks.
IEEE Wireless Communications, 15(5):10-18, October, 2008.

[21] A. Wagner and B. Plattner. Entropy based worm and anomaly detection
in fast IP networks. In Proc. of IEEE WET ICE, 2005.

[22] K. Xu, Z.-L. Zhang, and S. Bhattacharya. Profiling internet backbone
traffic: Behavior models and applications. In Proc. of ACM SIGCOMM,
2005.

